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1 Overview

1.1 Introduction

The supplemental material provides both detailed explanations and computer code to implement the methods
briefly described in the article. We will use the following terminology, which may deviate from the common
but somewhat inconsistent usage in the flow cytometry literature. A flow cytometry assay assesses a limited
number (f < 20) of features measured on hundreds of thousands or millions (d) of events (e.g., cells)
that are typically extracted from a limited number (n, typically tens) of specimens. These features are then
combined to define a number (m) of markers, each of which is either present or not present on every cell.
Proportions of the numbers of events having or not having these markers are then determined in the gating
process to establish the values of a number (p) of variables on each specimen, all of which are between zero
and one (or, percentages between 0 and 100). Typically, while p > n, it is not many orders of magnitude
greater, as in contemporary genomics assays. Our proximal goal is to select variables that are associated
with a specimen condition (e.g., tumor versus normal lung). This is the act of variable selection. Selected
variables are used to train a classifier (in machine learning, this is called supervised learning), and the
metric of the success of the training is the accuracy of the prediction of condition.

How variables are selected depends on our distal goal: find all variables associated with the condition; find
a parsimonious set of variables that predicts a condition, for instance, to create a diagnostic, predictive or
prognostic marker panel; select variables to identify cellular pathways activated in a given condition. The
entire analysis to achieve these distal goals is beyond the scope of this article, but the variety of goals implies
there is no universally best variable selection method, or set of selected variables; the answer, and the means
used to achieve that answer, depend on the question.

We propose a workflow for selection and prediction that can be applied to variables extracted from listmode
data files, by unsupervised classification or by manual methods. We describe options for steps of the work-
flow where options are available. We include examples of R code to implement the procedure (R is an open
source, scripted statistical language that is available free of charge1 and is the lingua franca of advanced
statistical computation). We select one or more candidate procedures for the workflow steps and explain the
reasons for our selection. Then, we apply the workflow to the lung cancer data set described in the article.

1.2 Workflow

We propose the workflow in Figure 1. Steps 1-3 are the conventional flow cytometry data acquisition and
gating process, ultimately resulting in variables vi1, . . . , vij , . . . , vip, which represent the proportion of cells
from specimen i with some attribute that also have some other attribute j. Each of the specimens also
either has or does not have the condition, e.g., casei = 1 or 0. The goal of the workflow is to determine
a mathematical function, the discriminator, whose input is the values of a subset (possibly all) of the p
variables and whose output predicts that the specimen is a case or a control: f : v → {0, 1} (we describe
this process in terms of a diagnostic response, but it can be easily adapted to a prognostic, predictive or risk
model).

1http://cran.r-project.org/
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1. Measure f features on ∼ n × d cells

2. Determine m markers from features on n×d cells

3. Determine p variables vij
on 1, . . . , i, . . . , n specimens

4. Unzero, stabilize and standardize variables:
vij → xij → zij

5. Exploratory Analysis of xij

6. Select candidate variables and classifier(s)

7. Draw bootstrap and out-of-bag sample

8. Train each classifier on bootstrap sample,
classify out-of-bag sample, record results

9. Done with boostrapping?

10. Select final classifier and variables

11. Characterize expected performance of clas-
sifier, and confidence in variable selection

no
yes

Figure 1: Workflow

“Unzeroing” (Step 4) moves variables of values 0 or 1 (“no cells in this population have this marker” versus
“all cells in this population have this marker”) slightly away from the boundaries 0 and 1 to facilitate stabi-
lization and to express that a value of zero (or 1) is dependent on the number of cells in the denominator of
the proportion; a proportion of 0/100, 000 cells is much more meaningful than a proportion of 0/10 cells.
Stabilization is a mathematical transformation of the variables from the (0, 1) interval to the (−∞,∞) real
line, eliminating the necessity of constrained optimization and reducing computational issues induced by
highly skewed distributions. Standardization is a linear transformation zij = (xij − aj)/bj , where aj and
bj are chosen so that the mean and standard deviation of z1j . . . , znj equal 0 and 1, respectively.
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It is useful to assess in an exploratory analysis (Step 5) which variables are highly correlated, and if there is
any potential explanatory value in the measured variables. Based on this, some variables may be excluded
from the set of the candidate predictors in Step 6, where the candidate classifiers (e.g., linear discriminant
analysis, logistic regression, random forest) are also selected. These will be compared in Steps 7-9, an
iterative loop in which a training set is a bootstrap sample drawn from the full sample, the complement of
the training set (the “out of bag” sample) is set aside as a test set, all the candidate discriminators are applied
to the training set to build discriminators that are then used to classify the test set, and metrics describing
the discriminators (sensitivity, specificity, model parameters, tuning parameters, etc.) are recorded. In Step
10, the “best” classifier is selected using one or more metrics, and in Step 11, the ultimate estimates of the
Step 10 metrics, and the precision of those estimates, is caclulated.

2 Statistical Methods

2.1 Transforming

2.1.1 Unzeroing

All variables assessed on specimens (vij), are proportions, with a numerator and a denominator. The mean-
ing of an observed value of 0 (or 1) depends on the size of the denominator. It cannot be assumed that, just
because a cell expressing a given marker is not observed in a specimen, it could never be observed, because
it could be observable but rare, or the denominator may be so small it is unlikely that even a uncommon but
not rare event is likely to be observed. A value of 0/1, 000, 000 (< 1/1, 000, 000) indicates an extremely
rare event, while a value of 0/100 (< 1/100) only indicates that the true proportion is less than 0.036 (the
right-hand side of a 95% exact binomial confidence interval). Unzeroing moves vij = 0 (or 1) to the right
(left) a small amount to express this uncertainty, and also to facilitate stabilizing transformations of the
variables (e.g., the log and logit, both of which are undefined at 0). If there are many zeroes and ones, the
analysis may be sensitive to the size of this movement. The choice of unzeroing method is heuristic. We
have tried these methods:

1. Replace a zero with a random number drawn from a uniform distribution between zero and one-tenth
of the smallest non-zero value; the use of a randomly generated value prevents “piling up” at one
value. Values equal to 1 are similarly reduced.

2. Replace a 0 (1) with the right-hand (left-hand) side of a confidence interval. For instance, a 95% exact
(Clopper-Pearson) confidence interval for π, given 0 marked cells out of d = 106 observed cells, is
(0, 3.7 × 10−6). More generally, for d ≥ 100, the upper end of the confidence interval for π is very
close to 3.7/d, suggesting this as a substitute for p = 0, where d is the total number of cells in the
gate. Similarly, a value of 1 is replaced by 1− 3.7/d.

3. Combine the first two methods: replace 0 with a randomly number drawn from a uniform distribution
between 0 and 3.7/d, and replace a 1 with a randomly generated value between 1− 3.7/d and 1.

The first method has the advantage of not depending on d (which may not be available) and not producing
spikes in the distribution at 3.7/d and 1 − 3.7/d, while the second and third methods reflect information
about the number of cells actually analyzed (if d is available).
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Figure 2: Logit and inverse logit functions

2.1.2 Stabilizing

After unzeroing, the variables vij are stabilized to make their distribution more symmetric, equalizing the
influence of very small (∼ 0) and very large (∼ 1) values. Transforming a probability with, potentially,
a range of several orders of magnitude to a variable with an effective range of (−14, 14) (logit(10−6) =
−13.8) reduces the leverage associated with very small and very large values. There are several popular
stabilizing transformations.

1. While xij = log(vij) is well-known, it is asymmetric (log(p) 6= log(1 − p)), mapping the interval
(0, 1) to the negative half of the real line.

2. The logit (log-odds) transformation is a natural transformation from probabilities on (0,1) to the entire
real line (Figure 2.1.2). The logit of a probability p and its inverse are defined by:

x = logit(p) = log

(
p

1− p

)
p = logit−1(x) =

ex

1 + ex

The advantage of the logit over the log transformation in this application is that the logit is symmetric
(logit(p) = logit(1− p); logit(1/2) = 0).

3. The probit transformation (xij = Φ−1(vij)) is similar to the logit, except for scaling, but the logit is
computationally less expensive.
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2.1.3 Standardizing

Because they constrain the total magnitude of regression coefficients, some discriminators (e.g., regular-
ized linear regression) require that each variable has a mean of 0 and a standard deviation of 1, but, in
any discriminator, the possibility of numerical instability is reduced if all variables are on the same scale.
Standardization of each variable xj is:

zij = (xij − x̄j)/sj (1)

where x̄j and sj are the mean and standard deviation of all xij , . . . , xnj , cases and controls.

2.2 Exploratory Statistics

2.2.1 Screening for Outliers

Because the values of the variables are between 0 and 1, outliers in the classic sense are not going to occur,
but the unzeroing process, especially Methods 2 and 3, may induce highly influential points. Values can be
screened for influence using robust residuals, calculated by:

eij =
xij − x̃j
MADj

,

where x̃j is the median of {x1j , . . . , xnj} and MADj equals the Median Absolute Deviation of the jth

variable:
MADj = median|xij − x̃j |.

As indicated above, the eij should be calculated on the xij , prior to standardization. Large positive or
negative values of the eij indicate values that will cause fluctuations in discriminators, especially parametric
methods like linear discriminant analysis. What should be done with the values (possibly nothing) depends
on what caused them, but specimens with multiple extreme values of eij should at least be checked for
processing errors, such as gating or transcription errors during primary data analysis.

2.2.2 Heat Maps and Dendrograms

In order to visualize the relationships between the variables, we recommend unsupervised clustering on the
variables, over all the observations, and over disease-identified subsets (e.g. tumor and normal lung). These
can be generated by most heat map software, which will also produce a visualization of strong classifiers or
sets of classifiers. Figure 3 displays the heat map created by aggregation clustering of the normal lung and
tumor specimens in the lung data set, produced by the R[1] function aspectHeatmap, which is available
in the library ClassDiscovery2, and offers considerable control over the appearance of the graphic. In
aggregation clustering, each variable starts as its own cluster, then the two closest clusters are aggregated,
and the process is repeated until a single cluster remains. The heights of the cluster joins in the dendrogram
indicate the distance between clusters, with the lowest joins being the closest. The heat map provides a quick
visual assessment of any strong classifiers of condition, and will be useful when exploring the discriminators
promoted by the bootstrap loop, below.

2http://bioinformatics.mdanderson.org/Software/OOMPA/
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Figure 3: A heatmap of the lung cancer data set. The variable names are defined in Figure 1 and Table 1 of
Normolle et al, Cytometry A 2012
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2.3 Resampling

Resampling methods are key components of parameter tuning, estimation of sensitivity and specificity, and
assessment of discriminator stability. All of the classification methods except Single Best Variable require
setting a tuning parameter that determines the complexity of the estimated model. In some of the methods
described below (e.g., elastic net), tuning by resampling is integral to the process and is implemented auto-
matically; in others (DLDA), we tune using our own R code. Even if the sample is large enough to split into
a training and validation set, once the validation set has been used, it is no longer independent of the training
set, so, when estimating sensitivity and specificity, acknowledging that true independence is not possible,
the full set is divided many times into disjoint training and testing subsets, estimating the model parameters
only from the training subset and the classification accuracy from the testing subset. After the k discrimina-
tions are complete, the sensitivity and specificity estimates can be averaged to achieve a final assessment of
how well the condition can be predicted from the variables. Resampling can also be used to choose values
of tuning parameters that determine the complexity of the final model; using only the re-substitution esti-
mators of sensitivity and specificity (where all the specimens are used to estimate discriminator parameters,
and then the discriminator is used to classify all the specimens) as a quality metric favors more complex
models, while estimation based on resampling estimators will moderate that tendency.

Two resampling techniques will be described: cross-validation and bootstrapping.

2.3.1 Cross-Validation

Cross-validated estimates of sensitivity and specificity are nearly as accurate as estimates from holdout, val-
idation sets, while using the entire data set for training. In K-fold cross-validation, the dataset is divided
intoK exclusive (i.e., non-intersecting), approximately equal-sized subsets, S1, . . . , SK , stratified by condi-
tion. Typically, K is set equal to a value between 5 and 10, although there is a variant named leave-one-out
cross-validation, which effectively sets K equal to n. At each of K cycles, a different subset is set aside to
be the test set, and the other K − 1 subsets are aggregated to form a training set.

In cross-validation, the set of variables on which the classifier is trained is fixed, and the parameter estimates
vary across the cross-validation cycles as the elements of the training set change. At each iteration, the
sensitivity and specificity are calculated on the parameter estimates and test set. Once the K cycles are
complete, the K sets of classifications are aggregated into estimates of sensitivity and specificity.

Cross-validation is typically used in setting tuning parameters, which do not directly characterize the proba-
bilistic distribution of a population, but provide an empiric description of the ideal complexity of the model.
As an example, suppose a tuning parameter λ describes how many of the variables z1, . . . , zL should be
included in a discriminator, where the z1, . . . , zL are pre-specified.

The algorithm in Figure 4 uses cross-validation to choose λ, which must be an integer between 1 and L. In
this algorithm, as l iterates from 1 to L, the “next best” variable is added to the discriminator based on all
the data. After that, the full data set is partitioned into S1, . . . , SK , and the discriminator is retrained (i.e.,
the discriminator parameters are re-estimated) and the accuracy of discrimination is calculated K times
(b1, . . . , bK), holding the variable set fixed.
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l ← 0

l ← l + 1

Add the next best variable to the discriminator

Split sample into K mutually exclusive and ex-
haustive subsets, balanced by condition, S1, . . . , SK

k ← 0

k ← k + 1

Estimate discriminator parameters to classify Sk
using l best variables and S−k to obtain accuracy bk

k = K?

al ← mean(b1, . . . , bK)

l = L?

λ = min{l | al = max(a1, . . . , aL)}

no
yes

no
yes

Figure 4: K-fold cross-validation to select the value of a tuning parameter λ. The set S−k is the union of all
K subsets of the full sample of specimens except Sk

Then the accuracy is estimated from the mean of b1, . . . , b10, l is incremented, the next best variable is
identified, the sample is partitioned, and so on. The estimates of al will start to increase as l increases, but
then will start to decline as more variables are submitted to the discriminator and the training set is over-fit.
The recommended value of λ is the smallest l that achieves the best al.
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2.3.2 Bootstrapping

The key component of of our workflow is one or more statistical classification or machine learning methods,
imbedded in a bootstrap loop to analyze the performance and stability of the discriminator(s), and to identify
influential specimens and important variables. In the nonparametric bootstrap[2], a bootstrap sample of
observations, the same size as the original sample, is constructed by drawing from the original sample with
replacement, that is, once an observation has been selected for the bootstrap sample, it is replaced in the pool
of eligible observations and may be sampled again. Sampling is stratified by condition, that is, the numbers
of cases and controls in the bootstrap sample are identical to the numbers of cases and controls in the full
sample. The observations that are not selected for the bootstrap sample, approximately (1− 1/n)n ≈ 0.37
of the original sample, referred to as the ”out-of-bag” (OOB) observations, are set aside as an independent
test sample (they are not resampled). For instance, suppose 16 normal lung specimens are indexed from 1
to 16, and 19 tumor specimens are indexed from 17 to 35. Table 1 shows a single bootstrap sample (left
column) and OOB sample. Note that all bootstrap samples will have 16 normal lung specimens and 19 tumor
specimens, and some specimens will be included more than once, while the number of OOB specimens in
each category will vary, but each specimen will be counted only once.

Bootstrap Out-of-Bag
Normal Lung 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 1, 6, 10, 13, 14

12, 12, 15, 16, 16, 16
Tumor 20, 20, 22, 24, 25, 25, 26, 27, 27, 28, 17, 18, 19, 21, 23, 29, 34

28, 30, 31, 31, 32, 33, 35, 35, 35

Table 1: Example of a bootstrap sample from a full sample where 16 normal lung specimens are indexed
from 1 to 6, and 19 tumor specimens are indexed from 17 to 35.

Bootstrapping (Steps 7, 8 & 9 in the Workflow) is repeated B times, where B is usually in the hundreds
or thousands: the bootstrap and OOB are drawn; the discriminator(s) trained on the bootstrap sample and
the discriminator coefficients are recorded; the OOB samples are submitted to the discriminator(s) and the
sensitivity, specificity, and other classification metrics are retained. At the end of the bootstrap iteration, the
retained values can be used to analyze sensitivity and caclulate confidence intervals. For example, a 95%
confidence interval for a given statistic T can be calculated from the 2.5th and 97.5th percentiles of the B
values of T calculated on the B bootstrapped samples.

In the present case, the statistics of interest will include: sensitivity and specificity; the observations which
are consistently misclassified; the variables identified as significant. To assess the first and second statistics,
at each iteration of the bootstrap loop, the observations not selected for the bootstrap sample, approximately
(1 − 1/n)n ≈ 0.37 of the original sample, referred to as the ”out-of-bag” (OOB) observations, are set
aside as an independent test sample, the classifier is trained on the bootstrap sample, and then the OOB
observations are classified. Estimates of sensitivity and specificity derived by averaging over the B OOB
samples are less optimistically biased than using the entire sample to train the classifier, and then classifying
the entire set (the re-substitution estimator) without adjustment.

The proportion of times over the bootstrap loop that each observation is misclassified is recorded; “problem”
observations that are most frequently misclassified can be identified and checked for anomalies. In addition,
at each bootstrap sample, the variables selected as important for classification (usually by some test of
statistical significance) are recorded to assess the importance of the variables and the stability of the model.
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In addition, the sensitivity of the classification to any tuning parameter set by the analyst (such as the mixing
parameter in the elastic net, below) can be described by observing changes in the bootstrap estimates of
sensitivity, specificity and variable selection probabilities as the value of the parameter is changed.

2.3.3 Variable Selection

The selection of variables from a universe of candidates is a point estimate of a population attribute, just
as the sample median and mean estimate the center of a population probability distribution function. Point
estimates should be accompanied by an assessment of the precision of the estimate. We address this with a
variable importance index available at essentially no computational charge with the bootstrap.

2.4 Classification

If we are interested only in selecting the k variables most strongly associated with a condition, and not trying
to characterize the relationship between the variables and the condition, a straightforward analysis plan is
available: a nonparametric test (e.g., Wilcoxon’s Rank Sum Test) produces a p-value for the association
of each variable with the condition of interest, the p-values are ranked from smallest to largest, and the
variables associated with the k smallest p-values are selected. It is not necessary to adjust for multiple tests,
since the p-values are used only for ranking the variables, and the study specimens are unlikely to have been
drawn at random from any specific population (any publication of the k p-values, however, should include,
at minimum, the total number of tests performed). But, if the analytic goal is a reduction in dimensionality
or a functional model of the condition in terms of a subset of the variables, some sort of variable selection
method must be employed with a discriminator. A discriminator is first “trained” on variables derived from
specimens of known condition, and will then able to make predictions about the conditions of specimens by
their variable values.

There are a wide variety of discrimination (also, “classification” or “supervised learning”) methods avail-
able, including linear discrimination, diagonal linear discrimination, stepwise linear discrimination, quadratic
discrimination, logistic regression, stepwise logistic regression, k-nearest neighbors classification, recursive
partitioning, random forest, neural networks, support vector machines and the lasso. A comprehensive re-
view of the features of all these methods is beyond the scope of this article. The classifier(s) selected for
evaluation must be chosen considering the following features of flow cytometry data: the data sets are rela-
tively small; the number of variables is larger than the number of observations; the variables are correlated,
some highly so; some of the variables, possibly many, are irrelevant to the classification. We will focus on
three methods that reflect different philosophies of model building: diagonal linear discrimination (DLDA),
random forests and regularized linear regression (lasso and elastic net).

In most of the classifiers, training involves the estimation of a function derived from either assumptions
about the probability distribution of the variables, dependent on the condition, or about some feature of
the partition itself. An exception is random forest, which partitions the variable space, but, like k nearest
neighbors, does so by direct reference to the training set, unmediated by assumptions about probability
distributions or the form of the partition. Some of the classifiers have an inherent variable selection method,
but, in others, variable selection is a process external to the partitioning. There are three sets of methods for
selecting variables:

Filtering followed by classification. A decision rule that can be applied to one variable at a time is used
to select the most likely variables, and then a classifier is constructed that uses all the variables so
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selected. A common (but not necessarily very good) method is to choose k < min(n, p) variables
as above, and then use Fisher’s linear discriminant analysis or logistic regression to predict condition
based on the k variables.

Wrapping a classifier in a variable selection scheme. An iterative loop starts with one variable, or all vari-
ables, and adds or subtracts variables based on the characteristics of the variables used by the classifier
and the variables not used by the classifier. The training is repeated at each iteration. Examples in-
clude stepwise linear discriminant analysis and stepwise regression. The loop must include a stopping
rule, since knowing when to stop is possibly the most important feature of conducting any activity
successfully.

Embedding variable selection in the classifier, which selects variables as part of the estimation of param-
eters (typically, by setting some variable-specific parameters equal to zero). The use of p-values to
select variables in a logistic regression, and then dropping the variables with p > 0.05 is not an exam-
ple of an embedded method, because the logistic regression parameters must be re-estimated after the
non-significant variables are dropped (this is a filtering method). Random forest, neural net, lasso and
elastic net are examples of methods where the variable selection is embedded in the classification.

DLDA is used with variable filtering to produce a final model, while random forest’s and regularized logistic
regression’s variable selections are embedded. We will also use a naı̈ve classifier, best single variable, with
a variable filter.

2.4.1 Diagonal Linear Discriminant Analysis (DLDA)

Linear discriminant analysis (LDA) was introduced by R.A. Fisher in 1936[3]; it is the oldest statistical
classifier. The classification boundary is (x̄1 − x̄2)S

−1(x̄1 − x̄2), where x̄1 and x̄2 are the sample means
and S is the pooled sample variance, a p × p matrix. Because S will not be invertable if p ≥ n, LDA, as
described by Fisher, cannot be used when the number of variables exceeds the number of samples, and the
method has no implicit variable selection mechanism. Diagonal linear discriminant analysis (DLDA) was
introduced[?] to accommodate data sets where p � n, by substituting the diagonal matrix s2DLDAIp for an
estimate of the full variance matrix S in the LDA discriminator, where s2DLDA is an estimate of the variance
common to all the variables; we used:

s2DLDA =
1

p

p∑
j=1

nNs
2
jN + nT s

2
jT

nN + nj
,

where nT (nN ) is the number of tumor (normal lung) specimens and s2jT (s2jN ) is the usual estimate of
the variance of the values of variable j in the tumor (normal lung) specimens. Because the samples are
standardized around a common mean, sDLDA will tend to be a number close, but not exactly equal to, 1. To
select variables, we calculated the standardized distance between the normal lung and tumor samples for
each variable:

dj =
z̄jT − z̄jN

sDLDA/
√
njT + njN − 2

A p-value was calculated for each dj ,
pj = P(T < −|dj |)

where T is a random variable with a Student’s t distribution on njT +njN −2 degrees of freedom. Variables
with a p-value less than some cutpoint α∗ are selected as significant. The quality of the classifications is
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sensitive to α∗; too large a value will overfit the training data set by including irrelevant variables, while too
small a value may miss significant variables. We set α∗ as follows:

1. Define a range of candidate cutpoints α = e{−a1,...,−aA}, where the {a1, . . . , aA} are evenly spaced.
We used a1 = −7/4 and a54 = −60/4, a range determined by trial and error to be useful.

2. For each α, select the variables having pj < α. When α is small, most or all variables will be
eliminated; when α is large, the bar is set high and most variables will be selected. Calculate the
cross-validated predictive accuracy of DLDA on the training set using the selected variables.

3. Choose α∗ equal to the smallest α with the largest cross-validated accuracy.

Once α∗ was selected, DLDA was recalculated on the entire training set, and the OOB samples were classi-
fied. The estimates of the sensitivity and specificity are the average of those estimates over all the bootstrap
iterations.

DLDA is similar to a common practice where the individual variables are analyzed by means of two-sample
t-tests (or, one-way ANOVAs), and the most statistically significant variables are combined to classify the
observations. DLDA stabilizes the p t-tests (or ANOVAs) by using a pooled variance estimate, and, in our
implementation, constrains overfitting by setting the threshold for statistical significance by cross-validation.
DLDA works when p � n, does not suffer the numerical instability of LDA when p is close to n, but can
be shown in some examples to be less efficient than LDA.

2.4.2 Recursive Partitioning Trees and Random Forest

Random Forest[6] evolved from the recursive partitioning tree (RPT)[6]. In RPT, for each variable j, the
cutpoint cj that best separates the cases from controls is determined. Then, the best cutpoint is determined
from among the cj . The sample space is partitioned on this dimension at this cutpoint, producing two
p-dimensional subspaces. This procedure is repeated independently in each subspace, to produce four par-
titions. The four partitions are then split, and the process is repeated in all subsequent partitions until some
purity criterion is achieved, resulting in the familiar decision tree (Figure 5).

A partition can no longer be split when it contains all cases or all controls, but partitioning to absolute purity
in all subspaces tends to overfit the data. There are a number of heuristics, most of which using some sort of
resampling, used to stop the process and produce a parsimonious tree. Recursive partitioning is implemented
in the R package rpart (which was used to produce Figure 5).

The estimates of sensitivity and specificity of RPT calculated by classifying the training set are optimistically
biased, and it is easily demonstrated that small perturbations of the training data can produce large changes
in the classification tree structure. Breiman addressed these issues by applying the bootstrap to produce
many trees (a “random forest”). In random forest, a value q � p is chosen. At each bootstrap iteration,
n observations are selected with replacement. At each node of the tree, q variables are selected at random,
the best split on the q variables is identified, and the partitioning continues until all the nodes are pure (i.e.,
contain either all cases or all controls). The OOB samples are then classified. This process is repeated many
(typically, thousands) of times, and, after bootstrapping, each sample is classified according to the votes
from all the trees (over thousands of iterations, all of the samples will be OOB in many trees). Random
forest is implemented in the R package randomForest.
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|CKP.GT2N< 0.2721

CP2117P90N< 0.04407
NL   
9/1

NL   
6/1

TUMOR
1/17

Figure 5: Example of a recursive partitioning tree produced by the R function rpart in the rpart package.
If CKP.GT2N<0.2721, classify the specimen as normal lung (NL), otherwise, classify the specimen as
normal lung or tumor, depending on the value of CP2117P90N. The quotients indicate the purity of the
node; “9/1” indicates 9 normal lung specimens and 1 tumor.

A variable importance index is calculated in the (internal) random forest bootstrap by a permutation test. In
each iteration of the bootstrap, after the accuracy of the model is determined by classifying the OOB samples,
the values of the first of the q variables in the OOB sample are randomly permuted and the classification
repeated. If the first variable contributes significantly to the accuracy of the classification, the degradation
of the accuracy by permuting the first variable will also be significant. The difference between the accuracy
of the un-permuted and permuted OOB samples is, therefore, a measure of importance of the first variable.
This is then repeated for the other q-1 variables in this iteration of the bootstrap loop. After bootstrapping
is complete, the average (over the bootstrap iterations) importance is calculated for all p variables, along
with a standard error and p-value. We used the variable importance index to select variables by ordering
the variables according to their importance index, and then choosing as significant the smallest number of
variables associated with the maximum estimated accuracy on the OOB variables.

2.4.3 Best Single Variable

Best single variable discrimination is employed as a reference method. For each variable, the standardized
between-mean distance is calculated:

dj =
z̄jT − z̄jNL

sj
,

where sj is the pooled estimate of the standard deviation for variable j. The variable with the largest distance
between means is selected. An observation zij is classified as normal lung or tumor depending on whether
it is closer to z̄jNL or z̄jT .

2.4.4 Regularized Logistic Regression

Logistic regression is an example of a generalized linear model (GLM), which is an extension of multiple
linear regression. Assigning specimens from the two populations the indices 0 and 1 (e.g., 0 = Normal Lung
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and 1 = Tumor), the goal of logistic regression is to estimate the probability that the ith specimen is from a
specimen with tumor, i.e.,

πi = P(yi = 1|zi)

where {z1, . . . ,zn} are the multivariate standardized specimen-level variables derived from the flow cytom-
etry assay. Logistic regression directly models the log-odds (from which the probabilities can be derived) of
a specimen having a tumor as a linear function of the variables

log

(
πi

1− πi

)
= β0 +

p∑
j=1

βjzij

by maximizing the log-likelihood:

l(β|y,Z) =
n∑

i=1

yiz
T
i β − log(1 + ez

T
i β).

The parameters β = {β0, . . . , βp} are estimated using iteratively re-weighted least squares. As with LDA,
and linear models in general, the parameter estimates become unstable as p → n, and, if p ≥ n, may be
non-estimable. Ridge regression addresses this instability by adding a constraint to the maximum likelihood
estimator:

max
β

l(β|y,Z), subject to
p∑

j=1

β2j ≤ s. (2)

All of the βj in a ridge regression will be non-zero, but those corresponding to variables unrelated to the
condition will be very small. If a subset of variables are highly correlated (because, for instance, they
represent a set of nodes on a given pathway), their regression coefficients will be of similar size (although
possibly of different signs). An alternative is the lasso[7], which uses a different constraint:

max
β

l(β|y,Z), subject to
p∑

j=1

|βj | ≤ s. (3)

Lasso coefficients of variables unrelated to the condition will be set exactly to zero, yielding a embedded
variable selector. If a subset of variables are highly correlated, one of their regression parameters will be
non-zero, and the rest will be set exactly to zero, so, if a set of variables represents nodes on an activated
pathway, lasso will pick one of them for the pathway representative, and drop the others.

Usually, these constrained MLEs are expressed in terms of least squares estimators, for ridge regression:

min
β

n∑
i=1

[(yi − β0 −
p∑

j=1

βjzij)
2] + λ

p∑
j=1

β2j , (4)

and for the lasso:

min
β

n∑
i=1

[(yi − β0 −
p∑

j=1

βjzij)
2] + λ

p∑
j=1

|βj |. (5)
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Figure 6: Example results from the R function that optimizes the tuning parameter. The vertical bars are
95% confidence intervals, left dashed line indicates the value of log(λ) associated with the smallest binomial
deviance and the right dashed line the largest value of log(λ) such that the binomial deviance is no more
than one standard error greater than the minimum.

There is a one-to-one correspondence between s (Equations 2 and 3) and λ (Equations 4 and 5). Usually, λ
is set by cross-validation. These two models are subsumed by elastic net:

min
β

n∑
i=1

[(yi − β0 −
p∑

j=1

βjzij)
2] + λ(α

p∑
j=1

|βj |+
1− α

2

p∑
j=1

β2j )

λ is still the penalty parameter, but a second parameter, α, which controls the sparsity of the solution, has
been added. It is sometimes called the “mixing parameter,” because, if α = 0, elastic net is equivalent to
ridge regression, which will choose all of the regressors, but assign some very small β coefficients, while,
as α→ 1, elastic net becomes equivalent to the lasso, and will select one regressor from a correlated subset
of variables, and ignore the rest. Depending on the value of α, elastic net will choose more of a subset of
highly correlated regressors, and assign them similar β values (which makes sense only because the columns
of Z have been standardized). The results will still tend to be numerically stable, even if α ≈ 1. In practice,
α is set be the analyst, depending on whether the goal is identification of all variables associated with a
condition (α ∼ 0), or of a parsimonious set of variables (Hastie and Zou[8] recommend α = 1− ε, where ε
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is a small number, for sparse modeling with numerical stability when p� n), and, given α, λ is determined
by cross-validation. Elastic net[8] implemented in the R package glmnet[9], which is used here.
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Figure 7: Fit of an elastic net model. The colored lines indicate the sizes of the standardized regression
coefficients of the different variables (numbered on the left). A regression coefficient equal to zero indicates
the variable is not in the model. Reading from right to left, as log(λ) decreases, more variables enter into
the model. At the estimated optimal value of log(λ) (-2.5), ten variables are in the model (numbers across
the top).

Parameter Tuning Figure 6 demonstrates the output from the cross-validation process setting λ. The
y−axis, “Binomial Deviance,” is a measure of goodness-of-fit used in logistic regression models; models
with better fit have lower deviance. The x−axis shows the log-transformed penalty parameter λ, while the
numbers across the top indicate the mean (averaged over the cross-validations) number of variables with
non-zero coefficients. It is seen, moving from right to left, when λ is large, too few variables are selected,
and the model fits neither the training nor testing sets well (in cross-validation, 1/10 of the observations
are held out as a test set, and the validation moves through all 1/10 subsets), but, as λ becomes small, the
training model is overfit, and the testing set (on which the deviance is calculated) is badly fit. The optimal
value of λ is seen to be about 0.08 (loge(0.08) = −2.5).
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2.4.5 Model Interpretation

The results of the elastic net model are depicted in Figure 7. The graph is easiest read from right to left.
At the extreme right, λ is so large that the only parameter in the model is the intercept, the estimates of
the parameters β1, . . . , βp ≡ 0 and for each sample, the predicted probability that it is a tumor equals
the proportion of tumors in the data set, 0.54=19/35. Then, as λ decreases, individual logistic regression
coefficients tend to come “unstuck” from 0. Each colored line shows the value of the regression coefficient
βj as λ is decreased. If the line is not visible, βj = 0, and the variable is not selected. It is unusual for
variables to be deselected, but the change in any given β is not necessarily monotonic as λ decreases. At
λ = 0.0025 (loge(λ) = −6), 20 variables are selected, and the predictions are perfect because the training
set is grossly overfit.

2.5 Selected Variables

A variable importance index is calculated in the (internal) random forest bootstrap by a permutation test. In
each iteration of the bootstrap, after the accuracy of the model is determined by classifying the OOB samples,
the values of the first of the q variables in the OOB sample are randomly permuted and the classification
repeated. If the first variable contributes significantly to the accuracy of the classification, the degradation
of the accuracy by permuting the first variable will also be significant. The difference between the accuracy
of classification of the un-permuted and permuted OOB samples is, therefore, a measure of importance of
the first variable. This is then repeated for the other q-1 variables in this iteration of the bootstrap loop.
After bootstrapping is complete, the average (over the bootstrap iterations) importance is calculated for all p
variables, along with a standard error and p-value. We used the variable importance index to select variables
by ordering the variables according to their importance index, and then choosing as significant the smallest
number of variables associated with the maximum estimated accuracy on the OOB variables.

3 Results

3.1 Sensitivity and specificity

The sensitivity, specificity and accuracy of the discriminators, estimated over the 500 bootstrap samples,
are presented in Table 1. DLDA, random forests, elastic net and the lasso produce essentially equivalent
accuracy; random forest is different from the other three in that its estimated specificity is larger than its
sensitivity. The differences between sensitivity and specificity in these methods are more likely due to
peculiarities of the example set than the methods themselves. Best-single discrimination is somewhat worse
than the other methods. Table 1.5 shows the estimates of the same operating characteristics achieved by
training the classifier with the whole data set, and then using the same data set as a test set. The bootstrapped
estimates of sensitivity, specificity and accuracy are much less optimistic than the resubstitution estimates
(training the discriminator once and then using it to classify the entire training set); resubstitution estimates
of the accuracy of elastic net, random forest, DLDA and lasso were close to or above 90%.

3.2 Variable selection

Table 4 presents the importance index of each variable on a scale of 0-500 (the number of bootstrap itera-
tions). The values for elastic net, random forest, DLDA and lasso are much larger than those for best-single
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discrimination because the total number of variables chosen over 500 bootstrap iterations of best-single dis-
crimination is fixed at 500. There is a fairly large drop in importance after the eleventh variable, CKN GT2N.
The five most important variables do not cluster together (Figure 3), suggesting that these variables represent
different processes. Markers commonly chosen are mostly coherent on the average, but different methods
can be fairly discordant on the same bootstrap sample. Table 5 int he primary article displays the concor-
dance of the five methods in choosing CKP GT2N across the bootstrap samples. Even though elastic net
and lasso are similar in concept, they are discordant in 86/500=17.2% of the bootstrap samples. Best-1,
which is not smoothed or regularized in any way, is usually discordant with the other methods.

3.3 Number of variables selected

Figure 4 displays the distributions of the numbers of variables selected by the different methods across the
bootstrap samples (Best-1 is not included because it always chooses exactly one variable). Lasso and elastic
net choose a mode of twelve variables, with values from 1 to 20 distributed symmetrically. Reducing the
mixing parameter, α, shifts the elastic net curve to the right, capturing more variables, but not increasing
the accuracy of classification. While DLDA’s number of variables is smaller than the first two, it has a
longer tail, describing a few runs where over 20 variables were selected. Random forest tends to build more
parsimonious models, but also sometimes will indicate that 20 or even 30 variables are useful in classifying
samples.

4 Discussion

We have presented the application of five different methods of statistical classification to the same data set,
embedding the training and evaluation of those methods in a bootstrap loop.

What is the effect of the bootstrapping? Bootstrapping has several beneficial functions. The first is to reduce
the optimistic bias in the estimate of operating characteristics associated with the resubstitution estimates.
While this could also be accomplished with an independent test set, once such a test set is used, it is no
longer independent, and the risk of over-fitting the training set is transferred to the test set. A test set, if it is
available, should be set aside until the cycle of model-fitting and evaluation is complete. Bootstrapping also
facilitates an assessment of model robustness, and distribution-free estimates of variable importance and the
variance of model coefficients.

What is the difference between the lasso and elastic net? These two methods are implemented in the same
R function, but they differ only by changing the mixing parameter λ from 1 (lasso) to 0 (ridge regression).
We used the value 0.9, based on a sensitivity analysis that is not shown. The main difference between their
function is the way they handle correlated variables. Lasso will choose a single variable from a correlated
cluster of variables, while elastic net will choose all of the correlated variables and assign them similar
weights. This makes lasso better for constructing a parsimonious (but not necessarily unique) model, and
elastic net better for identifying all the variables associated with a condition, but not for constructing the
most parsimonious model. To demonstrate this, we simulated a data set of 40 variables on 100 observations,
split evenly between two classes. The first five variables discriminated perfectly between the two classes,
and had exactly the same value, while the other 35 variables were Gaussian random variables containing
no information about the classes. Lasso chose the first variable, and no others. Elastic net chose the first
five variables, and no other, and assigned them regression coefficient very nearly similar in value. Thus,
lasso constructed a model that discriminated perfectly with the fewest variables possible, while elastic net
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identified all the variables associated with the condition. Which of these analyses one would choose depends
on one’s objective. This experiment also demonstrates that the choice of variable in a correlated set may
change considerably in response to small changes in the data, and may be arbitrary, or a function of irrelevant
parameters (the first variable was chosen by lasso because of lexicographical ordering).

We believe that the results of modeling and discrimination tend to be over-interpreted. After a great deal
of effort has been expended to determine the values of a great number of variables on a limited number of
cases, there is a natural tendency to identify an effective discrimination function as a representation of “the
truth.” However, the likelihood of the probability of a specimen having the condition, depending on the
variables, is laden with local maxima, and, no matter how systematic the search, there are almost certainly
“better” models that are parsimonious or more accurate or both. This problem is exacerbated by the post-hoc
nature of the variable quantification; some of the variables are defined after looking at the data, because they
“look interesting.” Inspecting a number of methods in a bootstrap cycle lends perspective to the training
process by demonstrating the variation in the estimates of the discrimination model parameters, and also
the variation in the variables selected for discrimination. The result should be a more nuanced appreciation
of the limitation of a given model, selection of more appropriate discrimination methods and generation of
hypotheses that can be tested in subsequent experiments.
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5 R Code

5.1 Unzeroing, Stabilizing and Standardizing

#---uts.R 1

2

#---flow.csv is a comma-delimited ASCII file, where the first column is the class of 3

# the specimen (NL,TUMOR) and the subsequent columns are the proportions of specific 4

# types in various gates 5

6

flow.data.frame <- read.csv("flow.csv",sep=",") 7

8

y <- flow.data.frame$SAMPLE 9

10

#---Unzero using random 1/10 smallest value rule (Method 1) 11

12

v <- as.matrix(flow.data.frame[,2:ncol(flow.data.frame)]) 13

14

#---Stabilize the values by identifying the smallest non-0 and largest non-1 values 15

# for each variable, and using those values as parameters for a random uniform number 16

# generator (runif) 17

18

min0 <- function(x){min(x[x>0])}; max1 <- function(x){max(x[x<1])} 19

20

min.v <- apply(v,2,min0); max.v <- apply(v,2,max1) 21

22

for (j in 1:ncol(v)) { 23

n.0=sum(v[,j]==0) 24

if (n.0>0) v[v[,j]==0,j] <- min.v[j]*runif(n.0)/10 25

n.1=sum(v[,j]==1) 26

if (n.1>0) v[v[,j]==1,j] <- 1-(1-max.v[j])*runif(n.1)/10 27

} 28

29

#---Apply the logit transform 30

31

x <- log(v/(1-v)) 32

33

#---Standardize the columns of x 34

35

z <- x 36

for (j in 1:ncol(z)) z[,j] <- (z[,j]-mean(z[,j])/sd(z[,j])) 37
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5.2 Heat Map

#---heatmap.R 1

library(ClassDiscovery) 2

3

source("uts.R") 4

5

cex <- 0.55 6

7

aspectHeatmap(z,Rowv=NA,labRow=y,col=redgreen(15),wExp=2.5,cexCol=cex,cexRow=cex) 8

9

The graphic in the paper is rotated by 90◦. Unlike the case of unsupervised learning, clustering in support
of supervised learning groups the specimens together by their condition (labRow=y).

The ClassDiscovery package is available from the Biomathematics Department of M.D. Anderson. The
function heatmap is available as part of the standard R distribution, but we prefer the aspectHeatmap
function because it allows more control over the appearance of the graphic.
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5.3 Cross-Validation

#---cross_validation.R 1

2

#---Bring in the data set for an example run; will generally not be used 3

# in practice 4

5

source("uts.R") 6

7

8

9

n <- length(y) 10

11

#---10-fold Cross-Validation 12

13

K <- 10 14

15

cv.ind <- rep(NA,n) 16

for (i in 1:length(levels(y))) { 17

n.i <- length(which(y==levels(y)[i])) 18

cv.ind[which(y==levels(y)[i])] <- ((1:n.i)%%k)+1 19

} 20

21

cv.ind <- factor(cv.ind) 22

23

for (ind in 1:K) { 24

25

z.out <- z[cv.ind==ind,] 26

y.out <- y[cv.ind==ind] 27

z.in <- z[cv.ind!=ind,] 28

y.in <- y[cv.ind!=ind] 29

30

#---Train classifier here on z.in and y.in; use the classifier to 31

# predict the condition y.out by applying the trained classifier to 32

# z.out 33

34

} 35

This code does not perform the cross-validation, but sets up the K data sets on which cross-validation could
be performed. The cross-validation code would be placed between the final comment and the final right
bracket.
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5.4 DLDA Classification

#---DLDA classification 1

2

#---Find alpha by cross-validation 3

find.alpha=function(x.std,y) { 4

5

n=length(y); p=ncol(x.std) 6

7

#---calculate the single estimate of the standard deviation across 8

# all variables 9

n1=sum(y=="NL"); n2=sum(y=="TUMOR") 10

m1=apply(x.std[y=="NL",],2,mean); m2=apply(x.std[y=="TUMOR",],2,mean) 11

v1=apply(x.std[y=="NL",],2,var); v2=apply(x.std[y=="TUMOR",],2,var) 12

sd.est=sqrt((n1*mean(v1)+n2*mean(v2))/(n1+n2)) 13

14

#---set up the cross-validation loop for selecting the p-value. The range 15

# of possible alphas was determined by trial and error 16

max.acc=0; cv.c=0 17

cv.index=rep(1:10,ceiling(n/10)*10)[1:n] 18

19

for (i.alpha in 7:60) { 20

alpha=exp(-i.alpha/4) 21

t=(m1-m2)/(sd.est/sqrt(n1+n2-2)) 22

23

#-------select indexes the variables with extreme p-values 24

select=as.numeric((pt(t,n1+n2-2)<alpha/2)|(pt(t,n1+n2-2)>1-alpha/2)) 25

26

if (sum(select)>0) { 27

acc=0 28

for (i.cv in 1:10) { 29

train.1=x.std[(cv.index!=i.cv)&(y=="NL"),] 30

train.2=x.std[(cv.index!=i.cv)&(y=="TUMOR"),] 31

n.test.1=sum((cv.index==i.cv)&(y=="NL")) 32

n.test.2=sum((cv.index==i.cv)&(y=="TUMOR")) 33

test.1=matrix(x.std[(cv.index==i.cv)&(y=="NL"),], 34

n.test.1,p) 35

test.2=matrix(x.std[(cv.index==i.cv)&(y=="TUMOR"),], 36

n.test.2,p) 37

m1.cv=apply(train.1,2,mean) 38

m2.cv=apply(train.2,2,mean) 39

wx1=test.1%*%diag(select)%*%(m1.cv-m2.cv)/sd.est/sd.est- 40

as.numeric(t(m1.cv+m2.cv)%*%diag(select)%*% 41

(m1.cv-m2.cv)/2)/sd.est/sd.est 42

wx2=test.2%*%diag(select)%*%(m1.cv-m2.cv)/sd.est/sd.est- 43

as.numeric(t(m1.cv+m2.cv)%*%diag(select)%*% 44

(m1.cv-m2.cv)/2)/sd.est/sd.est 45

acc=acc+sum(wx1>cv.c)+sum(wx2<cv.c) 46

} 47

if (acc>=max.acc) { 48

max.acc=acc 49

opt.alpha=alpha 50

} 51

} 52

} 53

opt.alpha 54

} 55
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predict.dlda=function(x.train,x.test,y.train,y.test,opt.alpha){ 1

n1=sum(y.train==levels(y.train)[1]) 2

n2=sum(y.train==levels(y.train)[2]) 3

4

m1=apply(x.train[y==levels(y.train)[1],],2,mean) 5

m2=apply(x.train[y==levels(y.train)[2],],2,mean) 6

7

v1=apply(x.train[y==levels(y.train)[1],],2,var) 8

v2=apply(x.train[y==levels(y.train)[2],],2,var) 9

10

sd.est=sqrt((n1*mean(v1)+n2*mean(v2))/(n1+n2)) 11

12

t=(m1-m2)/(sd.est/sqrt(n1+n2-2)) 13

select=as.numeric((pt(t,n1+n2-2)<opt.alpha/2)|(pt(t,n1+n2-2)>1-opt.alpha/2)) 14

if (sum(select)>0) { 15

cv.c=0 16

17

discrim.const=as.numeric(t(m1+m2)%*%diag(select)%*% 18

((m1-m2)/2))/sd.est/sd.est 19

wx=(x.test%*%diag(select)%*%(m1-m2))-discrim.const 20

21

y.predict=y.test 22

y.predict[wx>cv.c]=levels(y.test)[1] 23

y.predict[wx<=cv.c]=levels(y.test)[2] 24

list(select,y.predict) 25

} 26

} 27

28

m=apply(x.train,2,mean) 29

s=apply(x.train,2,sd) 30

x.train.std=(x.train-matrix(1,nrow(x.train),1)%*%m)/ 31

(matrix(1,nrow(x.train),1)%*%s) 32

x.test.std=(x.test-matrix(1,nrow(x.test),1)%*%m)/(matrix(1,nrow(x.test),1)%*%s) 33

34

opt.alpha=find.alpha(x.train.std,y) 35

36

#---sensitivity and specificity 37

38

ps=predict.dlda(x.train.std,x.test.std,y.train,y.test,opt.alpha) 39

40

boot.res[3,iboot,1]=sum(y.test==levels(y.test)[1]) 41

boot.res[3,iboot,2]=sum(y.test==levels(y.test)[2]) 42

boot.res[3,iboot,3]=sum((y.test==levels(y.test)[1])& 43

(ps[[2]]==levels(y.test)[1])) 44

boot.res[3,iboot,4]=sum((y.test==levels(y.test)[2])& 45

(ps[[2]]==levels(y.test)[2])) 46

47

#---variables selected and number of variables selected 48

49

x.selected[3,]=x.selected[3,]+ps[[1]] 50

nvar[3,sum(ps[[1]])]=nvar[3,sum(ps[[1]])]+1 51

x.ib.select[3,iboot,]=ps[[1]] 52

53

#---observations correctly classified 54

55

x.classified[3,bs3[y.test==ps[[2]]]]=x.classified[3,bs3[y.test==ps[[2]]]]+1 56

57

#---end DLDA classification 58

59
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5.5 Recursive Partitioning Trees and Random Forest

#---random_forest.R 1

library(rpart) 2

library(randomForest) 3

source("uts.R") 4

zdf <- data.frame(y,z) 5

6

#---Build the additive formula with all predictors in Z 7

f <- formula(paste("y˜",paste(colnames(z),collapse="+"),sep="")) 8

9

#---Construct the RPT and plot it 10

tree <- rpart(f,data=zdf) 11

plot(tree,margin=0.2) 12

text(tree, use.n=TRUE,pretty=0) 13

14

#---Random Forest 15

cut=c(n.train.nl,n.train.tumor)/(n.train.nl+n.train.tumor) 16

r=randomForest(x=x.train,y=y.train,xtest=x.test,ytest=y.test,ntree=1000, 17

cutoff=cut,importance=TRUE) 18
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5.6 Bootstrap with Elastic Net

#---boot.R 1

library(glmnet) 2

source("uts.R") 3

4

#---Determine the number of normal liver and tumor specimens 5

n.nl <- sum(y=="NL"); n.tumor <- sum(y=="TUMOR") 6

7

#---Determine the indices of the normal liver and tumor specimens 8

ind.nl <- which(y=="NL"); ind.tumor <- which(y=="TUMOR") 9

10

#---Number of variables 11

p <- ncol(z) 12

13

#---Number of bootstrap cycles 14

B <- 499; b <- 0 15

16

#---Initialize places to store results of bootstrap analyses 17

# in.oob The specimen is in the OOB 18

# correct.oob The specimen is correctly classified 19

# x.selected The variable is chosen 20

21

in.oob <- rep(0,n.nl+n.tumor) 22

correct.oob <- rep(0,n.nl+n.tumor) 23

x.selected <- rep(0,p) 24

25

#---The bootstrap loop 26

while (b<B) { 27

28

#---Get the bootstrap and OOB indices 29

boot.ind.nl <- sample(x=ind.nl,size=n.nl,replace=TRUE) 30

boot.ind.tumor <- sample(x=ind.tumor,size=n.tumor,replace=TRUE) 31

boot.n.nl <- length(boot.ind.nl) 32

boot.n.tumor <- length(boot.ind.tumor) 33

34

oob.ind.nl <- setdiff(ind.nl,boot.ind.nl) 35

oob.ind.tumor <- setdiff(ind.tumor,boot.ind.tumor) 36

oob.n.nl <- length(oob.ind.nl) 37

oob.n.tumor <- length(oob.ind.tumor) 38

39

#---Build the bootstrap and OOB analysis objects 40

if ((oob.n.nl>0)&(oob.n.tumor>0)) { 41

b <- b+1 42

oob.y <- c(rep(0,length(oob.ind.nl)),rep(1,length(oob.ind.tumor))) 43

oob.z <- rbind(z[oob.ind.nl,],z[oob.ind.tumor,]) 44

oob.ind <- c(oob.ind.nl,oob.ind.tumor) 45

46

boot.y <- c(rep(0,n.nl),rep(1,n.tumor)) 47

boot.z <- rbind(z[boot.ind.nl,],z[boot.ind.tumor,]) 48

49

#-------Elastic net classification 50

enet.alpha=0.90 51

glmnet1=cv.glmnet(boot.z,boot.y,family="binomial",alpha=enet.alpha) 52

glmnet2=glmnet(boot.z,boot.y,family="binomial",lambda=glmnet1$lambda.min, 53

alpha=enet.alpha) 54

glmnet3=predict(glmnet2,oob.z,glmnet1$lambda.min,"response") 55

56

#-------Record the bootstrap results 57

in.oob[oob.ind.nl] <- in.oob[oob.ind.nl]+1 58

in.oob[oob.ind.tumor] <- in.oob[oob.ind.tumor]+1 59

cut <- boot.n.tumor/(boot.n.tumor+boot.n.nl) 60

correct.oob[oob.ind] <- correct.oob[oob.ind]+ 61

as.numeric((as.numeric(glmnet3>cut)==oob.y)) 62

x.selected <- x.selected + as.numeric(as.matrix(glmnet2$beta)!=0) 63

} 64

} 65
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This example demonstrates the use of the bootstrap with an elastic net classifier. The top part of the code
(before The bootstrap loop, line 27) calculates specimen counts and initializes places to but results
during the bootstrap loop. In the bootstrap loop, samples are drawn by randomly choosing vectors of indices
(lines 29-38), which are then used to subset matrices of variables and vectors of specimen condition (lines
42-48). The actual classification is performed by only five lines (51-55); the results of classification are
retained in 58-63. The matrices in.oob, correct.oob and x.selected would be processed after
the loop to calculate sensitivity, specificity, accuracy and the variable importance index.
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