Substrate Specificity of Cytoplasmic N-Glycosyltransferase

Supplementary Information

Andreas Naegeli¹, Gaëlle Michaud², Mario Schubert³, Chia-Wei Lin¹, Christian Lizak^{3,4}, Tamis Darbre², Jean-Louis Reymond², and Markus Aebi¹

¹ Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland

² Department of Chemistry and Biochemistry, University of Berne, 3012 Berne, Switzerland

³ Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland

⁴ present address: Department of Biochemistry and Molecular Biology, Centre for Blood Research, University of British Columbia, Vancouver, BC V6T1Z3, Canada

SUPPEMENTARY EXPERIMENTAL PROCEDURES

Synthesis of peptide 5-CF-SGAMGDKSVANATYSLALGS-NH₂

All reagents were either purchased from Sigma-Aldrich, Fluka, Acros Organics or Alfa Aesar. 5-Carboxyfluorescein (5-CF) was purchased either from Novabiochem (Switzerland) or from OChem Incorporation (US). The amino acid building blocks and PyBOP were purchased from Advanced ChemTech (US) or Novabiochem (Switzerland). Amino acids were used as the following derivatives: Fmoc-Ser-OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Tyr(OtBu)-OH, Fmoc-Thr(OtBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Val-OH, Fmoc-Lys(Boc)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Met-OH. Fmoc-protected TentaGel S RAM resin (loading: 0.24 mmol^{-g-1}) was purchased from Rapp Polymere (Germany). All solvents used in solid-phase peptide synthesis were bought in p.a quality. Analytical RP-UPLC was performed in Dionex ULTIMATE 3000 Rapid Separation LC System (ULTIMATE-3000RS diode array detector) using Dionex Acclaim® RSLC 120 C18 column (2.2 μm, 120 Å, 3.0 x 50 mm, flow 1.2 ml·min⁻¹). Compounds were detected by UV absorption at 214 nm. Data recording and processing was performed with Dionex Chromeleon Management System Version 6.80 (analytical RP-HPLC). Preparative RP-HPLC was performed with a Waters PrepLC4000 chromatography system using a Dr. Maish GmbH Reprospher Column (C18-DE, 5 µm, 100 x 30 mm, pore size 100 Å, flow rate of 60 ml min⁻¹). Compounds were detected by UV absorption at 214 nm using a Waters 486 Tunable Absorbance detector. All RP-HPLC were using HPLC-grade acetonitrile and Milli-Q deionized water. The elution solutions were: A H₂O with 0.1% TFA; B H₂O/ACN

(50:50); **C** H₂O/ACN (10:90) with 0.1% TFA; **D** H₂O/ACN (40:60) with 0.1% TFA. MS spectra, recorded on a Thermo Scientific LTQ OrbitrapXL were provided by the Mass Spectrometry service of the Department of Chemistry and Biochemistry at the University of Berne.

From Tenta Gel S RAM[®] resin (500 mg, loading: 0.24 mmol·g⁻¹), the purest fraction was isolated as a yellow foamy solid after preparative RP-HPLC purification (9.3 mg, 3.3 % yield). Gradient used for preparative RP-HPLC is A/D = 100/0 to 60/40 in 45 min, A/D 60/40 to 0/100 in 10 min with a flow rate of 40 ml·min⁻¹. Analytical. UHPLC: t_R = 3.39 min (A/C = 100/0 to 0/100 in 7.5 min, flow rate 1.2 ml·min⁻¹). HRMS (ESI⁺) calc. for C₁₀₀H₁₄₁N₂₃O₃₅S [M+H]⁺: 2256.98; obsd: 1129.49 (z=2), 753.33 (z=3).

SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Mass spectrometric analysis of peptide substrate specificity of ApNGT (A) MALDI mass spectra of synthetic substrate peptides before and after incubation with ApNGT and UDP-Glc. Peaks corresponding to glycopeptides were detected for peptides 5CF-GSDQNATF ([M+H]⁺=1358.49) and 5CF-GSDQhSATF ([M+H]⁺=1345.49). Glycosylation of peptide 5CF-GSDQQATF could not be demonstrated by MALDI-MS but LC-ESI-MS/MS analysis (panel (C)) showed its glycosylation. No glycopeptide product could be detected for the other peptides. (B) Side chain structures of unnatural amino acids used (C) MS2 spectra from LC-ESI-CID-MS/MS analysis of the glycosylated peptides 5CF-GSDQQATF and 5CF-GSDQhSATF demonstrating glycosylation of glutamine and homoserine by ApNGT. The hashtag (#) marks ions resulting from precursor glycopeptide neutral loss.

Figure S2: GT41 Alignment Complete alignment of 3 NGT sequences (from *A. pleuropneumoniae*, *H. influenza*e and *Y. enterocolitica*) and 4 OGT sequences (human, *C. elegans*, *D. melanogaster*, *X. campestris*). The alignment was performed using Expresso (see experimental procedures for details). Parts of the alignment are shown in Figure 4

Figure S1B

Figure S2

ApNGT YeRscC HiHMW1C HsOGT DmOGT CeOGT XcOGT	LLR - ENPEVVNIGIASTTMULN YFLEALKAIRDRAK 450 SQPEPILHFAERPAVH - IAVCASAMEIN RFLATCAEITR - QT 450 NMPVIPMNTIAEAVIEMINRGQIQITI - NGFSISNGLATTQINNKAATGEEVPRTIIVTTRS - QYG - LPEDAVYCNFNQLYKID STLQMMANILKRVP 860 KVAELP - NT - TQIVSMIATGQMTMNVMEDMNVQNGLGQSQMHHKAATGEEIPNSVLLTSRA - QYQ - LPDDAVYCNFNQLYKID STLDMWIKILENVP 97 VLPVLEVPT - EPIKQMIMTGQMTMNVMEDMNVQNGLGQSQMHHKAATGEEIPNSVLLTSRA - QQG - LPEQGVVLCCFNNSYKLNAQSMARMLAVLREVP 40	8449945
Conservation		
Sequence logo	⋄⋓⋼⋫⊽∊⋼⋼⋈⊤⋰⋍⋸⋐⋏৽⋷⋈⋕⋑⋩⋳⋳⋼⋍∊⋍⋓⋻⋸⋐⋼⋌⋳⋈⋳⋎⋨⋏⋨⋏⋳⋿⋶∊⋏⋬⋼⋏⋷∊⋩⋬⋼⋿⋍⋎⋨⋏⋭⋍⋍∊⋨⋏⋬∊⋍∊⋎⋎⋼⋎⋎⋵৶⋭⋓⋎⋶⋩⋏⋬⋎⋏⋏⋏⋏⋧⋸Г⋐⋬⋈⋩⋤⋏⋭⋭⋬⋋	
ApNGT YeRscC HiHMW1C HsOGT DmOGT CeOGT XcOGT	V - KVHF HF ALGQS NG I THPYVERFIKSY - LGDS A TAHPHS PYHQYLR I LHNC MMVNPFPFGNTNG I I MVTL LVG VCKTGAEVHEHIDEGLFKR GLPEW 555 STS VVFHFL VGF CWG I THRVMEKAVNDI - LP - QARVYEHLGYLDYLQVINQC LF INPFPFGNTNG I V TVRQ LP GVCLS GTEVHEHIDEGLFKR GLDEE 555 V - KIHFHFALGQS TGLTHPYVKWFIESY - LGDDA TAHPHAPYHDYLAILRDC MLLNPFPFGNTNG I I MVTL LI GVCKTGDEVHEHIDEGLFKR GLPEW 58 - N - SVLWL RFP - AVGEPNIQ YA QNMGLPQNR I IFSPVAPKEEHVRGQLA VCLDTPLCNGHTGMDVLWA TPMVTMPGETLAS RVAAS QLTCLGCL - E 96 - K - SVLWL RFP - AVGEQNIKKTVS DFG IS PDRVIFSNVAAKEEHVRRGQLA VCLDTPLCNGHTGMDVLWT TPV VTLPGETLAS RVAAS QLTCLGCL - E 98 - K - SVLWLLSGP - GEADARLRAFAHAQ GVDAQRLVFMPKLPHPQYLARYRHALFLDTHPVNAHTAS VALWT CPVLTPGETFAARVAGSLNHH GLD - E 50	8 4 7 7 72 3
Conservation		
Sequence logo	_{、ᢦ⋭} ≈šýĽWĽĹŖĠ₱ _{ਙ≈} ôşŶĦ₽ÿ⋎ <u>ĕ</u> ŵ≆œ _{®®®} G∠⅊₿₿₦₮₮₹₿₽₽₺₷₱Ÿ₽₽₩₩₩₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
ApNGT YeRscC HiHMW1C HsOGT DmOGT CeOGT XcOGT	LIANTVDEYVERAVRAENHQERLELRRYIIENNGLNTL TGD - PRPMGQV FLE - KLNAF - L KLNAF KEN 620 LIAHDLAEYIAVTVR ISDKEWRQSLRQRLLQIQPDNVL AGK - PEQFGLIVR - GLLADKK - AS D KGG 619 LIADTRETYIECALRAENHQERLELRRYIIENNGLQKL TGD - PRPLGKI LLK KTNEWKRKLS K - K 650 LIAKNRQEYEDIAVK GTDLEYLKKVRGKVWKQRISPL NTKQYTMELERLYLQ - MWEHYAAGNKPDHMIK - VE K 650 LIAKNRQEYEDIAVK GTDLEYLKKVRGKVWKQRISPL DCSQYAKGLEKL - FLR MWEKYENGELPDH IS K - K 650 LIAKNRQEYEDIAVK GTDADHLANMRAKVWARVESPL DCSQYAKGLEKL - LLG MWEKYENGELPDH IS	
Conservation		
4.3bits Sequence logo 0.0bits	⋰ŬŇġ₱₭ ⋧₤ Ŷѿѯ⋼ĂѵŔĹ⋳₽Ďġê ₽≿ヹӤ҄҄҄҄҄ڲҞѵѿ҈ѯѧҞ҄ҩ҄҄҄҄ӟӼӯѿ	