| Bai                | it ID | Hit Ge                      | ene Name                                                           | Pep # | Unique                                 | Pep #          | Peptide |        |         |   |
|--------------------|-------|-----------------------------|--------------------------------------------------------------------|-------|----------------------------------------|----------------|---------|--------|---------|---|
| 172                | 24    | LRP1                        | 0                                                                  | 2     | 1                                      |                | SQVTPSA | APLEAL | DGGTGPA | R |
| relative abundance |       | b#C(2)±±,b9C(2)±± -y(3)<br> | - 4(5)<br>- 4(6)<br>4(7)<br>9 <u>0(14</u> )++ <u>50(7</u> ) - 6(7) |       | b(12)b(10)<br>b(12)b(11)<br>b(11)b(11) | ==b(12) -y(12) |         |        |         |   |
| 20                 | 0     | 400                         | 600                                                                | 800   | 1000<br>m/z                            | 1200           | 1400    | 1600   | 1800    |   |

Bait ID Hit Gene Name Pep # Unique Pep # Peptide 1724 SDCBP 1 LYPELSQYMGLSLNEEEIR 3 relative abundance y(11>-b(11) -b(13) -b0(9) y(12) ++(6)\*qŝ á -y(14) 9(10) · y(15) 9(7) 9(13) b(16) b0(12) - (<del>1</del>) b(17) 9(5) 1(3) 1200 1400 400 600 800 1000 1600 1800 2000 m/z



Monoisotopic mass of neutral peptide Mr(calc): 1994.01 Ions Score: 120

Matches (Bold Red): 47/230 fragment ions using 68 most intense peaks

| #  | b       | <b>b</b> <sup>++</sup> | b*      | b*++   | b <sup>0</sup> | b <sup>0++</sup> | Seq. | у       | y++             | y*      | y*++   | y <sup>0</sup> | y <sup>0++</sup> | #  |
|----|---------|------------------------|---------|--------|----------------|------------------|------|---------|-----------------|---------|--------|----------------|------------------|----|
| 1  | 88.04   | 44.52                  |         |        | 70.03          | 35.52            | S    |         |                 |         |        |                |                  | 21 |
| 2  | 216.10  | 108.55                 | 199.07  | 100.04 | 198.09         | 99.55            | Q    | 1907.98 | 954.49          | 1890.96 | 945.98 | 1889.97        | 945.49           | 20 |
| 3  | 315.17  | 158.09                 | 298.14  | 149.57 | 297.16         | 149.08           | v    | 1779.92 | 890.47          | 1762.90 | 881.95 | 1761.91        | 881.46           | 19 |
| 4  | 416.21  | 208.61                 | 399.19  | 200.10 | 398.20         | 199.61           | Т    | 1680.86 | 840 <b>.</b> 93 | 1663.83 | 832.42 | 1662.84        | 831.93           | 18 |
| 5  | 513.27  | 257.14                 | 496.24  | 248.62 | 495.26         | 248.13           | Р    | 1579.81 | <b>790.4</b> 1  | 1562.78 | 781.89 | 1561.80        | 781.40           | 17 |
| 6  | 600.30  | 300.65                 | 583.27  | 292.14 | 582.29         | 291.65           | S    | 1482.75 | 741.88          | 1465.73 | 733.37 | 1464.74        | 732.88           | 16 |
| 7  | 671.34  | 336.17                 | 654.31  | 327.66 | 653.33         | 327.17           | Α    | 1395.72 | 698.36          | 1378.70 | 689.85 | 1377.71        | 689.36           | 15 |
| 8  | 742.37  | 371.69                 | 725.35  | 363.18 | 724.36         | 362.68           | Α    | 1324.69 | 662.85          | 1307.66 | 654.33 | 1306.67        | 653.84           | 14 |
| 9  | 839.43  | 420.22                 | 822.40  | 411.70 | 821.42         | 411.21           | Р    | 1253.65 | 627.33          | 1236.62 | 618.81 | 1235.64        | 618.32           | 13 |
| 10 | 952.51  | 476.76                 | 935.48  | 468.25 | 934.50         | 467.75           | L    | 1156.60 | 578.80          | 1139.57 | 570.29 | 1138.59        | 569.80           | 12 |
| 11 | 1081.55 | 541.28                 | 1064.53 | 532.77 | 1063.54        | 532.27           | E    | 1043.51 | 522.26          | 1026.49 | 513.75 | 1025.50        | 513.25           | 11 |
| 12 | 1152.59 | 576.80                 | 1135.56 | 568.29 | 1134.58        | 567.79           | Α    | 914.47  | 457.74          | 897.44  | 449.22 | 896.46         | 448.73           | 10 |
| 13 | 1265.67 | 633.34                 | 1248.65 | 624.83 | 1247.66        | 624.34           | L    | 843.43  | 422.22          | 826.41  | 413.71 | 825.42         | 413.21           | 9  |
| 14 | 1380.70 | 690.85                 | 1363.67 | 682.34 | 1362.69        | 681.85           | D    | 730.35  | 365.68          | 713.32  | 357.16 | 712.34         | 356.67           | 8  |
| 15 | 1437.72 | 719.36                 | 1420.70 | 710.85 | 1419.71        | 710.36           | G    | 615.32  | 308.16          | 598.29  | 299.65 | 597.31         | 299.16           | 7  |
| 16 | 1494.74 | 747.88                 | 1477.72 | 739.36 | 1476.73        | 738.87           | G    | 558.30  | 279.65          | 541.27  | 271.14 | 540.29         | 270.65           | 6  |
| 17 | 1595.79 | 798.40                 | 1578.76 | 789.89 | 1577.78        | 789.39           | Т    | 501.28  | 251.14          | 484.25  | 242.63 | 483.27         | 242.14           | 5  |
| 18 | 1652.81 | 826.91                 | 1635.79 | 818.40 | 1634.80        | 817.90           | G    | 400.23  | 200.62          | 383.20  | 192.11 |                |                  | 4  |
| 19 | 1749.87 | 875.44                 | 1732.84 | 866.92 | 1731.85        | 866.43           | Р    | 343.21  | 172.11          | 326.18  | 163.59 |                |                  | 3  |
| 20 | 1820.90 | 910.95                 | 1803.88 | 902.44 | 1802.89        | 901.95           | Α    | 246.16  | 123.58          | 229.13  | 115.07 |                |                  | 2  |
| 21 |         |                        |         |        |                |                  | R    | 175.12  | 88.06           | 158.09  | 79.55  |                |                  | 1  |

Monoisotopic mass of neutral peptide Mr(calc): 2283.11 Ions Score: 129

Matches (Bold Red): 24/194 fragment ions using 29 most intense peaks

| #  | b       | b++     | b*      | b*++    | b <sup>0</sup> | b <sup>0++</sup> | Seq. | У       | y++     | у*      | y*++    | y <sup>0</sup> | y <sup>0++</sup> | #  |
|----|---------|---------|---------|---------|----------------|------------------|------|---------|---------|---------|---------|----------------|------------------|----|
| 1  | 114.09  | 57.55   |         |         |                |                  | L    |         |         |         |         |                |                  | 19 |
| 2  | 277.15  | 139.08  |         |         |                |                  | Y    | 2171.03 | 1086.02 | 2154.01 | 1077.51 | 2153.02        | 1077.01          | 18 |
| 3  | 374.21  | 187.61  |         |         |                |                  | Р    | 2007.97 | 1004.49 | 1990.94 | 995.97  | 1989.96        | 995.48           | 17 |
| 4  | 503.25  | 252.13  |         |         | 485.24         | 243.12           | E    | 1910.92 | 955.96  | 1893.89 | 947.45  | 1892.91        | 946.96           | 16 |
| 5  | 616.33  | 308.67  |         |         | 598.32         | 299.67           | L    | 1781.87 | 891.44  | 1764.85 | 882.93  | 1763.86        | 882.44           | 15 |
| 6  | 703.37  | 352.19  |         |         | 685.36         | 343.18           | S    | 1668.79 | 834.90  | 1651.76 | 826.39  | 1650.78        | 825.89           | 14 |
| 7  | 831.42  | 416.22  | 814.40  | 407.70  | 813.41         | 407.21           | Q    | 1581.76 | 791.38  | 1564.73 | 782.87  | 1563.75        | 782.38           | 13 |
| 8  | 994.49  | 497.75  | 977.46  | 489.23  | 976.48         | 488.74           | Y    | 1453.70 | 727.35  | 1436.67 | 718.84  | 1435.69        | 718.35           | 12 |
| 9  | 1125.53 | 563.27  | 1108.50 | 554.75  | 1107.52        | 554.26           | Μ    | 1290.64 | 645.82  | 1273.61 | 637.31  | 1272.63        | 636.82           | 11 |
| 10 | 1182.55 | 591.78  | 1165.52 | 583.27  | 1164.54        | 582.77           | G    | 1159.60 | 580.30  | 1142.57 | 571.79  | 1141.58        | 571.30           | 10 |
| 11 | 1295.63 | 648.32  | 1278.61 | 639.81  | 1277.62        | 639.32           | L    | 1102.57 | 551.79  | 1085.55 | 543.28  | 1084.56        | 542.79           | 9  |
| 12 | 1382.67 | 691.84  | 1365.64 | 683.32  | 1364.66        | 682.83           | S    | 989.49  | 495.25  | 972.46  | 486.74  | 971.48         | 486.24           | 8  |
| 13 | 1495.75 | 748.38  | 1478.72 | 739.87  | 1477.74        | 739.37           | L    | 902.46  | 451.73  | 885.43  | 443.22  | 884.45         | 442.73           | 7  |
| 14 | 1609.79 | 805.40  | 1592.77 | 796.89  | 1591.78        | 796.39           | Ν    | 789.37  | 395.19  | 772.35  | 386.68  | 771.36         | 386.19           | 6  |
| 15 | 1738.84 | 869.92  | 1721.81 | 861.41  | 1720.83        | 860.92           | E    | 675.33  | 338.17  | 658.30  | 329.66  | 657.32         | 329.16           | 5  |
| 16 | 1867.88 | 934.44  | 1850.85 | 925.93  | 1849.87        | 925.44           | Е    | 546.29  | 273.65  | 529.26  | 265.13  | 528.28         | 264.64           | 4  |
| 17 | 1996.92 | 998.96  | 1979.89 | 990.45  | 1978.91        | 989.96           | E    | 417.25  | 209.13  | 400.22  | 200.61  | 399.24         | 200.12           | 3  |
| 18 | 2110.00 | 1055.51 | 2092.98 | 1046.99 | 2091.99        | 1046.50          | Ι    | 288.20  | 144.61  | 271.18  | 136.09  |                |                  | 2  |
| 19 |         |         |         |         |                |                  | R    | 175.12  | 88.06   | 158.09  | 79.55   |                |                  | 1  |

| Monoisotopic mass of neutral peptide Mr(calc): 1664.80 |  |
|--------------------------------------------------------|--|
| Ions Score: 89                                         |  |

Matches (Bold Red): 42/176 fragment ions using 82 most intense peaks

| #  | b       | h++    | b*      | h*++   | h <sup>0</sup> | h <sup>0++</sup> | Seq. | v       | v++    | v*      | v*++   | v <sup>0</sup> | v <sup>0++</sup> | #  |
|----|---------|--------|---------|--------|----------------|------------------|------|---------|--------|---------|--------|----------------|------------------|----|
| 1  | 72.04   | 36.53  | -       | 0      |                |                  | A    |         | ,      | -       | 3      | ,              | <b>y</b>         | 17 |
| 2  | 187.07  | 94.04  |         |        | 169.06         | 85.03            | D    | 1594 77 | 797 89 | 1577 74 | 789 38 | 1576.76        | 788 88           | 16 |
| 3  | 258.11  | 129.56 |         |        | 240 10         | 120 55           | A    | 1479 74 | 740.38 | 1462.72 | 731.86 | 1461 73        | 731 37           | 15 |
| 4  | 371.19  | 186.10 |         |        | 353.18         | 177.09           | L    | 1408.71 | 704.86 | 1391.68 | 696.34 | 1390.70        | 695.85           | 14 |
| 5  | 499.25  | 250.13 | 482.22  | 241.62 | 481.24         | 241.12           | 0    | 1295.62 | 648.31 | 1278.60 | 639.80 | 1277.61        | 639.31           | 13 |
| 6  | 570.29  | 285.65 | 553.26  | 277.13 | 552.28         | 276.64           | A    | 1167.56 | 584.29 | 1150.54 | 575.77 | 1149.55        | 575.28           | 12 |
| 7  | 627.31  | 314.16 | 610.28  | 305.65 | 609.30         | 305.15           | G    | 1096.53 | 548.77 | 1079.50 | 540.25 | 1078.52        | 539.76           | 11 |
| 8  | 698.35  | 349.68 | 681.32  | 341.16 | 680.34         | 340.67           | A    | 1039.51 | 520.26 | 1022.48 | 511.74 | 1021.49        | 511.25           | 10 |
| 9  | 785.38  | 393.19 | 768.35  | 384.68 | 767.37         | 384.19           | S    | 968.47  | 484.74 | 951.44  | 476.22 | 950.46         | 475.73           | 9  |
| 10 | 913.44  | 457.22 | 896.41  | 448.71 | 895.43         | 448.22           | 0    | 881.44  | 441.22 | 864.41  | 432.71 | 863.43         | 432.22           | 8  |
| 11 | 1060.51 | 530.76 | 1043.48 | 522.24 | 1042.50        | 521.75           | F    | 753.38  | 377.19 | 736.35  | 368.68 | 735.37         | 368.19           | 7  |
| 12 | 1189.55 | 595.28 | 1172.52 | 586.76 | 1171.54        | 586.27           | Е    | 606.31  | 303.66 | 589.28  | 295.15 | 588.30         | 294.65           | 6  |
| 13 | 1290.60 | 645.80 | 1273.57 | 637.29 | 1272.59        | 636.80           | Т    | 477.27  | 239.14 | 460.24  | 230.62 | 459.26         | 230.13           | 5  |
| 14 | 1377.63 | 689.32 | 1360.60 | 680.80 | 1359.62        | 680.31           | S    | 376.22  | 188.61 | 359.19  | 180.10 | 358.21         | 179.61           | 4  |
| 15 | 1448.67 | 724.84 | 1431.64 | 716.32 | 1430.65        | 715.83           | A    | 289.19  | 145.10 | 272.16  | 136.58 |                |                  | 3  |
| 16 | 1519.70 | 760.35 | 1502.68 | 751.84 | 1501.69        | 751.35           | Α    | 218.15  | 109.58 | 201.12  | 101.07 |                |                  | 2  |
| 17 |         |        |         |        |                |                  | K    | 147.11  | 74.06  | 130.09  | 65.55  |                |                  | 1  |

Supplementary Figure 1. MS/MS spectra for proteins identified on the basis of a single peptide in two biological replicates. "Bait ID" is the unique identifier for the sample in ProHIts, our internal interaction database (Liu et al., 2010). "Hit Gene Name" is the gene name of the interactor. "Pep #" is the total number of peptides. "Unique Pep #" is the number of unique peptides (as defined by the Mascot search engine). VAMP3, SDCBP, LRP10 were identified with at least one unique peptide in both PI4K2A biological replicates and thus were identified as high-confidence interactors.

## Journal of Cell Science | Supplementary Material



**Supplementary Figure 2.** Characterization of GFP-VAMP3 distribution. COS-7 cells were transfected with GFP-VAMP3 (B-D) or together with Tgn38-CFP (A). Cell were either fixed and stained (B,D) or incubated with Alexa Fluor 555-conjugated Tf for 10 min followed by 30min chase in complete medium prior to fixation (C). Scale bars: 10 µm.



**Supplementary Figure 3. PI4K2A knockdown does not disrupt ERC morphology.** (A,B) COS-7 cells pre-treated with control siRNA or siRNA directed against PI4K2A were serum-starved for 30 min, incubated with Alexa Fluor 488-conjugated Tf for 20 min and fixed. Cells were then stained with antibody directed against PI4K2A (A, bottom panel). Prolonged pulse, shown here, results in appearance of Tf in the ERC even in PI4K2A-depleted cells (A, upper panel). (B) Tf in the ERC of control and PI4K2A-depleted cell after 20 min pulse.



Supplementary Figure 4. MS/MS spectra for VAMP7. "Bait ID" is the unique identifier for the sample in ProHIts our internal interaction database (Liu et al., 2010). "Hit Gene Name" is the gene name of the interactor. "Pep #" is the total number of peptides. "Unique Pep #" is the number of unique peptides (as defined by the Mascot search engine). VAMP7 was identified with only one peptide in one PI4K2A biological replicate (1724) and thus did not meet our cutoffs to be identified as a high-confidence interactor.

v0++

976.00 18

919.46 17

870.93 16

789.40 15

753.88 14

688.36 13

631.34 12

587.83 11

523.31 10

8

6 5

4 3

2

1

449.77 9

811.50 406.26

898.54

22

| Bait ID | Bait Gene Name | Hit Gene Name | Hit Gene ID | Hit Protein ID | Hit Score | Pep # | Unique Pep # | Coverage | Freq |
|---------|----------------|---------------|-------------|----------------|-----------|-------|--------------|----------|------|
| 1st rep |                |               |             |                |           |       |              |          |      |
| 1724    | PI4K2A         | PI4K2A        | 55361       | 13559514       | 2160      | 775   | 31           | 61.4     | 0.45 |
| 1724    | PI4K2A         | GABARAPL2     | 11345       | 6005768        | 96        | 5     | 3            | 28.2     | 0.31 |
| 1724    | PI4K2A         | GNA11         | 2767        | 115511049      | 116       | 4     | 3            | 6.7      | 1.48 |
| 1724    | PI4K2A         | SLC25A4       | 291         | 55749577       | 169       | 9     | 3            | 10.1     | 4.04 |
| 1724    | PI4K2A         | TNFRSF10B     | 8795        | 22547116       | 134       | 7     | 3            | 7.7      | 0.31 |
| 1724    | PI4K2A         | ABCB1         | 5243        | 42741659       | 171       | 2     | 2            | 3.7      | 0.54 |
| 1724    | PI4K2A         | DSG2          | 1829        | 116534898      | 94        | 5     | 2            | 2.9      | 4.8  |
| 1724    | PI4K2A         | IFNGR1        | 3459        | 4557880        | 90        | 3     | 2            | 7.2      | 0.22 |
| 1724    | PI4K2A         | TMEM59        | 9528        | 20070191       | 109       | 6     | 2            | 7.7      | 0.36 |
| 1724    | PI4K2A         | WDR6          | 11180       | 11072093       | 87        | 3     | 2            | 3.9      | 2.2  |
| 1724    | PI4K2A         | LRP10         | 26020       | 32490559       | 120       | 2     | 1            | 2.9      | 0.27 |
| 1724    | PI4K2A         | SDCBP         | 6386        | 55749490       | 129       | 3     | 1            | 6.4      | 0.4  |
| 1724    | PI4K2A         | VAMP3         | 9341        | 4759300        | 89        | 1     | 1            | 17       | 1.75 |
| 2nd rep |                |               |             |                |           |       |              |          |      |
| 1748    | PI4K2A         | PI4K2A        | 55361       | 13559514       | 2118      | 674   | 33           | 66.6     | 0.45 |
| 1748    | PI4K2A         | DSG2          | 1829        | 116534898      | 406       | 14    | 7            | 10.2     | 4.8  |
| 1748    | PI4K2A         | IFNGR1        | 3459        | 4557880        | 229       | 5     | 4            | 14.1     | 0.22 |
| 1748    | PI4K2A         | SDCBP         | 6386        | 55749490       | 228       | 4     | 3            | 17.8     | 0.4  |
| 1748    | PI4K2A         | TNFRSF10B     | 8795        | 22547116       | 157       | 5     | 3            | 9.5      | 0.31 |
| 1748    | PI4K2A         | VAMP3         | 9341        | 4759300        | 224       | 5     | 3            | 40       | 1.75 |
| 1748    | PI4K2A         | WDR6          | 11180       | 11072093       | 123       | 3     | 3            | 2.9      | 2.2  |
| 1748    | PI4K2A         | ABCB1         | 5243        | 42741659       | 196       | 6     | 2            | 3.3      | 0.54 |
| 1748    | PI4K2A         | GABARAPL2     | 11345       | 6005768        | 104       | 3     | 2            | 22.2     | 0.31 |
| 1748    | PI4K2A         | GNA11         | 2767        | 115511049      | 137       | 3     | 2            | 10.3     | 1.48 |
| 1748    | PI4K2A         | LRP10         | 26020       | 32490559       | 134       | 4     | 2            | 4.6      | 0.27 |
| 1748    | PI4K2A         | SLC25A4       | 291         | 55749577       | 118       | 5     | 2            | 7.4      | 4.04 |
| 1748    | PI4K2A         | TMEM59        | 9528        | 20070191       | 94        | 5     | 2            | 7.7      | 0.36 |

**Supplementary Table 1. Detailed summary of AP-MS data for PI4K2A interaction partners.** "Bait ID" is the unique identifier for the sample in ProHIts, our internal interaction database (Liu et al., 2010). "Bait Gene Name" is the gene name of the bait (referred throughout the paper as PI4K2A). "Hit Gene Name" is the HUGO gene name of each filtered interactor. "Hit Gene ID" is the NCBI Gene ID for each hit. "Hit Protein ID" is the NCBI protein ID which can be used to refer to the protein sequence. "Hit Score" is the score from the Mascot search engine. "Pep #" is the total number of peptides, or spectral counts. "Unique Pep #" is the number of unique peptides (as defined by the Mascot search engine). "Coverage" is the percent of the protein sequence that has been detected by mass spectrometry. "Freq" is the frequency with which the protein is identified in our internal SLRI data base.