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Figure S1. Altered transition rules ensure cell separation inside cell aggregates. 

The original formulation of the model allows the disintegration of aggregates only 

from the sides (panel A), similar to the propagation of cracks. Allowing the 

insertion of a cell-free sub-volume in every attempted step creates a more 

realistic cell dispersal (panel B). The density profiles of the original (C) and the 

proposed (D) models reveal the difference in the cell spreading. Colored lines on 

the graphs correspond to the configurations shown at t=100 MCS, 200 MCS, 300 

MCS and 400 MCS. Density (ρ) and distance from the aggregate center (r) are 

shown compared to the half of the original aggregate size. 



 

Figure S2. A monolayer consisting of rectangular cells, in equilibrium (A) and by 

forcing the rightmost surface to move (B). 

Let us consider a monolayer of N cells wide, where the equilibrium cell size is L0. 
Thus, L0 minimizes  

u(L) ∼ 2αL + λ(L2 − A0)2, 

resulting in 

(19) 

 . (20) 

We investigate the behavior of this system if the surface of first cell row is free, while the 

surface of the last (Nth) cell row is forced to move like in the piston test (see Fig. S2). 

Assuming steady state cell sizes L0 perpendicular to the direction of motion, the system 

is characterized by the average row widths Li (along the direction of movement), where i 

is the row index (1 ≤ i ≤ N). The configuration-dependent goal function (Hamiltonian) of 

this system is 

  (21) 



Using condition (20), the above expression simplifies to 
N 

 u = λL20 
X(Li − L0)2 + const. (22) 

i=1 

In the following we denote by `i the extent of cell elongation relative to the equilibrium 

value: `i = Li − L0. 

We assume that in each elementary step one cell row boundary is moved, thus cells 

continue to remain in rows. Let us denote the average displacement of the boundary 

between rows k and k + 1 by xk. To calculate this value, we consider the Hamiltonian after 

the elementary step: 

  (23) 

We assume, that the actual movement of the boundary is proportional to x∗k, the value 

where u0(xk) is minimal: 

  (24) 

where  is the factor expressing the proportionality between xk and x∗k and 

 . (25) 

Thus, 

 . (26) 

For our argument it is crucial that 1 – like in the case of a CPM simulation – within a 

single elementary step the cell boundary cannot move to the equilibrium position where 

u0 is minimal. In the CPM simulation this is a consequence of the stochastic nature of the 

dynamics as well as of the constraint that only a single lattice unit is changed at each 

elementary step. 

After N elementary steps (26) each row boundary is expected to be updated once, 

hence the new cell elongations are given as 

 . (27) 

The resulting equation is the Euler-discretized version of the diffusion equation 

 , (28) 

where τ is the conversion factor between N elementary steps and a unit of real time. 

Thus, mechanical perturbations propagate diffusively in this system. The 

steady state solution of the diffusion equation is 

 ` = cx (29) 



where the coefficient c can be obtained from the boundary condition for the rightmost 

(driven) row. If we assume that the forced surface moves with a speed v, then during time 

τ (N elementary steps) it is displaced by vτ. During this N elementary steps the rightmost 

row is updated once, according to 

 . (30) 

In a steady state `0N = `N, thus 

  (31) 

The spatial stretch gradient is then obtained as 

 , (32) 

which is independent of the system width or number of rows, N. 

Finally we point out that a similar diffusive behavior is exhibited by an overdamped 

mass and spring chain. In such a system the equation of motion for mass point i is 

 , (33) 

where m is the mass of the particle, µ is the friction coefficient, k is the spring constant 

and `0 is the equilibrium spring length. The time scales associated with friction and 

q spring forces are τf = m/µ and τs =

 m/k, respectively. If the friction is strong, 

, then we arrive by the overdamped approximation , i.e. 

of eq. (33), analogous to (27): 

 

This simple one dimensional analysis thus shows that a spatially localized 

mechanical perturbation propagates through the system as a diffusive front – a behavior 

is analogous to that of an overdamped elastic system, where the friction force is 

proportional to the local absolute velocity. 

 



Figure S3. The goal function u during the piston test (A) and the relaxation process 

(B). A: Values of u during the piston test for systems with no relaxation (red) and 

either 10L2 (green) or 1000L2 (blue) relaxation steps inserted at each MCS. 

Without relaxation, an increase in u is observed. All three systems started from 

the same relaxed state, piston movement started at t=0 with a speed of 1 lattice 

site per 100 MCS. B: The goal function u during the relaxation process as the 

function of the number of relaxation steps, averaged over 5000 relaxation cycles 

of three independent runs. Green lines show the estimated standard deviation.  



 

Figure S4. Cells invading matrices with diminishing anisotropy: p11=0.7 (A), 0.6 

(B) and 0.5 (C). In all cases cells tend to arrange in linear multicellular structures. 

Figure panels depict the interface within a 150×450 lattice unit area, cropped 

from a larger simulation after 1000 MCS computational time. All simulations are 

carried out in the full model (w 6= 0) with parameters identical to those of 

simulation 2 in Fig. 9. 

 

 

Movie legends 

Movie 1. Depopulation near the ECM-aggregate interface during matrix invasion. The 

interface is shown within a 110 × 360 area. Frame-rate is 50 MCS (50 minutes) per 

frame. Parameters of the simulation are: α = 1, β = 1, γ = −1, Q = 100, P = 0 and N = 

2100 cells within a 500 × 500 lattice. 

Movie 2. The piston test: comparison of two models that does not (left) and does (right) 

include mechanical relaxation of the aggregate. 5000 MCS (3.5 days) are shown, with 

50 MCS (50 minutes) per frame. Parameters of the simulation are α = 1, β = 0.75, γ = 

−2, Q = 100, P = 0, and N = 2100 cells within a 500×500 lattice. To ensure relaxation, 

500 ×L2 elementary steps were used after each MCS. 



Movie 3. Invasion of non-persistent cells that emigrate from an aggregate. Frame-rate is 

50 MCS (50 minutes) per frame. Parameters of the simulation are α = 1, β = 0.5, γ = 

−1, Q = 100, P = 0 and N = 2100 cells within a 500 × 500 lattice. To ensure relaxation, 

500 ×L2 elementary steps were used after each MCS. 

Movie 4. Invasion of actively moving cells that emigrate from an aggregate. Framerate is 

50 MCS (50 minutes) per frame. Parameters of the simulation are α = 1, β = 0.5, 

gamma = −1, Q = 100, P = 2, T = 20MCS and N = 2100 cells within a 500 × 500 lattice. 

To ensure relaxation, 1000 ×L2 elementary steps were used after each MCS. 

Movie 5. A cell capable of both degrading and adhering to the ECM does not follow pre-

existing tunnels. Instead, the cell invades the ECM and creates a new channel. Frame-

rate is 100 MCS (100 minutes) per frame. Parameters of the simulation are α = 1, β 

= 1, γ = 1, Q = 9, P = 0 and a 150 × 150 lattice. 

Movie 6. A combination of active cellular locomotion (P > 0) and matrix degradation 

yields realistic behavior: the cell can both follow a pre-set pattern of ECM channels 

and initiate a new tunnel. Frame-rate is 50 MCS per frame. Parameters are α = 1, β = 

1, γ = 0.5, Q = 7, P = 2 and T = 100 MCS. 

 


