1	Electronic supplementary material
2	
3	
4	
5	The youngest South American rhynchocephalian, a survivor of the K/Pg extinction
6	
7	Sebastián Apesteguía ¹ , Raúl O. Gómez ² and Guillermo W. Rougier ³
8	
9	¹ CONICET-Fundación de Historia Natural 'Félix de Azara'-CEBBAD-Universidad
10	Maimónides, Hidalgo 775, 1405 Buenos Aires, Argentina
11	² CONICET-Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y
12	Naturales. Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428
13	Buenos Aires, Argentina
14	³ Department of Anatomical Sciences and Neurobiology, University of Louisville, 511
15	S. Floyd Street, Louisville, 40292 Kentucky, U.S.A.
16	
17	Correspondent author:
18	Sebastián Apesteguía
19	e-mail: sebapesteguia@gmail.com
20	

21 TABLE OF CONTENTS

22

ADDITIONAL DATA ON THE GEOLOGICAL FRAMEWORK

ADDITIONAL DATA ON KAWASPHENODON PELIGRENSIS

Additional figures

Selected measurements

Body size

PHYLOGENETIC ANALYSIS

Taxon and character sampling

Heuristic tree search and results

Support measures

Character list

Data matrix

Synapomorphies

REFERENCES

24 ADDITIONAL DATA ON THE GEOLOGICAL FRAMEWORK

25 The type material of *Kawasphenodon peligrensis* comes from the 'Banco Negro Inferior' (BNI) of the Salamanca Formation outcropping at the coastal locality of Punta 26 27 Peligro, which is about 27 km North of Comodoro Rivadavia in the Chubut province, Argentina (Suppl-fig. 1). The marine or nearshore sediments of the Salamanca 28 Formation are well exposed within the slopes of the San Jorge Basin (Feruglio, 1949; 29 30 Andreis et al., 1975; Legarreta and Uliana, 1994). These epeiric deposits are the result of the widespread marine transgression known as 'Salamancan Sea' that extensively 31 flooded Patagonia during Late Cretaceous-Early Palaeocene times (Andreis et al., 32 33 1975). The BNI is part of the uppermost levels (Hansen Member) of the Salamanca Formation (Andreis et al., 1975; Legarreta y Uliana, 1994), with a thickness ranging 34 from 1 to 8 meters (Gelfo et al., 2007). It consists of a package of dark sediments, 35 36 comprising massive black clays with conchoidal fracture and some irregular conglomerates, with a whitish level of tuffaceous concretions on its lower part (Andreis 37 et al., 1975). Most of the fossil vertebrates at Punta Peligro (Gelfo et al., 2007) were 38 collected in this horizon. 39 Punta Peligro has yielded one of the earliest known Palaeocene vertebrate faunas in 40 41 South America (Bonaparte et al. 1993; Muizon 1998; Gelfo et al., 2009), the mammals were used to define the Peligran South American Land Mammal Age (SALMA; 42 Bonaparte et al., 1993). To date the fauna includes, besides the newly described 43 rhynchocephalian (this paper), relatively abundant remains of brackish environment 44 45 including lamiid sharks, rays, abundant chelid turtles, and caimans (Bonaparte et al., 1993; de la Fuente and Bona, 2002; Páez Arango, 2008). Additionally, vertebrates that 46 may be allochthonous have also been discovered at Punta Peligro, including 47 calyptocephalellid frogs (some specimens reaching giant size), an undescribed sebecid 48

49	crocodyliform, and a mixture of non-tribosphenic (dryolestoids, gondwanatheres) and
50	tribosphenic (monotremes, therians) mammals (Pascual et al. 1992; Bonaparte et al.,
51	1993; Pascual, 1996, 1998; Gelfo and Pascual 2001; Páez Arango, 2008).
52	The BNI has been interpreted as deposited in a brackish environment, such as a lagoon,
53	formed during the withdrawal of the "Salamancan Sea" (Andreis et al., 1975).
54	Palaeosoil structures have been indentified from this level and were considered
55	evidence of aerial environments that developed under wet conditions (Andreis et al.,
56	1975). These more continental conditions, however, could have been ephemeral, since
57	marine deposits (rich in glauconite) overlay the BNI (Pascual and Ortiz Jaureguizar,
58	1991; Gelfo et al., 2007).
59	The age of BNI has been regarded as early Palaeocene (Bonaparte et al., 1993; Muizon,
60	1998), though both a precise geochronological date and the relative calibration of the
61	Peligran SALMA (particularly with respect to the Tiupampan SALMA) have long been
62	controversial (e.g., Marshall et al. 1981; Bonaparte et al. 1993; Somoza et al. 1995;
63	Muizon 1998; Gelfo et al., 2009). An accurate calibration of the BNI has been
64	attempted through radiometric dating of levels below or above the BNI, palaeomagnetic
65	data, and their content of mammals. Radiometric dating with ${}^{40}\text{K}{-}^{40}\text{Ar}$ of levels of the
66	Salamanca Formation below the BNI yielded ages of 64 ± 0.8 , 62.8 ± 0.8 , and 62.5 ± 5
67	Ma (Marshall et al. 1981; Marshall, 1982). The only radiometric date available from
68	levels above the BNI is from a 40 Ar $-{}^{39}$ Ar analysis that dated a tuff horizon located 40 m
69	above the BNI at Palacio de los Loros locality (Suppl-fig. 1), about 100 km West of
70	Punta Peligro, as 57.80 ± 6.00 Ma (Iglesias et al., 2007). Based on paleomagnetic data,
71	the BNI was correlated with Chron 26r (between 59.2 and 62.2 Ma; Gradstein et al.,
72	2012) at Punta Peligro and the area of Cerro Redondo (Marshall et al. 1981; Suppl-fig.
73	1), but with Chron 27n (between 62.2 and 62.5 Ma; Gradstein et al., 2012) at the El

Gauchito and Las Violetas farms (Suppl-fig. 1), farther North of Punta Peligro (Somoza 74 et al. 1995). This regional asynchrony has been interpreted as related to the retreat of the 75 'Salamancan Sea' (Somoza et al. 1995), though other authors attribute this putative 76 diachronism to methodological errors (Bonaparte et al., 1993). 77 The relative age of the BNI based on paleontological data has also been debated, but 78 always considered to be restricted to the Danian-Selandian interval. This way, the fauna 79 from BNI at Punta Peligro (Peligran SALMA sensu Bonaparte et al., 1993) has 80 alternatively been regarded as contemporary of the Tiupampan SALMA (Pascual and 81 Ortiz Jaureguizar, 1990), between the older Tiupampan SALMA and the younger 82 Itaboraian SALMA (Bonaparte et al., 1993; Gelfo et al., 2007, 2009), or even older than 83 the Tiupampan SALMA (Marshall et al., 1997). 84

Suppl-fig. 1: (a) Map of Patagonia, Argentina, showing the localities of Punta Peligro
and Los Alamitos. (b) Map of south-eastern Chubut province showing the location of
different BNI localities named in the text.

- 91 Additional figures

Suppl-fig. 2: *Kawasphenodon peligrensis* sp. nov. (*a*–*c*) Drawings of Holotype MPEF
PV 1989. Left lower jaw in lingual (*a*), labial (*b*) and occlusal (*c*) views. (*d*–*f*) Drawings
of Paratype MPEF PV 1990. Right lower jaw in lingual (*d*), labial (*e*) and occlusal (*f*)
views. Abbreviations: adt, additional teeth. Scale bars: 5 mm.

101 **Suppl-fig. 3:** (*a*) *Kawasphenodon expectatus*, holotype MACN Pv RN1098 in lingual

- 102 view. (b) Kawasphenodon peligrensis sp. nov., holotype MPEF PV 1989 in lingual
- 103 view. (c) Kawasphenodon peligrensis sp. nov., paratype MPEF PV 1990 in labial view.
- 104 All specimens are set to the same scale for size comparison. Scale bar: 5 mm.

106

Suppl-fig. 4: Scanning electron micrograph of *Kawasphenodon peligrensis* sp. nov.,

108 holotype MPEF PV 1989 showing wear facets (wf) on the secondary bone in labial

109 view. Scale bar: 1 mm.

Selected measurements

- Suppl-table 1: Selected measurements of the holotype and paratype of *Kawasphenodon*
- *peligrensis* sp. nov. in comparison to those of the holotype of *K. expectatus*.

select measurements (in mm)*	K. peligrensis MPEF PV 1989	<i>K. peligrensis</i> MPEF PV 1990	K. expectatus MACN Pv RN1098
Maximum width of most posterior well-preserved tooth	1.4	1.1	4.2
Maximum length of most posterior well-preserved tooth	2.3	1.8	5.5
Maximum height of most posterior well-preserved tooth	1.4	1.3	4.0
Maximum height of dentary anterior to coronoid process	6.4	-	23.0**
Height of dentary at anterior boundary of angular facet	6.1	-	13.6
Height of dentary ventral to Meckelian groove at anterior boundary of angular facet	2.2	-	4.3
Height of Meckelian groove at anterior boundary of angular facet	1.0	-	3.5
Maximum length of the preserved portion of bone	14.9	9.5	47.1

*The measurements were taken digitally in Adobe Photoshop CS. ** estimated

117 Body size

118 In order to estimate the size of fossil taxa we used part of the dataset of Wiens et al.

119 (2006), of which we eliminated those squamate taxa that are limbless or have reduced

- 120 limbs. Head length was regressed on snout-vent length (SVL, a proxy of total size)
- 121 using a log-log reduced major axis (RMA) regression in the statistical package PAST
- 122 (Hammer et al., 2001). Then, with the slope (0.939) and intercept (0.91192) of the
- regression we used the skull length of fossils (a proxy of the head length; Suppl-table 2)
- to estimate their SVL. In the case of those fossils in which the entire skull is not
- 125 preserved (e.g., *Kawasphenodon peligrensis*), we either relied on published restorations
- 126 or estimated the skull length using a related taxon with known skull length as a
- 127 template. Particularly, in the case of *Kawasphenodon peligrensis* we digitally matched
- both the holotype and paratype with those parts of the dentaries of *Opisthias rarus* and
- 129 Sphenodon punctatus that minimizes the differences between specimens and then
- estimated the jaw and skull lengths. These estimations were used to represent the size of
- 131 fossil taxa by black silhouettes in figure 2.
- 132 Additionally, to test the hypothesis that *K. peligrensis* constitutes a case of dwarfism
- 133 within Opisthodontia, the estimated body size was optimized in the topology recovered
- by the phylogenetic analysis as a continuous character (Suppl-fig. 5) using squared
- parsimony in Mesquite (Maddison and Maddison, 2011).
- 136
- 137

138 **Suppl-table 2:** Skull length (SkL) of fossils and estimated SVL, using the function log

139 SVL= $\log SkL * 0.939 + 0.91192$.

measurements (in mm)*	SkL	SVL**
K. peligrensis MPEF PV 1989	38**	248
K. peligrensis MPEF PV 1990	37**	242
K. expectatus MACN Pv RN1098	110**	674
Ankylosphenodon	83	517
Brachyrhinodon	23	155
Clevosaurus hudsoni	39	254
Cynosphenodon	29	192
Diphydontosaurus	15	103
Eilenodon	109	668
Gephyrosaurus	30	199
Godavarisaurus	15**	103
Homoeosaurus maximilliani	24	161
Homoeosaurus cf. maximilliani	24	161
Kallimodon pulchellus	30	199
Kallimodon cerinensis	38	248
Opisthias rarus	42	272
Palaeopleurosaurus	57	363
Pamizinsaurus	16	110
Planocephalosaurus	20	136
Pleurosaurus goldfussi	82	511
Pleurosaurus ginsburgi	76	476
Priosphenodon avelasi	150	902
Rebbanasaurus	15**	103
Sapheosaurus	41	266
Sphenocondor	28**	186
Sphenovipera	21**	142
Theretairus	20**	136
Toxolophosaurus	60	381
Youngina	75	470
Zapatadon	12	84

140

141 *The measurements were taken digitally in Adobe Photoshop CS.

142 ** estimated

Suppl-fig. 5: Mapping of body size estimates onto the Rhynchocephalian phylogeny.

147	PHYLOGENETIC ANALYSIS
148	
149	Taxon and character sampling
150	In order to assess the evolutionary relationships of Kawasphenodon peligrensis sp. nov.
151	we added it to a modified version of a recently published data matrix of
152	rhynchocephalians (Apesteguía et al., 2012). The modifications involved both the
153	addition of taxa, characters, and character states, but also included changes in the
154	scoring of terminals or the character statements.
155	Regarding the taxon sampling, we added to the dataset of Apesteguía et al. (2012)
156	species of Pleurosaurus (P. goldfussi and P. ginsburgi) and the recently described
157	Oenosaurus muehlheimensis (Rauhut et al., 2012). Additionally, we aimed to be more
158	explicit in the way some terminals were scored and therefore we used species, or even
159	specimens, as terminals; this was particularly significant for the scoring of
160	Homeosaurus, Kallimodon, and Opisthias. In total, including K. peligrensis, six new
161	terminals were added to the data matrix of Apesteguía et al. (2012).
162	With respect to the characters, 68 of the 74 used in the analysis were previously
163	considered by Apesteguía et al. (2012). Four characters of the latter, mainly regarding
164	skull and body proportions, were removed for non independence issues. In addition, six
165	new characters concerning shape of the humerus (ch. 62, 63), tooth morphology (ch. 71,
166	72), and shape of maxilla (ch. 73, 74) were incorporated to the data matrix. Also, some
167	character states were added in order to include observed variation within the taxon
168	sample.

170 Heuristic tree search and results

171 We performed a heuristic search in TNT v.1.1 (Goloboff et al., 2008) using Maximum Parsimony as optimality criterion and under equal weights. The tree search consisted of 172 173 500 replicates of Wagner trees with random addition sequence of taxa followed by Tree Bisection and Reconection (TBR) branch swapping, holding ten trees per replication, 174 175 and collapsing branches of zero length after tree search following rule 1 of Coddington 176 and Scharff (1994). Multistate characters were treated as unordered during the tree search. Most-parsimonious trees (MPTs) were rooted with the distantly related diapsid 177 Youngina. 178 179 The analysis yielded 22 MPTs of 218 steps, in all of which K. peligrensis appears as sister-group of K. expectatus (Suppl-fig. 6). The strict consensus of these MPTs is 180 181 relatively well resolved, with the exception of the node including all 'eupropalinals'. It 182 is noteworthy that this node, as the three nodes immediately below it, has low support 183 values. The uncertainties mainly involve the interrelationships between Homeosaurus, 184 pleurosaurs, sapheosaurs, and some eupropalinal taxa within crown-sphenodontians. 185 Despite this ambiguity, the results reflect previous phylogenetic hypothesis of rhynchocephalians (e.g., Reynoso, 1996, 2005; Apesteguía and Novas, 2003; 186 187 Apesteguía et al., 2012). The main previously recognized groups were consistently 188 recovered, including Sphenodontia (sensu Benton, 1985), 'derived sphenodontians' (sensu Apesteguía et al., 2012), and Opisthodontia (sensu Apesteguía and Novas, 2003), 189 as well as clades of clevosaurs, pleurosaurs, sapheosaurs, and eilenodontines. 190 191 Additionally, a clade of eupropalinal forms was recovered (previously recognized by Apesteguía and Carballido, in press), although it has low support (Suppl-fig. 6). 192 In agreement with previous hypotheses (Apesteguía and Rougier, 2007, Apesteguía et 193 194 al., 2012), Kawasphenodon is related to opisthodontians, recovered in a polytomy with

- 195 *Opisthias rarus* and eilenodontines. Opisthodontians, including *Kawasphenodon*, share 196 the presence of additionals that are square to transversely rectangular in cross section 197 and moderately to tightly packed in the jaw, moving in a prooral fashion (see below for
- a list of synapomorphies for all the nodes).
- 199

- 201 Suppl-fig. 6: Strict consensus of 22 MPTs obtained in the phylogenetic analysis
- 202 depicting the position of *Kawasphenodon peligrensis* sp. nov. Node support
- 203 (Bremer/GC) is shown above branches.
- 204

205 Support measures

- 206 Node support was assessed by 1000 rounds of symmetric resampling and expressed as
- 207 frequency difference (GC) values (Goloboff et al., 2003).and by calculating the Bremer
- index in TNT.

210 Character list

211 Description of 74 characters used in the phylogenetic analyses, 68 of which are the

- same used by Apesteguía et al. (2012), although some of them were modified (denoted
- 213 with an asterisk). Four characters of the latter were removed because of non
- independence issues. Between brackets the original source of each character is
- indicated. Also, six new characters regarding shape of the humerus (ch. 62, 63), tooth
- 216 morphology (ch. 71, 72), and shape of maxilla (ch. 73, 74) were added. Multistate
- characters were treated as unordered. Abbreviations: AGR12, Apesteguía et al. (2012);
- 218 AN03, Apesteguía & Novas (2003); B85, Benton (1985); E88, Evans (1988); FB89,
- 219 Fraser & Benton (1989); G88, Gauthier et al. (1988); R96, Reynoso (1996); R97,
- 220 Reynoso (1997); RC98, Reynoso & Clark (1998); S94, Sues et al. (1994); W94, Wu

221 (1994).

- 222
- (1) Antorbital region, length relative to skull length: one-third or more (0); between
 one-fourth and one-third (1); one fourth or less (2). (S94, W94, R96, AN03)
- (2) Orbit, length relative to skull length: one third or greater (0); less than one third
 (1). (RC98, AN03)
- (3) Supratemporal fenestra, length relative to orbit length: less than 75% (0); 75% or
 greater (1). (S94, AN03)
- (4) Supratemporal fenestra, length relative to skull length: one-fourth or less (0);
- 230 more than one-fourth (1). (W94, R96, AN03)
- (5) Lower temporal fenestra, length relative to skull length: one-fourth or less (0);
 more than one-fourth (1). (W94, R96, AN03)
- (6) Maxilla, premaxillary process: elongate (0); reduced (1). (S94, W94, R96, AN03)

- 234 (7) Maxilla, participation in margin of external naris: entering into margin (0);
- excluded from margin by posterodorsal process of premaxilla (1). (S94, R97,
 AN03)
- (8) Maxilla, shape of posterior end: tapering posteriorly or very narrow (0);
 dorsoventrally broad (1). (W94, R96, AN03)
- (9) Lacrimal: present (0); absent (1). (S94, W94, R96, AN03)
- (10) Jugal, shape of dorsal process: broad and short (0); narrow and elongate (1).
 (W94, R96, AN03)
- (11) Prefrontal and postfrontal, profuse sculpture on bone surface: absent (0); present
 (1). (AN03)
- 244 (12) Prefrontal-jugal contact: absent (0); present (1). (S94, R97, AN03)
- (13) Postorbital, marked dorsal ridge and deep ventrolateral concavity: absent (0);
 present (1). (AN03)
- 247 (14) Frontals, relation: separated (0); fused (1). (S94, W94, R96, AN03)
- 248 (15) Parietals, relation: separated (0); fused (1). (S94, W94, R96, AN03)
- 249 (16) Parietal, width between supratemporal passages relative to interorbital width:
- 250 broader (0); narrower (1). (S94, W94, R96, AN03)
- 251 (17) Parietal crest: absent (0); present (1). (S94, W94, R96, AN03)
- (18) Parietal, shape of posterior edge: greatly incurved inward (0); slightly incurved
 inward (1); convex (2). (W94, R96, AN03)
- 254 (19) Parietal foramen, position relative to anterior border of supratemporal fenestra:
- posterior (0); at the same level or anterior (1). (S94, W94, R96, AN03)
- 256 (20) Lower temporal bar, position: aligned with the maxillary tooth row (0); bowed
- away beyond the limit of the abductor chamber (1). (S94, W94, R96, AN03)

- 258 (21) Lower temporal bar, posteroventral process of jugal: absent (0); poorly- to
- 259 moderately-developed, less than half the length of the lower temporal fenestra (1);
- well-developed, half the length of the lower temporal fenestra or more (2). (S94,

261 W94, R96, AN03)

- 262 (22) Palatine, shape of posterior end: tapers posteriorly (0); widens posteriorly (1).
- 263 (S94, W94, R96, AN03)
- (23) Pterygoids, anterior contact between bones*: absent (0); small (1); broad (2).
 (R97, AN03)
- (24) Pterygoids, posterior opening of the interpterygoid vacuity between posteromedial
 processes: widely open (0); moderately open, as wide as the vacuity (1); almost

closed by the posteromedial processes (2). (R97, AN03)

- (25) Pterygoid, central region between three rami: short (0); elongate (1). (S94, W94,
 R96, AN03)
- (26) Pterygoid, participation in margin of suborbital fenestra: form part of the margin
 (0); excluded from margin (1). (S94, W94, R96, AN03)
- 273 (27) Quadrate-quadratojugal foramen, relative size: small (0); large (1). (RC98, AN03)
- 274 (28) Quadrate-quadratojugal foramen, location: between the quadrate and the

quadratojugal (0); entirely within the quadrate (1). (RC98, AN03)

276 (29) Quadrate-quadratojugal emargination, shape: pronounced (0); reduced (1). (E88,

- 277 S94, W94, RC98, AN03)
- 278 (30) Supratemporal, as a discrete bone: present (0); absent (1). (S94, R97, AN03)
- (31) Inferred jaw motion: orthal (0); propalinal (1). (S94, W94, R96, AN03)
- 280 (32) Degree of propalinality, measured either as palatal tooth row extension or length
- in which palatines keep parallel to the maxillae: small palatal row, parallel line
- restricted to the anterior region (0); enlarged, palatines accompanying maxilla half

283		its own length (1); palatines accompanying maxilla by its complete length,
284		'eupropalinality' (2). (S94, W94, R96, AN03)
285	(33)	Mandibular symphisis, mentonian process*: absent (0); reduced (1); well-
286		developed and pointed (2); well-developed and rounded (3). (AN03)
287	(34)	Mandibular symphysis, shape: almost circular, high/length relation near one (0);
288		oval, high/length clearly greater than one (1). (B85, R96, AN03)
289	(35)	Mandibular symphysis, angle between anterior margin and longitudinal axis of the
290		mandible in lateral view: <120°, symphysis nearly vertical, typically devoid of
291		ventral projections (0); \geq 120°, symphysis anterodorsally projected (1). (AN03)
292	(36)	Mandibular symphysis, symphysial spur: absent (0); well-developed,
293		anterodorsally projected (1); moderately developed (2). (AN03)
294	(37)	Mandibular foramen, relative size: small (0); large (1). (B85, R96, AN03)
295	(38)	Glenoid cavity, shape: smooth surface, lacking an anteroposterior central ridge
296		(0); elongate and asymmetrical surface, with a strong anteroposterior central ridge
297		(1); symmetrical facet with a strong anteroposterior central ridge (2). (AN03)
298	(39)	Coronoid process, height relative to that of the jaw at the level of the anterior end
299		of the coronoid process: low, weak, less than half the jaw (0); high, equal or more
300		than half the jaw height (1). (S94, W94, R96, AN03)
301	(40)	Retroarticular process, shape: pronounced (0); reduced, caudally projected (1);
302		reduced, dorsally curved (2). (S94, W94, R96, AN03)
303	(41)	Dentary, posterior process, relative length: short, not reaching glenoid level (0);
304		elongate, reaching glenoid level (1); elongate, reaching the end of glenoid level
305		(2). (S94, R97, AN03)
306	(42)	Marginal dental implantation, type: pleurodont (0); degree of posterior acrodonty
307		(1); fully acrodont (2). (S94, W94, R96, AN03)

308 (43) Tooth replacement, type: alternate (0); addition at back of jaw (1). (B85, R96,

309 AN03)

- (44) Dentary regionalization with small juvenile teeth (hatchling) in the anterior region 310 311 of maxilla and dentary: absent, only pleurodont teeth (0); present, with hatchling pleurodont teeth (1); present, with hatchling, successional and additional acrodont 312 313 teeth (2); absent both in juveniles and adults, only additional acrodont teeth (3). 314 (B85, R96, AN03) (45) Dentary, posterior successionals, number in mature individuals: zero (0); one (1); 315 two or more (2). (G88, R96, AN03) 316 317 (46) Marginal teeth, lateral wear facets on dentary and/or medial wear facets on maxilla: absent or smooth (0); present, conspicuous (1). (S94, W94, R96, AN03) 318 (47) Marginal teeth, shape of cross section of posterior teeth: nearly circular (0); 319 320 squared (1); rectangular, wider than long (2). (FB89, R96, AN03) 321 (48) Premaxillary teeth, number in mature individuals: more than seven (0); seven to 322 four (1); three or less (2). (S94, W94, R96, AN03) 323 (49) Premaxillary teeth, general organization in adults: present as discrete teeth (0);
- merged into a chissel-like structure (1). (S94, W94, R96, AN03)
- 325 (50) Maxillary teeth, posteromedial flanges on posterior teeth: absent or inconspicuous
 326 (0); present as small flanges on at least one tooth (1); present as extensive flanges
- 326 (0); present as small flanges on at least one tooth (1); present as extensive flanges
 327 on most teeth (2). (S94, W94, R96, AN03)
- 328 (51) Maxillary teeth, anterolateral flange on posterior teeth: absent (0); present (1).
 329 (AN03)
- 330 (52) Palatine teeth, number of tooth rows: two or more (0); a single row plus one
 331 isolated tooth (1); a single lateral row (2). (S94, W94, R96, AN03)

- 332 (53) Palatine teeth, flanges: completely absent (0); present at least on a few teeth (1).
- 333 (FB89, R96, AN03)
- 334 (54) Palatine teeth, hypertrophied tooth on anterior region of the palatine bone
- (stabbing palatine): absent (0); present (1). (AN03)
- 336 (55) Pterygoid teeth, number of tooth rows*: three or more (0); two (1); one or none
- 337 (2); radial crests (3). (S94, W94, R96, AN03)
- (56) Mandibular teeth, anterolateral flanges: absent (0); present, at least in one tooth
 (1), (S94, W94, R96, AN03)
- 340 (57) Mandibular teeth, anteromedial flanges: absent (0); present (1). (AN03)
- 341 (58) Mandibular teeth, additionals, enamel ornamentation in adults*: absent (0);
- present, with numerous fine striae (1); present, with a combination of a few striaeand wide grooves (2). (AN03)
- (59) Second sacral vertebra, posterior process: absent (0); present, small (1); present,
 prominent (2). (G88, R96, AN03)
- 346 (60) Ischium, process on posterior border: absent (0); present as small tubercle (1);
- 347 present as prominent process (2). (E88, FB89, R96, AN03)
- 348 (61) Humerus, length relative to length of presacral column*: <0.12 (0); between 0.12
- and 0.21 (1); > 0.21. (FB89, R96, AN03)
- 350 (62) Humerus, shape, relation between minimum width of the diaphysis (DW) and
- 351 maximum length of bone (HL): $DW/HL \le 0.11$ (0); $DW/HL \ge 0.11$ (1).
- 352 (63) Humerus, shape, relation between minimum width of the diaphysis (DW) and
- maximum width of distal epiphysis (EW): DW/EW < 0.28 (0); DW/EW between
- 354 0.28–0.35 (1), DW/EW > 0.35 (2).

- 355 (64) Dentary, proportions (pre-coronoid length/ maximum pre-coronoid height ratio,
- L/H): gracile, long and low, L/H < 0.18 (0); average, L/H between 0.18–0.28 (1),
 robust, short and high, L/H > 0.28 (2). (AGR12)
- 358 (65) Dentary, successional teeth, maximum concurrent number during ontogeny: six or
 359 more (0); three to five (1); two or less (2). (AGR12)
- 360 (66) Dentary, anterior successional teeth (not 'caniniform'), number in the adult: two
- 361 or more clearly discrete teeth (0); one or two poorly distinct (1); none or indistinct
 362 (2). (AGR12)
- 363 (67) Dentary, successional teeth, striation: present (0); absent (1). (AGR12)
- 364 (68) Dentary, posterior successional teeth, lingual groove: absent (0); present (1).

365 (AGR12)

- 366 (69) Dentary, hatchling teeth, striation: absent (0); present (1). (AGR12)
- 367 (70) Dentary, successional 'caniniform' teeth, shape of basal cross section: nearly
 368 circular (0); clearly oval, labio-lingually compressed (1). (AGR12)
- 369 (71) Mandibular teeth, additionals, grooves or fossae on labial or lingual sides: absent
 370 (0); present (1).
- 371 (72) Mandibular teeth, additionals, posterior groove: absent (0); wide and poorly-
- defined (1); relatively deep and well-defined (2).
- 373 (73) Maxilla, facial process, shape of anterior margin relative to main axis of maxilla:
- low slope, straight or concave (0); high slope, in straight angle (1); high slope,
- 375 continuous and concave (2); high slope, continuous and convex (3).
- 376 (74) Maxilla, facial process, maximum high (FH) with respect to length of maxilla
- posterior to this point (MPL): FH/MPL < 0.45 (0); FH/MPL between 0.45–0.7

378 (1); FH/MPL > 0.7 (2).

380 Data matrix

- 381 Data matrix of 74 characters scored for 32 taxa used in the phylogenetic analysis.
- 382 Symbols: ?, missing data or not applicable; A=0/1; B=0/2; C=1/2; D=2/3
- 383

Taxa	5	1 0	1 5	2 0	2 5	3 0	3 5	4 0
Ankylosphenodon	???1????	?1??	???????	????	??????	??1?	111?1	.?11
Brachyrhinodon	21111101	1100	?00000	0120	120???	??00	11101	.?10
Clevosaurus hudsoni	21111111	1101	000100	0120	210100	0000	11101	.110
Cynosphenodon	??????????	????	???????	????	???????	??1?	2112?	??1?
Diphydontosaurus	1000000	1000	010000	0120	100000	0101	00001	.000
Eilenodon	?????????	??1?	???????	????	???????	??12	31111	202
Gephyrosaurus	00000000	0000	011000	0120	000000	0101	00?00	000
Godavarisaurus	??????1?	????	???????	????	???????	???0	110B?	????
Homoeosaurus cf maximiliani	11AA????	??0?	?00?0?	11?0	2??1??	???A	1???1	.?11
Homoeosaurus maximiliani	1A00001	1000	?0000C	11??	2001??	?101	11101	.?11
Kallimodon cerinensis	?????????	????	???????	?1??	2010??	???A	110?1	?A?
Kallimodon pulchellus	01110?01	1?00	?00112	1111	2001??	?10A	11021	.?10
Kawasphenodon expectatus	?????????	????	????????	????	???????	??1?	?????	????
Kawasphenodon peligrensis	?????????	????	????????	????	???????	??1?	?????	????
Oenosaurus	20???0?1	??0?	10111?	???0	2201??	??11	D?121	.111
Opisthias rarus	?????????	????	???????	????	???????	????	3111?	?A?
Palaeopleurosaurus	01110000	1000	101112	0020	211011	0100	111?1	?1A
Pamizinsaurus	??????1?	??0?	???????	????	?211??	0?0?	C11?1	.?11
Planocephalosaurus	0000000	1000	011001	0120	200001	0101	11000	010
Pleurosaurus ginsburgi	0110?000	1?00	?001??	??0?	???????	??0?	0110?	·???
Pleurosaurus goldfussi	0110?000	1100	?00112	1000	2C1010	0102	0110?	??00
Priosphenodon avelasi	01100111	1111	100111	1101	220100	0112	31111	.202
Pristidactylus	11111000	0110	011000	1?00	01000?	000?	00?00	0000
Rebbanasaurus	\$\$\$\$\$\$\$\$\$\$\$\$\$	1??0	???????	????	???????	??0?	3102?	
Sapheosaurus thiollerei	111100?1	?0??	?00112	1121	1001??	??0A	11021	.?10
Sphenocondor	:::::::::::::::::::::::::::::::::::::::	????	???????	????	???????	????	1?1?1	.?1?
Sphenodon punctatus	11111001	1100	100111	1121	221110	1112	11121	.111
Sphenovipera	:::::::::::::::::::::::::::::::::::::::	????	???????	????	???????	??1?	21021	.???
Theretairus	:::::::::::::::::::::::::::::::::::::::	????	???????	????	???????	??1?	210??	
Toxolophosaurus	:::::::::::::::::::::::::::::::::::::::	????	???????	????	??????	??1?	31111	?0?
Youngina	00000000	0000	000000	0020	000000	0?00	00?0?	000
Zapatadon	10?01??0	1??1	??1?1?	1?10	221010	1A1?	1112?	??1?

384

386 Data matrix (continued)

Taxa	4 5 5 6 6 7 7 5 0 5 0 5 0 4	
Ankylosphenodon	121?01????0????0?0221??121????0???	
Brachyrhinodon	121201121101001?????1??1???????21	
Clevosaurus hudsoni	121201121201001101211??112??0?0021	
Cynosphenodon	?2121112110????100?????11210010011	
Diphydontosaurus	1111200100000000121???000001?0000	
Eilenodon	22130122?21210?112?????222????0122	
Gephyrosaurus	1000200000000000?102??00010??0001	
Godavarisaurus	?212200C01021??100?????A10010100??	
Homoeosaurus cf maximiliani	121D01A??20C??2???????????????????????????????	
Homoeosaurus maximiliani	121201A21202??2111222??1??????000?	
Kallimodon cerinensis	1212??A21202002000221??122????00??	
Kallimodon pulchellus	121201121202??2001221??122????00??	
Kawasphenodon expectatus	?212?10?????1??112?????C?????02??	
Kawasphenodon peligrensis	?21D?10???????112????????????02??	
Oenosaurus	12??0?A????2?02000?????2?2????00?1	
Opisthias rarus	?212010??20????112?????122????10??	
Palaeopleurosaurus	121201121102002101210??022????0001	
Pamizinsaurus	?2120?A2?102???101?????12???1?????	
Planocephalosaurus	1212?0A20100001101211??1C00?1?0010	
Pleurosaurus ginsburgi	?21D0012000??0?110120??022????0000	
Pleurosaurus goldfussi	121200120002102110?20??022????0000	
Priosphenodon avelasi	2213012212121031122C2??222????0032	
Pristidactylus	00002000000???200?111??00010??0001	
Rebbanasaurus	?212200201001??101?????A11000100??	,
Sapheosaurus thiollerei	A???01?21?0???2???221??122???????	
Sphenocondor	1212200????????0?0?????0C?010100??	
Sphenodon punctatus	121211A21102112100012??C2210000011	
Sphenovipera	1212211???????112?????1C211??10??	
Theretairus	?21221??????????????????2?10??00??	;
Toxolophosaurus	?213012??????112?????222????01??	
Youngina	0000200000000000?10???00010??0000	
Zapatadon	?2120?A??102??2??????12??????0	

389 Synapomorphies

- 390
- **Suppl-table 3:** List of common synapomorphies for all MPTs obtained in the
- 392 phylogenetic analysis. Symbols: ch. = character; > = direction of change. See Suppl-fig.
- 393 7 below for node numbers on the strict consensus.

Node number	Synapomorphies
1	ch. 9: 0>1 ch. 43: 0>1 ch. 59: 1>2 ch. 67: 1>0
2	ch. 33: 0>1 ch. 34: 0>1 ch. 39: 0>1 ch. 50: 0>1 ch. 55: 0>1 ch. 56: 0>1 ch. 65: 0>1
3	ch. 32: 1>0 ch. 69: 1>0
4	ch. 58: 1>0 ch. 68: 0>1
5	ch. 8: 0>1 ch. 35: 0>1 ch. 45: 2>0 ch. 46: 0>1 ch. 47: 0>1 ch. 49: 0>1 ch. 66: 0>2
6	ch. 5: 0>1 ch. 6: 0>1 ch. 10: 0>1 ch. 73: 0>2
7	ch. 18: 0>2 ch. 19: 0>1 ch. 55: 1>2 ch. 60: 1>2
8	ch. 40: 0>1 ch. 50: 1>2
9	ch. 16: 0>1 ch. 17: 0>1 ch. 25: 0>1
10	ch. 8: 1>0 ch. 20: 1>0 ch. 24: 0>1 ch. 26: 1>0 ch. 61: 12>0 ch. 65: 1>0
11	ch. 21: 2>0 ch. 33: 1>0 ch. 46: 1>0 ch. 49: 1>0 ch. 50: 1>0 ch. 57: 0>1 ch. 74: 1>0
12	ch. 36: 0>2
13	ch. 35: 1>0 ch. 50: 1>2 ch. 56: 1>0
14	ch. 25: 1>0
15	ch. 10: 0>1 ch. 18: 2>1 ch. 24: 0>2 ch. 31: 0>1 ch. 32: 0>2 ch. 40: 0>1
16	ch. 57: 0>1 ch. 58: 0>2
17	ch. 35: 1>0 ch. 45: 0>2
18	ch. 36: 2>1 ch. 47: 1>0
19	ch. 72: 0>2
20	ch. 44: 2>3 ch. 47: 0>2 ch. 51: 0>1 ch. 64: 1>2
21	ch. 72: 0>1

Suppl-fig. 7: Strict consensus of 22 MPTs obtained in the phylogenetic analysis

showing node numbers.

REFERENCES

Λ	n	n
4	υ	U

401	Andreis RR, Mazzoni MM, Spalletti LA. 1975 Estudio estratigráfico y paleoambiental
402	de las sedimentitas terciarias entre Pico Salamanca y Bahía Bustamante,
403	Provincia de Chubut, República Argentina. Revista de la Asociación Geológica
404	<i>Argentina</i> 30 , 85–103.
405	Apesteguía S, Carballido JL. in press A new Eilenodontine (Lepidosauria:
406	Sphenodontidae) from the Lower Cretaceous of Central Patagonia. J. Vert.
407	Paleontol. 34.
408	Apesteguía S, Novas FE. 2003 Large Cretaceous sphenodontian from Patagonia
409	provides insight into lepidosaur evolution in Gondwana. Nature 425, 609-612.
410	Apesteguía S, Rougier GW. 2007 A late Campanian sphenodontid maxilla from
411	northern Patagonia. Am. Mus. Novit. 3581, 1-11.
412	Apesteguía S, Gómez RO, Rougier GW. 2012 A basal sphenodontian (Lepidosauria)
413	from the Jurassic of Patagonia: new insights on the phylogeny and biogeography
414	of Gondwanan rhynchocephalians. Zool. J. Linn. Soc. 166, 342-360.
415	Benton MJ. 1985 Classification and phylogeny of the diapsid reptiles. Zool. J. Linn.
416	<i>Soc.</i> 84: 97–164.
417	Bonaparte JF, Van Valen LM, Kramarz A. 1993 La fauna local de Punta Peligro,
418	Paleoceno Inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol.
419	<i>Monogr.</i> 14, 1–61.
420	Coddington J, Scharff N. 1994 Problems with zero-length branches. <i>Cladistics</i> 10, 415–
421	423.
422	de la Fuente MS, Bona P. 2002 Una nueva especie del género Hydromedusa Wagler
423	(Pleurodira, Chelidae) del Paleógeno de Patagonia. Ameghiniana 39, 77-83.

- Evans SE. 1988 The early history and relationships of the Diapsida. In *The Phylogeny and Classification of the Tetrapods* (ed. M.J. Benton), pp. 221–260. Oxford:
 Clarendon Press.
- 427 Feruglio E. 1949 *Descripción Geológica de la Patagonia*, Vol. 1–3. Buenos Aires:
- 428 Dirección General de Yacimientos Petroliferos Fiscales.
- 429 Fraser NC, Benton MJ. 1989 The Triassic reptiles *Brachyrhinodon* and *Polysphenodon*
- and the relationships of the sphenodontids. *Zool. J. Linn. Soc.* **96**, 413–445.

431 Gauthier JA, Estes R, De Queiroz K. 1988. A phylogenetic analysis of the

- 432 Lepidosauromorpha. In *Phylogenetic Relationships of the Lizard families:*
- 433 *Essays commemorating Charles M. Camp* (eds. R. Estes, G. Pregill), 15–98.
- 434 Stanford: Stanford University Press.
- 435 Gelfo JN, Pascual R. 2001 Peligrotherium tropicalis (Mammalia, Dryolestida) from the
- 436 early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation.
 437 *Geodiversitas* 23, 369–79.
- 438 Gelfo JN, Goin FJ, Woodburne MO, Muizon CD. 2009 Biochronological relationships
- 439 of the earliest South American Paleogene mammalian faunas. *Palaeontology*

440 **52**, 251–269. doi: 10.1111/j.1475-4983.2008.00835.x

- 441 Gelfo JN, Ortiz-Jaureguizar E, Rougier GW. 2007 New remains and species of the
- 442 'condylarth' genus *Escribania* (Mammalia: Didolodontidae) from the
- 443 Palaeocene of Patagonia, Argentina. *Earth Environ. Sci. Trans. R. Soc.*

Edinburgh **98**, 127–138. doi:10.1017/S1755691007006081.

- 445 Goloboff PA, Farris S, Källersjö M, Oxelmann B, Ramírez M, Szumik C. 2003
- 446 Improvements to resampling measures of group support. *Cladistics* **19**, 324–332.
- 447 Goloboff PA, Farris JS, Nixon KC. 2008 TNT, a free program for phylogenetic
- 448 analysis. *Cladistics* **24**, 774–786.

- Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. 2012 *The Geological Time Scale 2012*.
 Amsterdam: Elsevier.
- Hammer O, Harper AT, Ryan PD. 2001 PAST: Paleontological statistics software
 package for education and data analysis. *Palaeontologia electronica* 4, 1–9.
- Iglesias A, Wilf P, Johnson K, Zamuner A, Cúneo NR, Matheos SD. 2007 A Paleocene
 lowland macroflora from Patagonia reveals significantly greater richness than

455 North American analogs. *Geology* **35**, 947–950.

- 456 Legarreta L, Uliana MA. 1994 Asociaciones de fósiles y hiatos en el Supracretácico-
- 457 Neógeno de Patagonia: una perspectiva estratigráfico-secuencial. *Ameghiniana*458 **31**, 257–81.
- Maddison WP, Maddison DR. 2011 Mesquite: a modular system for evolutionary
 analysis. Version 2.75. Available at: http://mesquiteproject.org.
- 461 Marshall LG. 1982 Calibration of the Age of Mammals in South America. In
- 462 *Phylogénie et Paléobiogeógraphie*. (eds. E. Buffetaut, P. Janvier, J.-C. Rage, P.
 463 Tassy). *Geobios, Mémoire Special* 6, 427–437
- Marshall LG, Butler R, Drake R, Curtis G. 1981 Calibration of the Beginning of the age
 of mammals in Patagonia. *Science* 212, 43–45.
- Marshall L, Sempère T, Butler R. 1997 Chronostratigraphy of the Mammal-Bearing
 Paleocene of South America. J. South Am. Earth Sci. 10, 49–70.
- 468 Muizon C. 1998 Mayulestes ferox, a borhyaenoid (Metatheria, mammalia) from the
- 469 early Paleocene of Bolivia. Phylogenetic and paleobiologic implications.
- 470 *Geodiversitas* **20**, 19–142.
- 471 Páez Arango N. 2008. Dental and Craniomandibular Anatomy of *Peligrotherium*
- 472 *tropicalis*: The Evolutionary Radiation of South American Dryolestoid
- 473 Mammals. Unpublished Ms Thesis, University of Louisville, 107 pp.

474	Pascual R. 1996 Late Cretaceous-Recent land-mammals. An approach to South
475	American geobiotic evolution. Mastozool. Neotrop. 3, 133-52.
476	Pascual R. 1998 The history of South American Land Mammals: the seminal
477	Cretaceous-Paleocene transition. Asociación Paleontológica Argentina,
478	Publicación Especial 5 'Paleógeno de América del Sur y de la Península
479	Antártica', 9–18.
480	Pascual R, Ortiz-Jaureguizar E. 1990 Evolving climates and mammal faunas in
481	Cenozoic South America. Journal of Human Evolution 19, 23-60.
482	Pascual R, Ortiz-Jaureguizar E. 1991 El Ciclo Faunístico Cochabambiano (Paleoceno
483	temprano): su incidencia en la historia biogeográfica de los mamíferos
484	neotropicales. In Fósiles y Facies de Bolivia. Revista Técnica de Y.P.F. de
485	Bolivia 12 (3-4) (ed. R. Suárez Soruco), pp. 559-574.
486	Pascual R, Archer M, Ortiz Jaureguizar E, Prado JL, Godthelp H, Hand S. 1992 First
487	discovery of monotremes in South America. Nature 356, 704–706.
488	Rauhut OWM, Heyng AM, López-Arbarello A, Hecker A. 2012 A new
489	rhynchocephalian from the Late Jurassic of Germany with a dentition that is
490	unique amongst tetrapods. PLoS ONE 10, e46839.
491	Reynoso VH. 1996 A Middle Jurassic Sphenodon-like sphenodontian
492	(Diapsida:Lepidosauria) from Huizachal Canyon, Tamaulipas, México. J. Vert.
493	Paleontol. 16, 210–221.
494	Reynoso VH. 1997 A "beaded" sphenodontian (Diapsida: Lepidosauria) from the Early
495	Cretaceous of central Mexico. J. Vert. Paleontol. 17, 52-59.
496	Reynoso VH. 2005 Possible evidence of a venom apparatus in a Middle Jurassic
497	sphenodontian from the huizachal red beds of Tamaulipas, Mexico. J. Vert.
498	Paleontol. 25, 646–654.

499	Reynoso VH, Clark JM. 1998 A dwarf sphenodontian from the Jurassic La Boca
500	Formation of Tamaulipas, México. J. Vert. Paleontol. 18, 333-339.
501	Somoza R, Cladera G, Archangelsky S. 1995 Una nueva tafoflora paleocena de Chubut,
502	Patagonia. Su edad y ambiente de depositación. VI Congreso Argentino de
503	Paleontología y Bioestratigrafía, Actas, Trelew, 265–269.
504	Sues H-D, Shubin NH, Olsen PE. 1994 A new sphenodontian (Lepidosauria:
505	Rhynchocephalia) from the McCoy Brook Formation (Lower Jurassic) of Nova
506	Scotia, Canada. J. Vert. Paleontol. 14, 327-340.
507	Wiens JJ, Brandley MC, Reeder TW. 2006 Why does a trait evolve multiple times
508	within a clade? Repeated evolution of snakeline body form in squamate reptiles.
509	<i>Evolution</i> 60 , 123–141.
510	Wu X-C. 1994 Late Triassic-Early Jurassic sphenodontians (Clevosaurus) from China
511	and the Phylogeny of the Sphenodontida. In In the shadow of the dinosaurs:
512	Early Mesozoic tetrapods (eds. N.C. Fraser, HD. Sues), pp. 38-69. Cambridge:
513	Cambridge University Press.