Supplementary Material to

The key to acetate: Metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation simulating conditions

Philipp Adler^a, Lasse Jannis Frey^a, Antje Berger^a, Christoph Josef Bolten^b, Carl Erik Hansen^b and Christoph Wittmann^c*

^aInstitute of Biochemical Engineering, Technische Universität Braunschweig, 38106
 Braunschweig, Germany
 ^bNestlé Research Center, Vers-Chez-Les-Blanc, 1000 Lausanne 26 Switzerland
 ^cInstitute of Systems Biotechnology, Saarland University, 66123 Saarbrücken,
 Germany

*Corresponding address: Christoph Wittmann, Institute of Systems Biotechnology, Saarland University, Campus A 1.5, 66123 Saarbrücken, Germany, phone 0049-681-30271971, FAX: -30272972, christoph.wittmann@uni-saarland.de

1) List of reactions

Abbreviation	Enzyme	EC Number	Gene (Acetobacter pasteurianus IFO3283-01) ^a	Gene (Acetobacter pasteurianus 386B) ^b
ACO ALS	Aconitase α-Acetolactate synthase	4.2.1.3 2.2.1.6	APA01_25120 APA01_03810, APA01_03830,	APA386B_1323 APA386B_835, APA386B_836,
ALDC	α-Acetolactate decarboxylase	4.1.1.5	APA01_19270 APA01_03800	APA386B_1863 APA386B_1862
ADH1	Alcohol dehydrogenase, membrane-associated, quinone-dependent	1.1.5.5	APA01_00250 APA01_00860 APA01_00870 APA01_03250 APA01_04650 APA01_07070 APA01_08590 APA01_12700 APA01_13900 APA01_15620 APA01_22100 APA01_23220 APA01_24830	APA386B_1948 APA386B_1574, APA386B_1575
ADH2	Alcohol dehydrogenase (NAD(P) dependent)	1.1.1.1 1.1.1.2	n.a.	APA386B_1507, APA386B_2362, APA386B_496
ALDH1	Aldehyde dehydrogenase, membrane-associated, quinone-dependent	1.2.99.3	n.a.	APA386B_1211, APA386B_2542, APA386B_2544
ALDH2	Aldehyde dehydrogenase (NAD(P) dependent)	1.2.1.3 1.2.1.4	APA01_23770 APA01_22400 APA01_22090 APA01_20540 APA01_20430	APA386B_909 APA386B_151
CS	Citrate synthase	2.3.3.1	APA01-03600, APA01_10670	APA386B_2584
ENO GAPDH	Enolase Glyceraldehyde 3- phosphate	4.2.1.11 1.2.1.12	eno APA01_03800	APA386B_2618 APA386B_1520
GPDH	denydrogenase Glucose 6-phosphate debydrogenase	1.1.1.49	APA01_10420,	APA386B_729
GLPDH	Gluconate	1.1.1.44	APA01_00250 APA01_23130	APA386B_1154
RuPI	Ribulose 5-phosphate epimerase	5.1.3.1	APA01_08750	APA386B_2378
RPI	Ribose 5-phosphate isomerase	5.3.1.6	APA01_23160	APA386B_1157
TKT1	transketolase	2.2.1.1	APA01_00390, APA01_23110	APA386B_1152, APA386B_1521
TAL TKT2	transaldolase transketolase	2.2.1.2 2.2.1.1	APA01_23120 APA01_00390,	APA386B_1153 APA386B_1152,

Table S1: List of reactions and their corresponding annotated genes

			APA01_23110	APA386B_1521
FBP	Fructose 1,6- bisphosphatase	3.1.3.11	glpX	APA386B_993
FBA	Fructose-bisphosphate	4.1.2.13	APA01_02600	APA386B_1752
ICDH	Isocitrate dehvdrogenase	1.1.1.42	APA01 06250.	APA386B 2121
		1 1 1 41	APA01 26420	APA386B 2558
PC	Pyruvate carboxylase	6.4.1.1	APA42C 25210	n.a.
PDC	Pyruvate decarboxylase	4.1.1.1	APA01 23490	APA386B 1186
PDH	Pyruvate dehydrogenase	1.2.4.1	APA01_05950	APA386B 2083.
		2.3.1.12		APA386B 2084.
				APA386B 2737.
				APA386B 2738.
				APA386B 2085.
				APA386B 2736.
				APA386B 2735.
				APA386B 2271
ACS	Acetyl-CoA synthetase	6.2.1.1	APA01 03620	—
PHM	Phosphohexomutase,	5.4.2.2	APA01 40080,	APA386B 513
	phosphoglucomutase		APA01_26780	
AarC	Succinyl-CoA : acetate	3.1.2.1	APA01_10710	APA386B_2589
0011	CoA transferase	4 0 00 4	10101 00000	
SDH	Succinate	1.3.99.1	APA01_00320,	APA386B_1513 -
		4040	APA01_00310	APA386B_1516
гп	Fumarate hydratase	4.2.1.2	APAU1_24940,	APA380B_321,
	Molio Enzymo"	1 1 1 10	APAU1_14580	APA380B_1305
		1.1.1.40	AFAUI_UIIIU ADA01_07660	AFA300D_1000
UGDC		1.2.4.2	AFAU1_07000,	AFA3000_2209,
	denydrogenase	2.3.1.61	AFA01_07070	AFA3000_2270
MQO	Malate dehydrogenase,	1.1.5.4	APA01_01110,	APA386B_2675
	malate : quinone		APA01_11550	
	oxidoreductase			
PEPC	Phosphoenolpyruvate	4.1.1.31	APA01_16650 ^c	APA386B_587,
	carboxylase			APA386B_588
PGK	Phosphoglycerate kinase	2.7.2.3	pgk	APA386B_1519
PGM	Phosphoglycerate	5.4.2.1	APA01_23500,	APA386B_1895,
	mutase		APA01_25860,	APA386B_2495
			APA01_22500	
PPDK	Pyruvate phosphate dikinase	2.7.9.1	APA01_19100	APA386B_814
PYK	Pyruvate kinase	2.7.1.40	APA01_06160	APA386B_2108
TPI	Triose phosphate isomerase	5.3.1.1	APA01_12250	APA386B_2746

^aAzuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M. 2009. Whole-genome analyses reveal genetic instability of *Acetobacter pasteurianus*. Nucleic Acids Res 37(17):5768–5783. (Accession: www.biocyc.org)

^bIlleghems K, de Vuyst L, Weckx S. 2013. Complete genome sequence and comparative analysis of *Acetobacter pasteurianus* 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics 14(1):526. (Accession: DDBJ/EMBL/GenBank, Accession Numbers: HF677570-HF677577)

^cThis gene is annotated with activity for 4.1.1.31 and 4.1.1.32 (phosphoenolpyruvate carboxykinase). However, there is now experimental evidence for phosphoenolpyruvate carboxykinase.

Dissolved Oxygen (%) CDW (g/L) Lactate Acetate Acetoin Pyruvate (mM) Ethanol Lactate (mM) Acetoin (mM) Diss. Ox. - CDW ☆ Pyruvate Acetate (mM) Ethanol (mM) Ó офа 0 Time (h)

2) Cultivation profiles of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium

Figure S1: Cultivation profile of *A. pasteurianus* NCC 316 in cocoa pulp simulation medium.

Figure S2: Cultivation profile of A. ghanensis DSM 18895 in cocoa pulp simulation medium.

3) Degree of *de novo* synthesis of amino acids by *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium

Table S2: Mass isotopomer distributions of the carbon backbones of proteinogenic amino acids in cell pellets of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium with [U-¹³C] lactate and [U-¹³C] ethanol. The sum of fractional labeling, the degree of *de novo* synthesis, and the degree of amino acid uptake were derived from these mass isotopomer distributions.

			-	Mass i	sotopome	er fractio	n ± standa	rd deviati	ion ^a (%)			Sum of	Degree of	Degree of
Amino acid family	Amino acid	<i>m</i> +0	<i>m</i> +1	<i>m</i> +2	<i>m</i> +3	<i>m</i> +4	<i>m</i> +5	<i>m</i> +6	<i>m</i> +7	<i>m</i> +8	<i>m</i> +9	fractional labeling (%)	<i>de novo</i> synthesis [♭] (%)	amino acid uptake (%)
						Α. μ	oasteurianı	s NCC 31	6					
Pyruvate	Ala	83.4 ± 0.8	3.8 ± 0.1	1.9 ± 0.1	10.9 ± 0.6							13.4 ± 0.7	12.3 ± 0.7	87.7 ± 0.7
	Leu	86.1 ± 0.7	6.0 ± 0.1	0.1 ± 0.0	0.8 ± 0.0	0.9 ± 0.0	6.1 ± 0.6					8.5 ± 0.6	7.4 ± 0.6	92.6 ± 0.6
	Val	39.6 ± 0.1	2.5 ± 0.0	3.1 ± 0.2	3.3 ± 0.2	4.3 ± 0.0	47.3 ± 0.3					54.4 ± 0.5	53.3 ± 0.5	46.7 ± 0.5
Serine	Ser	94.8 ± 0.8	3.4 ± 0.1	0.2 ± 0.2	1.6 ± 0.5							2.8 ± 0.7	1.7 ± 0.7	98.3 ± 0.7
	Gly	95.2 ± 0.9	3.4 ± 0.3	1.4 ± 0.5								3.1 ± 0.7	2.0 ± 0.7	98.0 ± 0.7
Glutamate	Glu	64.6 ± 0.6	4.9 ± 0.1	23.9 ± 1.0	2.4 ± 0.2	2.3 ± 0.4	1.9 ± 0.3					15.8 ± 1.2	14.7 ± 1.2	85.3 ± 1.2
Aspartate	Asp	82.1 ± 3.3	4.2 ± 0.0	6.6 ± 1.8	2.9 ± 0.8	4.3 ± 0.8						10.8 ± 2.3	9.7 ± 2.3	90.3 ± 2.3
	Thr	84.8 ± 2.3	4.1 ± 0.1	5.3 ± 1.2	2.3 ± 0.5	3.5 ± 0.5						8.9 ±1.5	7.8 ± 1.5	92.2 ± 1.5
	Lys	16.9 ± 0.3	4.5 ± 0.1	32.9 ± 1.4	33.6 ± 1.4	5.3 ± 1.1	3.5 ± 0.8	3.4 ± 0.6				38.3 ± 3.2	37.2 ± 3.2	62.8 ± 3.2

	lle	62.3 ± 1.7	5.4 ± 0.0	27.6 ± 1.9	2.0 ± 0.0	1.5 ± 0.1	1.2 ± 0.1					15.7 ± 1.0	14.6 ± 1.0	85.4 ± 1.0
aromatic	Tyr	32.8 ± 0.4	3.8 ± 0.2	0.8 ± 0.2	1.1 ± 0.1	1.4 ± 0.1	3.7 ± 0.7	8.1 ± 1.1	4.0 ± 0.1	10.5 ± 1.1	33.8 ± 2.7	55.4 ± 5.1	54.3 ± 5.1	44.6 ± 5.1
	Phe	85.3 ± 0.3	8.4 ± 0.0	0.4 ± 0.1	0.2 ± 0.0	0.2 ± 0.0	0.5 ± 0.0	0.8 ± 0.1	0.4 ± 0.0	1.0 ± 0.1	2.9 ± 0.3	6.1 ± 0.5	5.0 ± 0.5	95.0 ± 0.5
						A. g	hanensis	DSM 1889	95					
Pyruvate	Ala	83.4 ± 1.1	3.8 ± 0.1	2.1 ± 0.3	10.7 ± 0.8							13.4 ± 1.0	12.3 ± 1.0	87.7 ± 1.0
	Leu	67.3 ± 1.4	6.4 ± 0.1	0.3 ± 0.0	2.1 ± 0.0	3.0 ± 0.0	20.8 ± 1.3					25.9 ± 1.3	24.8 ± 1.3	75.2 ± 1.3
	Val	27.6 ± 2.3	1.8 ± 0.2	2.9 ± 0.2	3.3 ± 0.1	5.5 ± 0.2	58.8 ± 2.6					66.7 ± 2.9	65.6 ± 2.9	34.4 ± 2.9
Serine	Ser	45.7 ± 3.4	6.9 ± 0.2	6.5 ± 0.3	40.9 ± 2.9							47.5 ± 2.9	46.4 ± 2.9	53.6 ± 2.9
	Gly	57.0 ± 2.6	4.8 ± 0.2	38.2 ± 2.4								40.6 ± 2.5	39.5 ± 2.5	60.5 ± 2.5
Glutamate	Glu	45.3 ± 4.5	4.5 ± 0.3	32.1 ± 1.3	6.0 ± 0.8	7.6 ± 2.2	4.6 ± 3.1					28.0 ± 2.5	26.9 ± 2.5	73.2 ± 2.5
Aspartate	Asp	72.1 ± 6.4	4.1 ± 0.2	13.0 ± 1.3	5.9 ± 2.3	4.9 ± 3.1						16.9 ± 5.5	15.8 ± 5.5	84.3 ± 5.5
	Thr	74.6 ± 5.7	4.0 ± 0.2	11.7 ± 1.3	5.3 ± 2.0	4.4 ± 2.7						15.2 ± 4.9	14.1 ± 4.9	85.9 ± 4.9
	Lys	15.6 ± 1.3	4.1 ± 0.3	29.6 ± 1.9	30.4 ± 1.6	9.2 ± 0.9	6.7 ± 1.9	4.3 ± 2.3				41.8 ± 6.0	40.7 ± 6.0	59.3 ± 6.0
	lle	57.2 ± 1.1	5.4 ± 0.1	29.1 ± 0.0	3.5 ± 0.3	3.4 ± 0.5	1.5 ± 0.4					19.0 ± 1.0	17.9 ± 1.0	82.1 ± 1.0
aromatic	Tyr	31.5 ± 1.4	3.6 ± 0.4	0.9 ± 0.3	1.3 ± 0.5	1.5 ± 0.4	4.8 ± 1.1	7.7 ± 1.0	3.8 ± 0.2	11.7 ± 0.7	33.3 ± 5.8	57.4 ± 8.4	56.3 ± 8.4	43.7 ± 8.4
	Phe	84.7 ± 0.5	8.7 ± 0.1	0.4 ± 0.1	0.3 ± 0.1	0.3 ± 0.1	0.5 ± 0.1	0.7 ± 0.1	0.5 ± 0.1	1.0 ± 0.1	2.9 ± 0.4	6.4 ± 0.8	5.3 ± 0.8	95.8 ± 0.8

^aLabeling pattern of proteinogenic amino acids, obtained when ($[^{13}C_3]$ lactate and $[^{13}C_2]$ ethanol were fed. Generally, the data represent mass isotopomer distributions in the M-57 fragments, which contain the entire carbon backbone. Only in the case of leucine and isoleucine, the M-85 fragments (C_2 - C_5) were considered.

 $^{\rm b}$ de novo synthesis = sum of fractional labeling – 1.1 %

4) Estimation of the metabolic origin of the produced amino acids

The metabolic origin of the individual amino acids was calculated using the following equations:

$$\psi_{Lac} = \frac{SFL_{Lac} - 1.1}{SFL_{Lac} - 1.1 + SFL_{Eth} - 1.1} \cdot 100 \tag{1}$$

$$\psi_{Lac} = \frac{SFL_{Lac} - 1.1}{SFL_{Lac} - 1.1 + SFL_{Eth} - 1.1} \cdot 100 \tag{2}$$

- ψ_{Lac} Degree of synthesis from lactate
- ψ_{Eth} Degree of synthesis from ethanol
- SFL_{Lac} Sum of fractional labeling of amino acids in cells grown on [¹³C₃] lactate and [¹²C₂] ethanol (Table S2)
- SFL_{Eth} Sum of fractional labeling of amino acids in cells grown on [¹²C₃] lactate and [¹³C₂] ethanol (Table S3)

The mass isotopomer distributions of the amino acids and the sum of fractional labeling are listed in the Tables S1 and S2.

Table S3: Mass isotopomer distributions of the carbon backbones of proteinogenic amino acids in cell pellets of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium with $[U^{-13}C]$ lactate and $[U^{-12}C]$ ethanol. The sum of fractional labeling was derived from these mass isotopomer distributions.

			Mass isotopomer fraction ± standard deviation ^a (%)											
Amino acid family	Amino acid	<i>m</i> +0	<i>m</i> +1	<i>m</i> +2	<i>m</i> +3	<i>m</i> +4	<i>m</i> +5	<i>m</i> +6	<i>m</i> +7	<i>m</i> +8	<i>m</i> +9	fractional labeling (%)		
					A. past	<i>eurianus</i> I	NCC 316							
Pyruvate	Ala	84.5 ± 0.7	3.4 ± 0.0	1.3 ± 0.1	10.8 ± 0.7							12.8 ± 0.7		
	Leu	89.7 ± 0.7	5.3 ± 0.0	0.5 ± 0.0	0.7 ± 0.0	4.5 ± 0.7	2.3 ± 0.0					7.6 ± 0.6		
	Val	38.9 ± 0.4	2.5 ± 0.1	3.1 ± 0.2	3.4 ± 0.2	4.3 ± 0.1	47.9 ± 0.7					55.0 ± 0.9		
Serine	Ser	94.6 ± 1.1	3.4 ± 0.2	0.3 ± 0.1	1.7 ± 0.7							3.0 ±0.8		
	Gly	95.0 ± 1.0	3.4 ± 0.3	1.6 ± 0.6								3.3 ± 0.8		
Glutamate	Glu	81.1 ± 0.6	5.6 ± 0.2	10.5 ± 0.8	1.7 ± 0.2	0.5 ± 0.0	0.6 ± 0.0					7.4 ± 0.5		
Aspartate	Asp	86.9 ± 1.8	4.4 ± 0.3	3.0 ± 0.8	1.9 ± 0.2	3.7 ± 0.5						7.6 ± 1.1		
	Thr	88.6 ± 1.1	4.3 ± 0.2	2.5 ± 0.5	1.6 ± 0.1	3.1 ± 0.3						6.6 ± 0.7		
	Lys	16.9 ± 0.5	4.7 ± 0.2	34.6 ± 0.4	35.3 ± 0.2	3.4 ± 0.4	2.2 ± 0.3	2.9 ± 0.3				37.0 ± 1.1		
	lle	62.3 ± 1.8	5.5 ± 0.0	28.7 ± 1.8	1.6 ± 0.0	0.9 ± 0.0	1.0 ± 0.0					15.2 ± 0.8		
aromatic	Tyr	31.6 ± 1.1	3.8 ± 0.2	0.8 ± 0.4	1.3 ± 0.6	1.6 ± 0.6	3.8 ± 1.0	8.2 ± 1.0	4.0 ± 0.3	10.3 ± 1.1	34.6 ± 4.5	57.4 ± 7.6		
	Phe	85.2 ± 0.6	8.3 ± 0.1	0.4 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.5 ± 0.1	0.8 ± 0.2	0.4 ± 0.1	1.0 ± 0.1	2.9 ± 0.2	6.3 ± 0.6		

					A. ghar	nensis DS	M 18895					
Pyruvate	Ala	85.0 ± 0.7	3.6 ± 0.1	1.3 ± 0.1	10.1 ± 0.4							12.1 ± 0.5
	Leu	67.3 ± 1.2	4.8 ± 0.2	1.6 ± 0.0	2.2 ± 0.1	15.8 ± 1.6	8.3 ± 0.4					23.8 ± 1.8
	Val	26.7 ± 1.2	1.8 ± 0.1	3.1 ± 0.2	3.4 ± 0.2	5.3 ± 0.1	59.7 ± 1.5					67.6 ± 1.8
Serine	Ser	49.4 ± 1.9	4.6 ± 0.1	46.1 ± 1.8								48.6 ± 2.3
	Gly	56.4 ± 1.9	4.8 ± 0.2	38.8 ± 1.8								41.2 ± 1.8
Glutamate	Glu	71.4 ± 0.7	7.1 ± 0.8	17.0 ± 0.6	2.8 ± 0.5	1.1 ± 0.1	0.5 ± 0.1					11.3 ± 0.8
Aspartate	Asp	93.9 ± 2.3	5.8 ± 0.9	6.6 ± 0.6	1.7 ± 0.4	2.0 ± 0.5						8.1 ± 1.3
	Thr	85.1 ± 2.1	5.6 ± 0.7	5.9 ± 0.6	1.6 ± 0.3	1.9 ± 0.5						7.4 ± 1.2
	Lys	15.6 ± 0.4	4.6 ± 0.0	34.1 ± 0.8	35.4 ± 0.1	5.9 ± 0.5	2.6 ± 0.4	1.7 ± 0.3				47.7 ± 1.4
	lle	55.8 ± 0.9	5.4 ± 0.0	33.1 ± 0.2	3.0 ± 0.4	1.8 ± 0.2	0.9 ± 0.2					18.5 ± 0.7
aromatic	Tyr	31.5 ± 0.6	3.6 ± 0.1	0.7 ± 0.1	1.2 ± 0.2	1.4 ± 0.2	4.9 ± 1.1	8.0 ± 0.9	3.6 ± 0.0	11.7 ± 1.2	33.5 ± 4.0	57.6 ± 6.6
	Phe	85.7 ± 0.5	8.4 ± 0.1	0.4 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.6 ± 0.0	0.4 ± 0.0	0.9 ± 0.0	2.6 ± 0.5	5.7 ± 0.6

^aGenerally, the data represent mass isotopomer distributions in the M-57 fragments, which contain the entire carbon backbone. Only in the case of leucine and isoleucine, the M-85 fragments (C_2 - C_5) were considered.

Table S4: Mass isotopomer distributions of the carbon backbones of proteinogenic amino acids in cell pellets of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium with [U-¹²C] lactate and [U-¹³C] ethanol. The sum of fractional labeling was derived from these mass isotopomer distributions.

		Mass isotopomer fraction ± standard deviation ^a (%)							Sum of			
Amino acid family	Amino acid	<i>m</i> +0	<i>m</i> +1	<i>m</i> +2	<i>m</i> +3	<i>m</i> +4	<i>m</i> +5	<i>m</i> +6	<i>m</i> +7	<i>m</i> +8	<i>m</i> +9	fractional labeling (%)
					A. past	eurianus N	NCC 316					
Pyruvate	Ala	95.3 ± 0.2	3.9 ± 0.1	0.7 ± 0.1	0.1 ± 0.0							1.8 ± 0.1
	Leu	89.9 ± 0.6	9.8 ± 0.5	0.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					2.0 ± 0.1
	Val	94.5 ± 0.0	5.3 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0						1.1 ± 0.0
Serine	Ser	97.0 ± 0.0	3.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0							1.0 ± 0.0
	Gly	97.8 ± 0.0	2.2 ± 0.0	0.0 ± 0.0								1.1 ± 0.0
Glutamate	Glu	74.8 ± 0.7	5.4 ± 0.0	17.6 ± 0.3	1.3 ± 0.2	0.8 ± 0.2	0.1 ± 0.0					9.6 ± 0.4
Aspartate	Asp	90.7 ± 1.8	4.4 ± 0.1	4.3 ± 1.3	0.5 ± 0.3	0.1 ± 0.0						3.7 ± 0.9
	Thr	91.9 ± 1.2	4.1 ± 0.1	3.5 ± 0.9	0.4 ± 0.2	0.0 ± 0.0						3.2 ± 0.7
	Lys	88.9 ± 1.2	7.2 ± 3.1	0.5 ± 0.2	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.1					2.7 ± 0.5
	lle	93.0 ± 0.3	6.2 ± 0.1	0.7 ± 0.1	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					1.6 ± 0.1
aromatic	Tyr	88.9 ± 1.2	9.0 ± 0.2	0.8 ± 0.5	0.6 ± 0.5	0.6 ± 0.4	0.0 ± 0.0	1.7 ± 0.4				
	Phe	90.6 ± 0.1	8.9 ± 0.1	0.4 ± 0.1	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	1.1 ± 0.1				

					A. ghar	nensis DS	M 18895					
Pyruvate	Ala	94.8 ± 0.7	4.0 ± 0.2	0.9 ± 0.3	0.3 ± 0.2							2.2 ± 0.5
	Leu	80.2 ± 1.1	18.9 ± 1.2	0.8 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0					1.4 ± 0.3
	Val	93.7 ± 0.3	5.6 ± 0.1	0.5 ± 0.2	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0					1.5 ± 0.1
Serine	Ser	96.5 ± 0.0	3.4 ± 0.2	0.0 ± 0.0	0.1 ± 0.0							1.2 ± 0.1
	Gly	97.6 ± 0.1	2.3 ± 0.0	0.0 ± 0.0								1.2 ± 0.1
Glutamate	Glu	60.5 ± 6.3	6.3 ± 0.1	25.1 ± 2.0	4.0 ± 1.5	3.4 ± 1.8	0.8 ± 0.9					17.2 ± 4.0
Aspartate	Asp	81.2 ± 5.3	5.5 ± 0.4	9.8 ± 2.3	2.8 ± 1.8	0.7 ± 0.8						9.0 ± 3.4
	Thr	83.2 ± 4.5	5.2 ± 0.3	8.6 ± 2.0	2.4 ± 1.6	0.6 ± 0.7						8.0 ± 0.1
	Lys	77.5 ± 3.8	8.8 ± 1.2	6.9 ± 2.5	2.0 ± 1.1	0.5 ± 0.4	0.1 ± 0.0	4.2 ± 7.1				5.5 ± 1.6
	lle	90.2 ± 0.5	7.5 ± 0.1	2.0 ± 0.3	0.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0					4.2 ± 0.2
aromatic	Tyr	68.4 ± 2.4	9.7 ± 0.4	1.2 ± 0.3	1.0 ± 0.3	1.0 ± 0.3	0.4 ± 0.6	0.3 ± 0.6	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	2.6 ± 1.1
	Phe	90.1 ± 0.3	9.0 ± 0.1	0.5 ± 0.1	0.2 ± 0.1	0.0 ± 0.0	1.3 ± 0.1					

^aGenerally, the data represent mass isotopomer distributions in the M-57 fragments, which contain the entire carbon backbone. Only in the case of leucine and isoleucine, the M-85 fragments (C_2 - C_5) were considered.

Table S5: Metabolic origin of amino acids during the first growth phase of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 on cocoa pulp simulation medium. The amino acids are grouped according to their biosynthetic families {Stephanopoulos 1998 #347}. The relative fraction of denovo synthesis was calculated from the sum of fractional labeling (SFL) in the respective amino acid. Therefore, experimental mass isotopomer data were corrected for the natural occurrence of isotopes in the derivatization residue and in non-carbon atoms {Yang 2009 #107}.

			A. pasteuria	nus NCC 316	A. ghanensis DSM 18895			
Amino acid family	Amino acid	Precursors	Degree of synthesis from lactate ± standard deviation (%)	Degree of synthesis from ethanol ± standard deviation (%)	Degree of synthesis from lactate ± standard deviation (%)	Degree of synthesis from ethanol ± standard deviation (%)		
Pyruvate	Ala	Pyr	94 ± 1	6 ± 1	91 ± 3	9 ± 3		
	Leu	Pyr, AcCoA	87 ± 2	13 ± 2	89 ± 1	11 ± 1		
	Val	Pyr	100	0 ^a	100	0 ^a		
Serine	Ser	3PG	100	0 ^a	100	0 ^a		
	Gly	3PG	100	0 ^a	100	0 ^a		
Glutamate	Glu	aKG	42 ± 2	58 ± 2	39 ± 6	61 ± 6		
Aspartate	Asp	OAA	72 ± 8	28 ± 8	47 ± 12	52 ± 12		
	Thr	OAA	72 ± 7	28 ± 7	48 ± 12	52 ± 12		
	Lys	OAA, Pyr	96 ± 1	4 ± 1	89 ± 4	11 ± 4		
	lle	OAA, Pyr	100 ± 0	0 ^a	92 ± 1	8 ± 1		
aromatic	Tyr	PEP, E4P	99 ± 2	1 ± 2	97 ± 1	3 ± 2		
	Phe	PEP, E4P	100	0 ^a	100	0 ^a		

5) Mass isotopomer distributions of selected amino acid fragments

Table S6: Mass isotopomer distributions (%) and the corresponding standard deviations of the carbon backbones of proteinogenic amino acids in cell pellets of *A. pasteurianus* NCC 316 and *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium with [3-¹³C] lactate and [U-¹³C] ethanol.

				Labeled s	substrate		
Amino acid	Fragment		[U- ¹³ C] lactate			[U- ¹³ C] ethanol	
	-	<i>m</i> +0	<i>m</i> +1	<i>m</i> +2	<i>m</i> +0	<i>m</i> +1	<i>m</i> +2
Ala							
Val	M-57						
Val	M-residue ($m/z = 302$)	469+06	38+00	493+05	975+00	25+00	0.0 + 0.0
Glu			0.0 2 0.0		0.10 - 0.0		0.0 2 0.0
Glu							
Asp							
Asp	M-residue (<i>m/z</i> = 302)	90.5 ± 1.3	2.8 ± 0.2	6.8 ± 1.0	94.8 ± 1.0	2.6 ± 0.2	2.5 ± 0.8
Tyr	M-residue (<i>m/z</i> = 302)	38.4 ± 0.3	4.2 ± 0.0	57.4 ± 0.3	97.8 ± 0.0	2.2 ± 0.0	0.0 ± 0.0
Ala							
Val	M-57						
Val	M-residue (<i>m/z</i> = 302)	33.6 ± 1.2	4.2 ± 0.0	62.2 ± 1.2	97.3 ± 0.0	2.7 ± 0.0	0.0 ± 0.0
Glu							
Glu							

Asp							
Asp	M-residue ($m/z = 302$)	89.5 ± 1.3	3.8 ± 0.5	6.7 ± 0.8	90.9 ± 1.5	3.8 ± 0.4	5.4 ± 1.1
Tyr	M-residue ($m/z = 302$)	36.9 ± 0.9	4.2 ± 0.1	58.9 ± 0.8	97.7 ± 0.0	2.2 ± 0.0	0.1 ± 0.0

6) Contribution of lactate and ethanol to the major fermentation products.

The contribution of lactate and ethanol to the formation of the final product acetate was estimated by using the following equations:

$$v_{Lac \to Ac} = \frac{SFL_{Ac(Lac)} - 1.1}{SFL_{Ac(Eth+Lac)} - 1.1} \cdot 100\%$$
(3)

$$v_{Eth \to Ac} = \frac{SFL_{Ac(Eth)} - 1.1}{SFL_{Ac(Eth+Lac)} - 1.1} \cdot 100\%$$
(4)

$$v_{Lac \to Ac} + v_{Eth \to Ac} = 100\% \tag{5}$$

$v_{Eth \rightarrow Ac}$	Flux of ethanol into acetate.
$v_{Lac \to Ac}$ $SFL_{Ac(Lac)}$	Flux of lactate into acetate. Sum of fractional labeling of acetate produced by cells grown on $[^{13}C_3]$ lactate and $[^{12}C_2]$ ethanol (Tables S5, S6).
SFL _{Ac(Eth)}	Sum of fractional labeling of acetate produced by cells grown on $[^{12}C_3]$ lactate and $[^{13}C_2]$ ethanol (Tables S5, S6).
$SFL_{Ac(Eth)}$	Sum of fractional labeling of acetate produced by cells grown on $[^{13}C_3]$ lactate and $[^{13}C_2]$ ethanol (Tables S5, S6).

The contribution of lactate and ethanol to the formation of the final product acetoin was calculated analogously.

Analyte	Mass isotopomer		Labeled substrate			
	fraction / SFL	$[^{13}C_3]$ lactate, $[^{13}C_2]$ ethanol	[¹³ C ₃] lactate	[¹³ C ₂] ethanol		
Acetate	<i>m</i> +0	95.5 ± 0.1	95.4 ± 0.1	9.4 ± 0.5		
	<i>m</i> +1	2.8 ± 0.0	3.7 ± 0.1	11.1 ± 0.1		
	<i>m</i> +2	1.7 ± 0.1	0.9 ± 0.0	79.6 ± 0.7		
	(SFL)	85.1 ± 0.8	2.8 ± 0.1	84.0 ± 0.9		
Acetoin (M-43)	<i>m</i> +0	0.6 ± 0.2	0.3 ± 0.2	94.7 ± 0.5		
	<i>m</i> +1	0.9 ± 0.1	0.9 ± 0.1	4.5 ± 0.1		
	<i>m</i> +2	7.8 ± 0.6	8.6 ± 0.5	0.7 ± 0.4		
	<i>m</i> +3	16.1 ± 0.1	15.7 ± 0.1	0.0 ± 0.0		
	<i>m</i> +4	74.6 ± 0.4	74.4 ± 0.5	0.0 ± 0.0		
	(SFL)	89.6 ± 1.0	89.6 ± 0.9	1.4 8 ± 0.1		

Table S7: Experimental mass isotopomer distributions of the carbon backbones of acetate and acetoin (% of total pool \pm standard deviation) and sum of fractional labeling (SFL) in cultures of *A. pasteurianus* NCC 316 grown in cocoa pulp simulation medium

Table S8: Experimental mass isotopomer distributions of the carbon backbones of acetate and acetoin (% of total pool ± standard deviation) and sum of fractional labeling (SFL) in cultures of *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium

Analyte	Mass		Labeled substrate			
	fraction / SFL	[¹³ C ₃] lactate, [¹³ C ₂] ethanol	[¹³ C ₃] lactate	[¹³ C ₂] ethanol		
Acetate	<i>m</i> +0	93.4 ± 0.5	93.7 ± 0.1	9.2 ± 0.4		
	<i>m</i> +1	3.1 ± 0.0	5.3 ± 0.1	11.0 ± 0.2		
	<i>m</i> +2	3.5 ± 0.4	1.0 ± 0.0	79.8 ± 0.6		
	(SFL)	85.2 ± 0.7	5.1 ± 0.5	82.4 ± 1.1		
Acetoin (M-43)	<i>m</i> +0	0.6 ± 0.2	0.3 ± 0.0	94.7 ± 0.5		
	<i>m</i> +1	0.9 ± 0.1	0.9 ± 0.1	4.5 ± 0.1		
	<i>m</i> +2	7.8 ± 0.6	8.6 ± 0.5	0.7 ± 0.6		
	<i>m</i> +3	16.1 ± 0.1	15.7 ± 0.1	0.0 ± 0.1		
	<i>m</i> +4	74.6 ± 0.4	74.4 0.5	0.0 ± 0.4		
	(SFL)	90.8 ± 0.8	90.7 ± 0.9	1.5 ± 0.5		

7) Estimation of the labeling patterns of precursors.

The specific carbon mass isotopomer distributions of precursors was estimated from the ¹³C labeling patterns of the respective amino acid. The real mass isotopomer distribution of a proteinogenic amino acid is a linear combination of the labeling ¹³C patterns of the produced amino acid and the assimilated amino acid:

$$I_{meas} = I_{AA,prod} \cdot \psi + I_{nat} \cdot (1 - \psi)$$

ψ	Degree of synthesis of amino acid
I _{meas}	Measured ¹³ C mass isotopomer distribution
I _{AA,prod}	¹³ C mass isotopomer distribution of amino acid fragment, produced from precursor
I _{nat}	¹³ C mass isotopomer distribution of assimilated amino acid (natural labeling)

The ¹³C mass isotopomer distribution of the amino acid is mapped to the respective precursor:

$$I_{AA,prod} \rightarrow I_{prec}$$

*I*_{prec} ¹³C mass isotopomer distribution of precursor

Precursor	Amino acid	Mass isotopomer	ction Labeled substrate	
atom)	(fragment)	Traction		
OAA (C ₁ - C ₂)	Aspartate ($m/z = 302$)	<i>m</i> +0	21.6 69.0	
		<i>m</i> +1	0.9	7.1
		<i>m</i> +2	69.5	23.9
PEP (C ₁ - C ₂)	Tyrosine (<i>m/z</i> = 302)	<i>m</i> +0	0.0	97.8
		<i>m</i> +1	5.3	2.2
		<i>m</i> +2	94.7	0.0
Pyr (C ₁ - C ₂)	Valine (<i>m/z</i> = 302)	<i>m</i> +0	2.1	97.0
		<i>m</i> +1	5.3	2.9
		<i>m</i> +2	92.5	0.0

Table S9: Estimated ¹³C mass isotopomer distributions (%) and corresponding standard deviations of precursors derived from proteinogenic amino acids of *A. pasteurianus* NCC 316 grown in cocoa pulp simulation medium

Table S10: Estimated ¹³C mass isotopomer distributions (%) and corresponding standard deviations of precursors derived from proteinogenic amino acids of *A. ghanensis* DSM 18895 grown in cocoa pulp simulation medium

Precursor	Amino acid	Mass isotopomer	Labeled substrate		
(carbon atom)	(fragment)	fraction	[¹³ C ₃] lactate [¹³ C ₂] eth		
OAA (C ₁ - C ₂)	Aspartate ($m/z = 302$)	<i>m</i> +0	44.9 61.6		
		<i>m</i> +1	12.7	37.4	
		<i>m</i> +2	42.4	1.0	
PEP (C ₁ - C ₂)	Tyrosine (<i>m</i> / <i>z</i> = 302)	<i>m</i> +0	0	97.4	
		<i>m</i> +1	0.5	2.4	
		<i>m</i> +2	94.7	0.1	
Pyr (C ₁ - C ₂)	Valine (<i>m/z</i> = 302)	<i>m</i> +0	0	85.1	
		<i>m</i> +1	5.3	4.2	
		<i>m</i> +2	94.8	10.7	

8) Metabolic fluxes of *A. pasteurianus* NCC 316

The stoichiometric model that was used for flux estimation is given in Table S10. Experimental mass isotopomer data from four parallel labeling experiments were considered in the flux estimation approach.

oundino						
RxnID	rxnEq	rxnCTrans	rates	rxnType	basis	deviation
R1	Eth_Ex = Eth	ab = ab		F	71.96	0.844
R2	Lac_Ex = PyrPEP	abc = abc		F	28.04	0.844
R3	Glu_Ex = Glu	abcde = abcde		F		
R4	Asp_Ex = Asp	abcd = abcd		F		
R5	Ala_Ex = Ala	abc = abc		F		
R6	Val_Ex = Val	abcde = abcde		F		
R7	Tyr_Ex = Tyr1	abcde = abcde		F		
R8	GAP + DHAP = G6P	abc + def = abcdef		F		
R9	GAP = DHAP	abc = abc		F		
R10	3PG = GAP	abc = abc		F		
R11	PyrPEP = 3PG	abc = abc		F		
R12	GAP + GAP + GAP = P5PE4P	abc + def + ghi = abcdefghi		F		
R13	AcCoA + OAA = Icit	ab + cdef = fedbac		F		
R14	Icit = AKG + CO2	abcdef = abcde + f		F		
R15	AKG = 0.5 Suc + 0.5 Suc + CO2	abcde = 0.5 abcd + 0.5 dcba + e		F		
R16	Suc = OAA	abcd = abcd		F		
R17	PyrPEP + CO2 = OAA	abc + d = abcd		F		
R18	PyrPEP = Ac + CO2	abc = bc + a		F		
R19	PyrPEP = AcCoA + CO2	abc = bc + a		F		
R20	PyrPEP = Acn1 + CO2	abc = bc + a		F		
R21	Acn1 + PyrPEP = Acn + CO2	ab + cde = abde + c		F		
R22	CO2 = CO2_Ex	a = a		F		
R23	Eth = Ac	ab = ab		F		
R24	Eth = AcCoA	ab = ab		F		
R25	$Ac = Ac_Ex$	ab = ab		F	63.82	2.341

Table S11: Input model for OpenFLUX. The known extracellular fluxes from Table S9 and precursor drain to biomass were normalized to the cumulative uptake flux of lactate and ethanol.

R26	Acn = Acn_Ex	abcd = abcd	F	9.71	0.900
R27	PyrPEP = PyrPEP_B		В	0.21	0.004
R28	3PG = 3PG_B		В	0.05	0.001
R29	P5PE4P = P5PE4P_B		В	0.43	0.008
R30	GAP = GAP_B		В	0.09	0.002
R31	OAA = OAA_B		В	0.36	0.007
R32	AKG = AKG_B		В	0.08	0.001
R33	AcCoA = AcCoA_B		В	1.65	0.030
R34	G6P = G6P_B		В	0.17	0.003
R35	PyrPEP = Ala	abc = abc	F		
R36	Ala = PyrPEP	abc = abc	FR		
R37	PyrPEP + PyrPEP = Tyr1 + CO2	abc + def = abcef + d	F		
R38	PyrPEP + PyrPEP = Val + CO2	abc + def = abefc + d	F		
R39	AKG = Glu	abcde = abcde	FR		
R40	OAA = Asp	abcd = abcd	FR		
R41	Glu = AKG	abcde = abcde	R		
R42	Asp = OAA	abcd = abcd	R		
R43	Val = ValB		В	0.27	0.005
R44	Asp = AspB		В	0.31	0.006
R45	Glu = GluB		В	0.34	0.006
R46	Tyr1 = TyrB		В	0.09	0.002
R47	Ala = AlaB		В	0.39	0.007
R48	Val = ValX	abcde = abcde	S		
R49	Asp = AspX	abcd = abcd	S		
R50	Glu = GluX	abcde = abcde	S		
R51	Ala = AlaX	abc = abc	S		
R52	Ac = AcX	ab = ab	S		
R53	Tyr1 = Tyr302X + TyrRX	abcde = ab + cde	S		
R54	Asp = Asp302X + AspRX	abcd = ab + cd	S		
R55	Val = Val302X + ValRX	abcde = ab + cde	S		
R56	Glu = Glu330X + GluRX	abcde =bcde + a	S		

excludedMetabolites

- Lac_Ex
- Eth_Ex
- Glu_Ex

Asp_Ex

Val_Ex

Ala_Ex
3PG_B
PyrPEP_B
GAP_B
P5PE4P_B
DAA_B
AKG_B
AcCoA_B
G6P_B
CO2_Ex
Ac_Ex
Acn_Ex
/alB
AspB
GluB
AlaB
Гуr_Ex
ГугВ
simulatedMDVs
simulatedMDVs /aIX#11111
simulatedMDVs /alX#11111 AlaX#111
simulatedMDVs VaIX#11111 AlaX#111 AspX#1111
simulatedMDVs /aIX#1111 AIaX#111 AspX#1111 GluX#11111
simulatedMDVs /alX#11111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11
simulatedMDVs ValX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111
simulatedMDVs ValX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111 Asp302X#11
simulatedMDVs ValX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111 Asp302X#11
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111 Asp302X#11 /al302X#11
simulatedMDVs /alX#1111 AlaX#111 AlaX#111 GluX#11111 GluX#11111 Glu330X#1111 AlaSp302X#11 /al302X#11 /al302X#11 /al302X#11 pnutSubstrates
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111 Asp302X#11 /al302X#11 /al302X#11 _ac_Ex
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 Tyr302X#11 Glu330X#1111 Asp302X#11 /al302X#11 /al302X#11 /ac#11) nputSubstrates _ac_Ex Eth_Ex
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 Fyr302X#11 Glu330X#1111 Asp302X#11 /al302X#11 /al302X#11 /al302X#11 Ac#11) nputSubstrates _ac_Ex Eth_Ex /al_Ex
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 GluX#11111 Glu302X#11 Asp302X#11 /al302X#11 /al302X#11 Ac#11) nputSubstrates _ac_Ex Eth_Ex /al_Ex
simulatedMDVs /alX#1111 AlaX#111 AspX#1111 GluX#11111 GluX#11111 Glu330X#111 Asp302X#11 /al302X#11 /al302X#11 Ac#11) nputSubstrates _ac_Ex Eth_Ex /al_Ex Ala_Ex Asp_Ex
simulatedMDVs /alX#1111 AlaX#111 AlaX#111 AlaX#111 GluX#1111 GluX#1111 Glu302X#11 Asp302X#11 /al302X#11 /al302X#11 /al302X#11 /alsx Lac_Ex Eth_Ex /al_Ex Ala_Ex Ala

RxnID = Reaction Identification, rxnCTrans = Carbon Transition, rates = Known Reaction Rates, rxnType = Reaction Type (F=irreversible, FR=forward reaction of a reversible reaction, R=backward reaction, S=excluded from the metabolite balance, B=excluded from the isotopomer balance), basis = Invariant Flux Basis, deviation = experimental error, excludedMetabolites = metabolites excluded from the balance model, simulatedMDVs = simulated mass isotopomer distribution vectors, inputSubstrates = compounds that are used as substrates.

Laberd substrate Molecule Fragment mass isotopomer isotopomer fraction isotopomer deviation Val M-57 m+0 0.344 0.001 m+1 0.089 0.000 m+2 0.061 0.002 m+3 0.040 0.002 m+4 0.046 0.000 Ala M-57 m+0 0.652 0.005 Asp M-57 m+0 0.652 0.000 Mulecule m+1 0.160 0.001 Mass m+1 0.160 0.001 Mass m+1 0.168 0.001 m+1 0.138 0.006 m+1 0.138 0.001 m+1 0.138 0.001 m+1 0.138 0.001 m+2 0.336 0.001 m+1 0.149 0.001 m+2 0.566 0.001 m+2 0.536 0.001 m+2 0.536 0.001 <th>Labolad</th> <th></th> <th></th> <th>Mass</th> <th>Mass</th> <th>Error</th>	Labolad			Mass	Mass	Error
Substrate isoupponnet fraction praction deviation) deviation Val M-57 m+0 0.344 0.001 m+1 0.089 0.000 m+2 0.061 0.002 m+3 0.040 0.002 m+3 0.040 0.002 m+4 0.046 0.001 Ala M-57 m+0 0.662 0.005 Asp M-57 m+1 0.160 0.001 Asp M-57 m+1 0.168 0.001 m+1 0.203 0.006 0.041 0.043 0.006 [U- ¹³ C] Glu M-57 m+1 0.168 0.001 iactate, m+2 0.236 0.006 0.01 [U- ¹³ C] Tyr M-residue (m/z = 302) m+0 0.346 0.001 m+2 0.236 0.001 m+2 0.239 0.007 Asp M-residue (m/z = 302) m+1 0.149 0.001 m+2		Molecule	Fragment	inass	isotopomer	(standard
$\left[\textbf{U}^{13} \textbf{C} \right] \mbox{ array}{rmm} bound of the test of $	Substrate			isotopomer	fraction	deviation)
$\left[\textbf{U}^{13} \textbf{C} \right] \mbox{action} a$		Val	M-57	<i>m</i> +0	0.344	0.001
$ \left[\textbf{U}^{13} \textbf{C} \right] \mbox{action} $				<i>m</i> +1	0.089	0.000
$ \left[\textbf{U}^{13} \textbf{C} \right] \mbox{act} act$				<i>m</i> +2	0.061	0.002
$\left[U^{13} C \right] \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				<i>m</i> +3	0.040	0.002
Image: constraint of the second sec				<i>m</i> +4	0.046	0.000
Iu M-57 m+0 0.662 0.005 Asp M-57 m+1 0.160 0.001 Map M-57 m+0 0.556 0.020 m+1 0.203 0.006 m+1 0.203 0.006 m+1 0.138 0.010 m+2 0.237 0.006 Iu Tyr M-residue m+2 0.237 0.006 (Iu Tyr M-residue m+1 0.168 0.001 m+2 0.237 0.006 0.01 m+2 0.237 0.006 m+1 0.168 0.001 m+2 0.237 0.006 0.01 m+1 0.169 0.346 0.001 m+2 0.239 0.001 m+2 0.536 0.001 m+2 0.239 0.007 Map M-residue m+0 0.486 0.001 m+2 0.464 0.002 m+1 0.183 0.001 m+2 0.464 0.002				m+5	0.421	0.003
Asp M-57 m+1 0.160 0.001 m+1 0.203 0.006 0.006 m+2 0.138 0.010 Glu M-57 m+0 0.433 0.004 m+2 0.207 0.006 0.001 0.001 lactate, m+2 0.237 0.006 [U-13C] Tyr M-residue m+0 0.346 0.001 m+1 0.119 0.000 0.001 m+2 0.536 0.001 Glu M-159 m+0 0.486 0.001 m+2 0.239 0.007 Asp M-residue (m/z = 302) m+0 0.670 0.015 m+1 0.149 0.001 m+2 0.239 0.007 m+1 0.184 0.001 m+2 0.239 0.007 Asp M-residue (m/z = 302) m+0 0.670 0.015 m+1 0.184 0.001 m+2 0.464 0.002 m+1 0.130 0.000 m+2		Ala	M-57	<i>m</i> +0	0.662	0.005
Asp M-57 m+0 0.556 0.020 m+1 0.203 0.006 m+2 0.138 0.010 Bilu M-57 m+0 0.433 0.004 m+1 0.168 0.001 0.066 0.001 lactate, m+1 0.168 0.001 [U-13C] Tyr M-residue m+2 0.237 0.006 [U-13C] Tyr M-residue m+1 0.119 0.000 m+2 0.536 0.001 m+2 0.536 0.001 m+2 0.536 0.001 m+2 0.239 0.007 Glu M-159 m+0 0.6670 0.015 m+1 0.184 0.001 m+2 0.239 0.007 Val M-residue (m/z = 302) m+0 0.6670 0.015 m+1 0.130 0.000 m+2 0.661 0.002 m+1 0.130 0.000 m+4 0.061 0.002				<i>m</i> +1	0.160	0.001
$ \left[U^{13}C \right] \\ \left[u^{13}C $		Asp	M-57	<i>m</i> +0	0.556	0.020
$ \begin{bmatrix} [U^{-13}C] & & & & & & & & & & & & & & & & & & &$				<i>m</i> +1	0.203	0.006
Glu M-57 m+0 0.433 0.004 lactate, [U- ¹³ C] ethanol Tyr M-residue (m/z = 302) m+0 0.346 0.001 m+1 0.119 0.000 0.001 0.001 0.001 glu M-residue (m/z = 302) m+0 0.346 0.001 Glu M-159 m+1 0.119 0.000 Glu M-159 m+0 0.486 0.001 M-residue (m/z = 302) m+0 0.486 0.001 M-residue (m/z = 302) m+0 0.670 0.015 M-residue (m/z = 302) m+0 0.406 0.002 M+1 0.130 0.000 m+1 0.130 0.000 M-residue (m/z = 302) m+0 0.406 0.002 m+1 0.130 0.000 M-residue (m/z = 302) m+1 0.138 0.001 m+2 0.61 0.002 M-residue M-57 m+0 0.339 0.003 m+1 0.088 0.01 M-residue M-5				<i>m</i> +2	0.138	0.010
		Glu	M-57	<i>m</i> +0	0.433	0.004
	[U- ¹³ C]			<i>m</i> +1	0.168	0.001
	lactate,			<i>m</i> +2	0.237	0.006
$\left[\text{U-}^{13} \text{C} \right] \text{lactate}} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	[U- ¹³ C] ethanol	Tyr	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.346	0.001
$\left[\text{U-}^{13} \text{C} \text{I} \text{ lactate} \right] \begin{array}{c} \text{Glu} \\ \text{Glu} \\ \text{H} & \text{H} & \text{H} & \text{H} \\ \text{M} & \text{H} & \text{H} \\ \text{H} \text{H} \\ \text{H} & \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \begin{array}$				<i>m</i> +1	0.119	0.000
$\left[\text{U-}^{13} \text{C} \right] \text{lactate} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$				<i>m</i> +2	0.536	0.001
$\left[\text{U-}^{13} \text{C} \right] \text{lactate} \\ \left[\text{U-}^{13} $		Glu	M-159	<i>m</i> +0	0.486	0.004
$[U-{}^{13}C] lactate \\ [M-residue (m/z = 302)]{} m+0 \\ (m/z = 302) \\ m+0 \\ (m/z = 302) \\ m+1 \\ m+1 \\ 0.184 \\ m+0 \\ 0.670 \\ m+1 \\ 0.130 \\ 0.000 \\ m+2 \\ 0.464 \\ 0.002 \\ m+1 \\ 0.339 \\ 0.003 \\ m+1 \\ 0.088 \\ 0.001 \\ m+2 \\ 0.661 \\ 0.002 \\ m+3 \\ 0.040 \\ 0.001 \\ m+2 \\ 0.164 \\ 0.001 \\ m+2 \\ 0.158 \\ 0.001 \\ m+2 \\ 0.158 \\ 0.001 \\ m+1 \\ 0.214 \\ 0.001 \\ m+2 \\ 0.119 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.004 \\ m+1 \\ 0.206 \\ 0.002 \\ m+1 \\ 0.005 \\ m+1 \\ 0.006 \\ 0.002 \\ 0$				<i>m</i> +1	0.149	0.001
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				<i>m</i> +2	0.239	0.007
$\begin{tabular}{ c c c c c c c c c c } & Val & M-residue & m+1 & 0.184 & 0.001 \\ & M-residue & m+0 & 0.406 & 0.002 \\ & m+1 & 0.130 & 0.000 \\ & m+2 & 0.464 & 0.002 \\ \hline & m+1 & 0.088 & 0.001 \\ & m+2 & 0.061 & 0.002 \\ & m+1 & 0.088 & 0.001 \\ & m+2 & 0.061 & 0.002 \\ & m+3 & 0.040 & 0.002 \\ & m+3 & 0.040 & 0.002 \\ \hline & m+3 & 0.040 & 0.002 \\ & m+4 & 0.046 & 0.001 \\ & m+5 & 0.427 & 0.007 \\ & Ala & M-57 & m+0 & 0.671 & 0.005 \\ & m+1 & 0.158 & 0.001 \\ & m+1 & 0.158 & 0.001 \\ & m+1 & 0.586 & 0.011 \\ & m+1 & 0.214 & 0.001 \\ & m+1 & 0.214 & 0.001 \\ & & m+1 & 0.214 & 0.001 \\ & & m+1 & 0.214 & 0.001 \\ & & m+1 & 0.206 & 0.002 \\ & & & m+1 & 0.206 & 0.002 \\ & & & m+1 & 0.206 & 0.002 \\ & & & m+1 & 0.206 & 0.002 \\ & & & & m+1 & 0.206 & 0.002 \\ & & & & & & & & & & & & & & & & & & $		Asp	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.670	0.015
$\begin{tabular}{ c c c c c c } \hline Val & M-residue & m+0 & 0.406 & 0.002 \\ \hline m+1 & 0.130 & 0.000 \\ \hline m+2 & 0.464 & 0.002 \\ \hline m+2 & 0.464 & 0.002 \\ \hline m+2 & 0.464 & 0.001 \\ \hline m+1 & 0.088 & 0.001 \\ \hline m+2 & 0.061 & 0.002 \\ \hline m+3 & 0.040 & 0.002 \\ \hline m+3 & 0.040 & 0.002 \\ \hline m+4 & 0.046 & 0.001 \\ \hline m+5 & 0.427 & 0.007 \\ \hline M-57 & m+0 & 0.671 & 0.005 \\ \hline m+1 & 0.158 & 0.001 \\ \hline m+1 & 0.158 & 0.001 \\ \hline m+2 & 0.119 & 0.004 \\ \hline Glu & M-57 & m+0 & 0.539 & 0.004 \\ \hline m+1 & 0.206 & 0.002 \\ \hline m+1 & 0.206 & 0.002 \\ \hline m+1 & 0.206 & 0.002 \\ \hline m+2 & 0.164 & 0.005 \\ \hline \end{tabular}$			(, , , , , , , , , , , , , , , , , , ,	<i>m</i> +1	0.184	0.001
$[U-{}^{13}C] lactate \begin{bmatrix} W-1 & W-57 & m+1 & 0.130 & 0.000 \\ m+2 & 0.464 & 0.002 \\ M-57 & m+0 & 0.339 & 0.003 \\ m+1 & 0.088 & 0.001 \\ m+2 & 0.061 & 0.002 \\ m+3 & 0.040 & 0.002 \\ m+3 & 0.040 & 0.002 \\ m+4 & 0.046 & 0.001 \\ m+5 & 0.427 & 0.007 \\ Ala & M-57 & m+0 & 0.671 & 0.005 \\ m+1 & 0.158 & 0.001 \\ Asp & M-57 & m+0 & 0.586 & 0.011 \\ m+1 & 0.214 & 0.001 \\ m+2 & 0.119 & 0.004 \\ Glu & M-57 & m+0 & 0.539 & 0.004 \\ m+1 & 0.206 & 0.002 \\ m+2 & 0.164 & 0.005 \end{bmatrix}$		Val	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.406	0.002
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$, , , , , , , , , , , , , , , , , , ,	<i>m</i> +1	0.130	0.000
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				<i>m</i> +2	0.464	0.002
[U-13C] lactate m+1 0.088 0.001 M-57 m+2 0.061 0.002 m+4 0.046 0.001 m+5 0.427 0.007 Ala M-57 m+0 0.671 0.005 m+1 0.158 0.001 M-13C] lactate M-57 m+0 0.586 0.011 Glu M-57 m+0 0.539 0.004 M-10 0.539 0.004 m+1 0.206 0.002 m+1 0.206 0.002 m+2 0.164 0.005	-	Val	M-57	<i>m</i> +0	0.339	0.003
$[U-{}^{13}C] \text{ lactate } \begin{matrix} m+2 & 0.061 & 0.002 \\ m+3 & 0.040 & 0.002 \\ m+4 & 0.046 & 0.001 \\ m+5 & 0.427 & 0.007 \\ m+5 & 0.427 & 0.007 \\ m+1 & 0.158 & 0.001 \\ m+1 & 0.158 & 0.001 \\ m+1 & 0.214 & 0.001 \\ m+2 & 0.119 & 0.004 \\ m+1 & 0.206 & 0.002 \\ m+2 & 0.164 & 0.005 \\ m+2 & 0.164 & 0.005 \\ \end{matrix}$				<i>m</i> +1	0.088	0.001
$[U^{-13}C] \text{ lactate } \begin{matrix} m+3 & 0.040 & 0.002 \\ m+4 & 0.046 & 0.001 \\ m+5 & 0.427 & 0.007 \\ m+5 & 0.671 & 0.005 \\ m+1 & 0.158 & 0.001 \\ nm+1 & 0.158 & 0.001 \\ m+1 & 0.214 & 0.001 \\ m+2 & 0.119 & 0.004 \\ Glu & M-57 & m+0 & 0.539 & 0.004 \\ m+1 & 0.206 & 0.002 \\ m+2 & 0.164 & 0.005 \\ \end{matrix}$				<i>m</i> +2	0.061	0.002
$[U^{-13}C] \text{ lactate } \begin{matrix} m+4 & 0.046 & 0.001 \\ m+5 & 0.427 & 0.007 \\ m+0 & 0.671 & 0.005 \\ m+1 & 0.158 & 0.001 \\ Asp & M-57 & m+0 & 0.586 & 0.011 \\ m+1 & 0.214 & 0.001 \\ m+2 & 0.119 & 0.004 \\ Glu & M-57 & m+0 & 0.539 & 0.004 \\ m+1 & 0.206 & 0.002 \\ m+2 & 0.164 & 0.005 \\ \end{matrix}$				<i>m</i> +3	0.040	0.002
$[U^{-13}C] \text{ lactate } \begin{matrix} M-57 & m+5 & 0.427 & 0.007 \\ & M-57 & m+0 & 0.671 & 0.005 \\ & m+1 & 0.158 & 0.001 \\ & M-57 & m+0 & 0.586 & 0.011 \\ & m+1 & 0.214 & 0.001 \\ & m+2 & 0.119 & 0.004 \\ & & m+2 & 0.119 & 0.004 \\ & & & m+1 & 0.206 & 0.002 \\ & & & & m+1 & 0.206 & 0.002 \\ & & & & & & m+2 & 0.164 & 0.005 \\ \end{matrix}$				<i>m</i> +4	0.046	0.001
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				m+5	0.427	0.007
$[U^{-13}C] \text{ lactate } \begin{matrix} \text{Asp} & \text{M-57} & \begin{array}{c} m+1 & 0.158 & 0.001 \\ m+0 & 0.586 & 0.011 \\ m+1 & 0.214 & 0.001 \\ m+2 & 0.119 & 0.004 \\ \hline m+2 & 0.119 & 0.004 \\ m+1 & 0.206 & 0.002 \\ m+2 & 0.164 & 0.005 \\ \end{matrix}$		Ala	M-57	<i>m</i> +0	0.671	0.005
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				<i>m</i> +1	0.158	0.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Asp	M-57	<i>m</i> +0	0.586	0.011
m+2 0.119 0.004 Glu M-57 m+0 0.539 0.004 m+1 0.206 0.002 m+2 0.164 0.005 M-residue M-residue M-residue 0.119 0.004 0.004 0.005	[U- ¹³ C] lactate			<i>m</i> +1	0.214	0.001
Glu M-57 m+0 0.539 0.004 m+1 0.206 0.002 m+2 0.164 0.005				<i>m</i> +2	0.119	0.004
m+1 0.206 0.002 m+2 0.164 0.005		Glu	M-57	<i>m</i> +0	0.539	0.004
<i>m</i> +2 0.164 0.005				<i>m</i> +1	0.206	0.002
M-residue				<i>m</i> +2	0.164	0.005
Tyr $(m/z = 302)$ $m+0$ 0.338 0.004		Tyr	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.338	0.004
<i>m</i> +1 0.118 0.000			. ,	<i>m</i> +1	0.118	0.000
<i>m</i> +2 0.544 0.004				<i>m</i> +2	0.544	0.004
Glu M-159 <i>m</i> +0 0.607 0.005		Glu	M-159	<i>m</i> +0	0.607	0.005

Table S12: Experimental mass isotopomer distributions of fragments used flux estimation.

			m+1 m+2	0.184 0.152	0.003 0.005
	Asp	M-residue $(m/z = 302)$	<i>m</i> +0	0.690	0.008
		(<i>m</i> +1	0.186	0.000
	Val	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.402	0.004
		· · · ·	<i>m</i> +1	0.129	0.001
			<i>m</i> +2	0.469	0.005
	Acetate	m/z = 43	<i>m</i> +0	0.952	0.001
			<i>m</i> +1	0.029	0.000
	Val	M-57	<i>m</i> +0	0.313	0.001
			m+1 m+2	0.144	0.002
			111+Z m1 2	0.408	0.002
			111+3 m+4	0.094	0.000
			m+5	0.030	0.000
		M-57	m+0	0.000	0.001
	Ald	101 01	m+1	0.000	0.004
	Asp	M-57	m+0	0.582	0.007
	, top		<i>m</i> +1	0.260	0.004
			<i>m</i> +2	0.117	0.002
	Glu	M-57	<i>m</i> +0	0.541	0.005
			<i>m</i> +1	0.279	0.003
			<i>m</i> +2	0.129	0.001
[3- ¹³ C] lactate	Tyr	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.733	0.001
			<i>m</i> +1	0.192	0.000
	Glu	M-159	<i>m</i> +0	0.609	0.006
			<i>m</i> +1	0.263	0.004
			m+2	0.099	0.001
	Asp	(m/z = 302)	<i>m</i> +0	0.718	0.003
		Mirosidus	<i>m</i> +1	0.205	0.003
	Val	(m/z = 302)	<i>m</i> +0	0.694	0.000
			<i>m</i> +1	0.191	0.000
	• • •		m+2	0.115	0.001
	Acetate	m/z = 43	<i>m</i> +0	0.951	0.001
		M 57	<i>III</i> +1	0.038	0.001
	vai	IVI-57	111+0 m 1	0.729	0.000
			m+2	0.104	0.000
			m+3	0.012	0.000
			m+4	0.002	0.000
			m+5	0.000	0.000
	Ala	M-57	<i>m</i> +0	0.738	0.001
		-	<i>m</i> +1	0.174	0.001
	Asp	M-57	<i>m</i> +0	0.603	0.011
111 ¹³ C1			<i>m</i> +1	0.218	0.003
ethanol			<i>m</i> +2	0.130	0.007
ethanoi	Glu	M-57	<i>m</i> +0	0.497	0.005
			<i>m</i> +1	0.192	0.001
			<i>m</i> +2	0.205	0.002
	Tyr	M-residue (<i>m/z</i> = 302)	<i>m</i> +0	0.733	0.000
	0		<i>m</i> +1	0.192	0.000
	Glu	M-159	<i>m</i> +2	0.558	0.005
			m+0	0.172	0.000
	Aan	M recielus	<i>m</i> +1	0.194	0.002
	Asp	ivi-residue	<i>m</i> +2	0.716	0.006

	(m/z = 302)			
	· · · · ·	<i>m</i> +0	0.191	0.000
Val	M-residue (<i>m/z</i> = 302)	<i>m</i> +1	0.731	0.000
	, ,	<i>m</i> +0	0.194	0.000
		<i>m</i> +1	0.075	0.000

The simulated and experimental mass isotopomer distributions of are presented in Figure S3:

Figure S3: Simulated and experimental mass isotopomer distributions (MIDs).