
 1

Epiviz: interactive visual analytics for functional genomics data
Florin Chelaru1, Llewellyn Smith1,2,3, Naomi Goldstein1,4, Héctor Corrada Bravo1

1Center for Bioinformatics and Computational Biology, University of Maryland, College Park,

Maryland, USA
2Department of Mathematics, Williams College, Williamstown, Massachusetts, USA
3Department of Computer Science, Williams College, Williamstown, Massachusetts, USA
4Dept. of Mechanical Engineering and Materials Science, Washington University in St. Louis, St.

Louis, Missouri, USA

Corresponding author

Correspondence should be addressed to H.C.B. (hcorrada@umiacs.umd.edu)

Supplementary Note

Detailed architecture
The architecture of Epiviz is organized in three tiers, namely user-interface,
visualization and data management. The independence of these layers in key to Epiviz’
ability to represent the same data using different visualizations, and reusing the same
visualization for different types of data, integrated from different sources. The
communication between tiers is managed by a controller which listens to events from
each of the three tiers and propagates events as required (Sup Figure 1). URLs for
plugins and extensions can be declared dynamically on the request URL to Epiviz or by
specifying settings in a JavaScript file that can also be specified dynamically on the
Epiviz request URL.

The user-interface tier contains the visual layout and standard genome browsing
controls (navigation, gene search, etc.) as well as a framework for the other components
of Epiviz. It is designed to adapt to the plugins in the visualizations and data
management tiers, by displaying UI items (e.g., menu entries in measurement selection
dialogs) dynamically for plugged-in data or visualization. Thus, a user can access Epiviz
online, specifying custom visualizations, without downloading a copy of the software on
their local machine. In fact, as mentioned in the Results section of the main manuscript,

 2

if the custom visualizations are hosted online (for example, on GitHub’s Gist service),
they can easily be shared among users without the modification of the Epiviz base code.
This design encourages the scientific community to actively contribute to Epiviz without
the bottleneck of a production pipeline.

The visualizations tier implements a framework that processes all the available
visualizations, whether they are predefined on the hosted server, or specified at runtime.
The visualizations themselves are created using the d3.js library, which allows the
display of data using scalable vector graphics (SVG), a flexible format that can be easily
saved or converted to static images. Again, JavaScript files defining new visualizations
can be added dynamically by specifying URLs in settings.

The data management tier serves data to the user-interface tier from multiple data
providers. Epiviz has two predefined types of data providers: a) one that acts as a proxy
to a PHP-MySQL web server hosted at the University of Maryland; and b) one that uses
a WebSocket API to connect to programming environment that supports the protocol.
The latter is used by the Epivizr Bioconductor package to establish interactive sessions
between R and Epiviz. When a user takes an action in Epiviz, like adding a new chart or
navigating to a new genomic location, asynchronous data requests are sent through the
data management tier to these data providers. In turn, through these data providers,
users can dynamically send commands to the Epiviz UI, adding new measurements and
charts or navigating. Data from all these providers is integrated at the data management
level so that the UI is only aware of a generic data source. To improve user experience,
we have implemented a client-side predictive caching strategy in the data management
tier to accelerate system response to user-initiated data requests. The caching
mechanism, used regardless of where the data is served from, is fairly simple in concept,
requesting data in advance for predicted user actions. The requests from the UI first
stop at the cache, which, if the requested data is already available, serves it back without
sending further requests to the data providers. If all or part of the requested data is not
available in the cache, the cache sends three requests to the corresponding data
provider: one for the requested data, and two for an equal amount of data for the
genomic regions immediately before and after the requested region. These requests pre-

 3

empt requests that would be made by navigating to neighboring genomic regions, and
when zooming out of the current genomic region. The resulting user experience is that
the user only has to wait once for the initial request to be fulfilled, all other requests
being done in advance, taking advantage of user interaction idle periods. Our
performance analysis shows substantial performance improvements for adding new
charts and navigation when using the cache (Sup. Figure 2).

Functional genomics data can be referenced in two distinct domains: by genomic
location, and by genomic feature. In the former, data is organized and referenced by
location: for example, regions of interest (ROI) defined by start and end genomic
locations, or continuous measurements like DNAm obtained at base-pair resolution.
Otherwise, data is organized and referenced by feature: for example, expression for a
gene, transcript or exon. Organizing and referencing data in multiple domains requires
support for different types of data visualizations. This is a central aspect of the Epiviz
design. Data in the location domain is displayed in tracks where visualization
appropriate for spatial data is required while data in the feature domain is displayed in
charts where other visualization approaches, like scatterplots, heatmaps, etc., are more
appropriate.

The design used in Epiviz allows logical separation of datatypes (measurements, such as
genomic ROI, continuous measurements along the genome, feature-based
measurements such as exon, transcript or gene-level expression), from their
visualization. These are represented as distinct object classes in the JavaScript Epiviz
framework, allowing for an extension mechanism whereupon new datatypes or new
visualizations can be implemented independently. This logical separation stresses the
fact that multiple visualizations of the same data can be created simultaneously in
Epiviz.

To further support interactivity in Epiviz, we added support for a simple expression
language that users can use to define new data measurements based on measurements
loaded to the data management tier. We use the JavaScript Expression Evaluator
(http://silentmatt.com/javascript-expression-evaluator/) for this purpose. The

 4

expression syntax definition can be obtained there. This feature allows for iterative
visual analytics, which are imperative in the exploration of functional genomics data.
Epiviz also supports other standard genome browser functionality like search by gene
symbol or Affymetrix probe id. Epiviz provides detailed information on data
measurements and data sources through information tooltips on demand, activated by
hovering over objects in visualizations.

Epiviz allows users to save and share workspaces that store genomic location
information along with the data measurements and UI elements displayed in a session.
This allows users to seamlessly share a visual analysis for presentation or as part of a
collaborative project. Workspace links are persistent allowing analyses on Epiviz to be
referenced in publications. For instance, Figure 1 can be accessed at
http://epiviz.cbcb.umd.edu/?ws=cDx4eNK96Ws. Persistent workspaces for sessions
hosted at http://epiviz.cbcb.umd.edu are stored in the data server hosted at the
University of Maryland. However, persistent workspace storage management is part of
our data provider API (see below) and source code for this type of server is publicly
available on the Epiviz project page and can be installed on a standard PHP-MySQL
system to provide the same functionality if users desired to keep their workspaces
private.

Data providers as plug-ins: Currently, Epiviz has two predefined types of data providers
described earlier: a proxy to the PHP web server (which it communicates with through
GET or POST requests), and a proxy to a WebSocket API which allows connections to
any programming environment that supports this protocol – like R through
Bioconductor. In order to accommodate the needs of different types of users, we have
exposed a plug-in API which users can use to add new data providers that implement a
particular interface on-the-fly. Epiviz supports simultaneous connections to multiple
instances of these data providers (for example, multiple web servers or WebSocket
sessions combined), thus allowing an easy integration of multiple data sources at the
same time and a high level of collaborative data analysis. Management of persistent
workspace storage is also part of the Data Provider API. Therefore, users can indicate

 5

through the settings file the URL of the Data Provider that resolves workspace
identifiers per individual session.

New data management technologies to support interactive, data-rich web applications
like Epiviz is a very active area of development in the data analytics community. As a
result developing the Data Provider used in Epivizr we added support for repeated
querying of Bioconductor data by implementing IntervalForests, a collection of interval
trees (one for each sequence in an assembly) for efficient querying of data by genomic
location, which is the prevalent query operation in Epiviz. This extension is now part of
the Bioconductor code base and available for general efficient overlap operations over
genomic intervals as part of the Bioconductor infrastructure. Data on the proxy server
hosted at the University of Maryland is also indexed by genomic location to improve
querying performance. As new Data Providers are created and plugged-in, specific
efficient indexing techniques for those data sources can be implemented as well.

Unified data types: The Data Provider API defines a JSON format for data exchanged
between data sources and the Epiviz application. All transferred data, independent of its
source, is standardized into one generic format, which is used by all visualizations. The
design of this generic format is based on the SummarizedExperiment design in
Bioconductor, which draws from the “three-table” design for genomic data: each data
point is part of an assay, and it measures a particular feature from a specific sample,
each of which is annotated by data themselves. Specifically, features are genomic
coordinates, regions or set of regions. The data exchange format in Epiviz follows this
design where data rows determine genomic coordinates and other annotations (exon or
gene id for example), and values in these rows are measurements to display from
multiple samples, each with its own annotation. We find that this design is capable of
modeling the vast majority of data present in functional genomics experiments. The full
description of the data format exchange is available in the Epiviz online documentation.
Each Data Provider is responsible for parsing whatever data is serving into this unified
type to transfer data to the UI. Therefore data parsing for integration is moved from the
UI to the data providers and libraries that implement connections to the Epiviz API.

 6

The unified data types used in Epiviz include identifiers for datasources, and
datasourceGroups which declare metadata for each set of observations that are used as
keys to establish data relationships used in, e.g., the brushing feature described
previously. Therefore all data sources from the same group are assumed to have the
same metadata available which is then used as a common key. Notice that this allows
these keys to be defined dynamically. In the absence of keys we use genomic location
overlap to establish these relationships as well.

Optimizations for multiple resolutions: The predefined visualizations in Epiviz support
viewing high and low resolution data side by side with full brushing support. Low
resolution views group data objects together into one visual object, in order to avoid
cluttering the screen with too many vector objects, thus increasing the performance and
improving the user experience of Epiviz. For example, in line plots, we use a parameter
indicating the maximum number of points that may appear on screen. If the number of
data points in a region is greater than this parameter, we sample the required number
uniformly at random and only include that sample in the line plot. Each of the standard
visualizations are similarly parameterized to allow the user to balance between
loading/rendering speed and level of visualization detail. These parameters can be
specified in settings files. We report below on the performance behavior while varying
these parameters for the four predefined Epiviz visualizations: scatter plot, heatmap,
blocks track and line track.

Performance benchmarks
Epiviz features two types of speed optimizations that facilitate quick display of
visualizations: predictive caching, and chart-specific grouping of data elements into
visual elements. The first one attempts to reduce the data retrieval and processing time
on a new user action; the second attempts to reduce visualization rendering time.
Together, they minimize the time taken between the time a user executes an action on
the screen and when they are able to interact with a view of the requested data.

 7

We implemented a suite of performance tests, measuring total time taken by the two
most common user actions – ‘add chart’ and ‘navigate’, for our predefined visualizations
– Scatter Plot, Heatmap, Blocks Track and Line Track. For both operations, we
compared performance with and without the predictive cache. Our results reveal that
using the cache speeds up execution by more than 25 times for all visualizations (Sup
Figure 2).

We also measured the relationship between the number of data objects available to
draw, and the number of objects drawn, showing how that affects the total draw time of
charts (Sup Figures 3 and 4). For each chart, we varied specific parameters that
determine the number of drawn objects:

-‐ Scatter Plot: ‘Circle Ratio’. This parameter sets the radius of the drawn data
points, in relation to the minimum of the chart height and width. The
visualization is programmed to split the chart in a grid of squares of width equal
to this parameter, and draw at most one circle in one cell of the grid. Thus, if
multiple data points overlap the same grid cell, only one is drawn. Object
transparency is used for underlining locations with higher density of points in
one location.

-‐ Blocks Track: ‘Min Block Distance’. This parameter sets the minimum distance in
screen pixels between two blocks before they are merged into one. If the
parameter has a large value, more blocks will be merged together, causing less
objects to be drawn on the screen. Setting this value to 0 disables the parameter.

-‐ Heatmap: ‘Max Columns’. This parameter sets the maximum number of columns
to be drawn by the heat map before multiple columns are averaged into one.
When the number of available columns is greater than this number, they are split
into a number of groups equal to this number and only one column is drawn for
each group.

-‐ Line Track: ‘Max Points’. This parameter sets the maximum number of points to
be drawn by the line track. If the number of available data points is greater than
this number, the points are sampled uniformly across the requested genomic
range, so their number matches this value.

 8

Tuning these parameters as the requested data ranges increase offers users the power of
adjusting their user experience and also a straightforward way of summarizing data. Our
results show how the performance of Epiviz dramatically increases with appropriate
values for these parameters.

