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Details of the kymograph alignment and DNA
identification procedures
In experiments fluorescent images of extended, netropsin-
YOYO stained, DNA molecules are recorded sequentially, see
Figure S1 (top) for an example of a resulting raw kymograph.
There are two challenges for extracting a barcode from such
raw data which can subsequently be compared to theoretical
predictions: First, the data must be aligned, i.e., center-of-
mass fluctuations and local conformational fluctuations seen
in Figure S1 (top) must be corrected for. The experimental
data can be time-averaged only after this alignment has been
performed. Second, the time-averaged signal contains both a
background region (the molecule does not occupy the full field
of view) and a region containing the DNA molecule. The latter
region must be identified, before comparison to theory can be
made.

Concerning the first step, i.e. aligning experimental data so
that time-averages can be performed, we first apply a moving
average to the experimental data with a window size of 5
pixels. This step is performed only for alignment purposes,
in order to avoid aligning noise to noise. The final time-
averaged barcode is presented without the moving average.
After this step, the experimental data can be aligned using
the local box-stretching approach presented in (1). However,
in order to reduce computational efforts associated with the
global minimization procedure of the method in (1), we start
by performing a rough first alignment before the approach in
(1) is applied. Our rough alignment procedure identifies the
starting and finishing pixel of the region containing the DNA,
at each time-frame, and aligns the end-points. Our method
for identifying the DNA molecule’s two ends proceeds by
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introducing a cumulative sum, S(i) of the experimental signal,
input, as follows:

mean = 〈input〉−(〈input〉

−〈background〉) ·α · 1

1+e
〈input〉/σ−β

γ

S(0) = input(0)−mean
S(i) = S(i−1)

+input(i)−mean (1)

where σ is the standard deviation of the input signal and 〈X〉
denotes average of X . The end points of the DNA molecule
are determined by the global maxima and minima of the
cumulative sum, S(i). To make the cumulative sum steeper, so
that the global minimum and maximum are more pronounced,
the mean is above multiplied with a Fermi-Dirac distribution.
The following values were empirically found to be satisfactory
for our data: γ=0.1, α=0.25 and β=5. Once the start and
end point of the DNA molecules are aligned, i.e. the extrema
of S(i) are determined, we apply the method in (1), see Figure
S1 (middle) for a resulting aligned kymograph, and Figure S1
(bottom) for the associated time-averaged barcode.

The second step, before the time-averaged barcode can
be compared to theoretical predictions, is to “cut out” the
barcode’s background. We do this in a simplistic way, by
simply transforming the signal into a binary signal: if a value
at a certain pixel is below the mean it gets the value zero and if
the value is above the mean it gets the value one. We now start
at the beginning of the binary signal and continues forward
until we reach a pixel with the value one, this pixel represents
the beginning of the DNA region. The same procedure is used
to find the end pixel, but now we start from the end and move
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Figure S1. Kymograph alignment and DNA identification procedures
applied to an experiment on a T4 bacteriophage: (top) experimental data
before alignment, (middle) after alignment, and (bottom) time-averaged
experimental signal. The green and the blue curve together makes up the entire
experimental barcode. The blue curve corresponds to the region containing
the DNA molecule, as identified using our procedure. The experiment is
performed with a salt concentration of 0.05X TBE. Indicated as red dots are
“robust” maxima and minima, which are used for calculating the information
score (IS), see main text.

towards the beginning. This method gives a satisfying result,
as can be seen in Figure S1 (bottom), where the green part of
the barcode is the background and the blue part corresponds
to the DNA region.

As a consistency check of the first step above, i.e., the
alignment procedure, we analyze noise levels around the time-
averaged barcode. To that end, we subtract the time averaged
barcode from the aligned kymograph in Figure S1, resulting
in Figure S2 (top). The noise-level kymograph still has traces
of the actual signal but these traces are of the same order as
the noise. A histogram of the noise, see Figure S2 (bottom),
reveals that the noise is Gaussian with mean zero.

Details of the multi-ligand transfer matrix method
In this section we provide further details on our multi-ligand
transfer matrix method, introduced in the Methods section of
the main text. In particular, we provide explicit expressions
for the transfer matrix elements which allow straightforward
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Figure S2. (Top) Noise levels around the aligned experimental kymograph in
Figure S1. The time averaged signal in Figure S1 (bottom) is subtracted from
the aligned kymograph in Figure S1 (middle). (Bottom) Histogram over the
noise from the top plot. The green curve is a Gaussian distribution fitted to the
histogram.

automated computation for arbitrary number of ligands of
arbitrary size. We also provide illustrations of our choice of
state enumeration scheme. A cartoon of the problem is found
in figure S3 where the the different statistical weights needed
for the transfer matrix approach are also given (see also main
text).

The explicit form of the transfer matrices, T i (see main
text), in terms of the physical parameters relies on an particular
enumeration scheme of the possible states for a given base-
pair i. We choose to use m (m=1,...,M ) as a label for the
different states and employ the enumeration scheme in Figure
S4, see also main text. There are, in total, M=

∑S
α=1λα+1

number of states for each base-pair.
Let us now provide explicit forms for the transfer matrix

elements which allows automated computation, see Figure 3 in
the main text for illustrations. With the choice of enumeration
scheme in Figure S4 in mind and using the statistical weights
illustrated in Figure 2 in the main text we have:

• A. Sites i and i+1 are both empty:

T (i; 1,1)=1. (2)

Using the enumeration scheme in Figure S4, this case
corresponds to sites i and i+1 both being in state 1,
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Figure S3. Cartoon of a model for competitive binding (CB) to DNA. S
types of ligand species compete for binding to a one-dimensional lattice
(DNA molecule), with N binding sites. When bound, a ligand of type s
(s=1,2,...,S) covers λs sites and the ligands cannot bind to the same sites.
The binding of ligand species, s, is characterized by its binding constants,
Ks(i), to different sites i (i=1,...,N ). Inter- (and intra-) ligand interactions
between species s and s′ appear through the cooperativity parameters, σs,s′ .
We use S=3 in this cartoon, in Figure S4 and in the figures in the main
text, for illustrative purposes, but the theoretical transfer matrix framework
introduced in the main text (Methods) and here applies to an arbitrary number
of ligand types.

• B. Site i is empty and a ligand of type s has its first
monomer at site i+1:

Ti(i;1,1+

s∑
α=1

λα)=1, ∀s, (3)

For instance, for s=1 (i.e., “gray” ligands in Figure
S4), the case above corresponds to site i being empty
and and site i+1 is in state λ1+1, see Figure S4.

• C. Ligand of type s has its last monomer at site i and
site i+1 is empty:

Ti(i; 2+

s−1∑
α=1

λα,1)=1, ∀s, (4)

where, for s=1, it is to be remembered that the sum
in the first argument is zero (since

∑0
α=1=0). For

instance, for s=1 (i.e. “gray” ligands in Figure S4), the
case above corresponds to site i being in state 2 and site
i+1 is in state 1, see Figure S4.

• D. Ligand of type s covers both site i and site i+1 (first
monomer is not at site i):

T (i; m+1,m)=1 (5)

λ1 +1.

λ1 λ2+ λ3+ +1.
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Figure S4. Enumeration of all possible states, labeled by m, of a base-pair i.
In total, there are M=

∑S
α=1λα+1 different states, where S is the number

of ligand species. For illustrative purposes, we here display three types
of ligands. However, the formalism introduced here applies to an arbitrary
number of ligand species.

for all integers m∈{2+
∑s−1
α=1λα,...,−1+

∑s
α=1λα}

∀s.

• E. Ligand of type s at site i neighbors a ligand of type
s’ at site i+1:

T (i; 2+

s−1∑
α=1

λα,1+

s′∑
α=1

λα)=σs,s′ , ∀s,s′. (6)

For instance, if there is a “gray” ligand (type 1) at
site i and a “yellow” ligand (type 2) at site i+1, then
following the enumeration in Figure S4, site i is in state
2, whereas site i+1 is in state λ1+λ2+1.

• F. Ligand of type s has its first monomer at site i

T (i; 1+

s∑
α=1

λα,

s∑
α=1

λα)=csKs(i), ∀s. (7)
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An example of such a scenario is that a “gray” ligand
binds with its first monomer to site i. Using the
enumeration in Figure S4, this case corresponds to site
i being in state λ1+1 and site i+1 in state λ1.

Matrix elements are calculated for all s,s′=1,...,S above,
and all remaining elements are equal to zero. The explicit
transfer matrix elements given in equations (2)-(7) generalize
the transfer matrices given in reference (2) (where S=2 was
considered) to the case of site-specific competitive binding of
S (≥2) species.

Details on the p-value approach
In our probabilistic approach for gauging the quality of match
between experiments and theory, we follow the philosophy
of (3), wherein a “null model”, corresponding to randomized
theoretical barcodes, is introduced as a reference. Our
approach, as detailed below, adapts the approach in (3) to
include finite experimental barcodes and correlated random
numbers – note that the C(istart)-values in equation (11) in
the main texttypically are correlated (see main text). As noted
in the main text, our approach uses a p-value defined as:

p−value=
∫ ∞
Ĉ

φ(Ĉ ′)dĈ ′ (8)

where φ(Ĉ) is the distribution for the best fit of the experiment
on a set of random barcodes, constrained to be of the same
length and of the same base-pair composition as the original
sequence, see Figure S5.

In order to obtain φ(Ĉ), and, hence, the p-value in Eq. (8),
we use results from extreme value statistics (4) and proceed
as follows: n random barcodes are created; we calculate and
store all C-values (not just the best value), by comparing to
the experimental barcode, see equation (11) in the main text.
We then create a histogram of the C’s and extract the sample
mean µ and the standard deviation σ. We subsequently assume
the distribution of C’s to be Gaussian:

prandom(C)=
1√
2πσ2

·exp[− (C−µ)2

2σ2
]. (9)

As demonstrated in Figure S6, this assumption is satisfactory
for our type of data (blue bars and black solid curve).
To find the distribution for the “best” C, we use the
fact that the probability density for the largest of I
independent, identically distributed, random numbers is

φ(Ĉ)=Ip(Ĉ)[
∫ Ĉ
−∞p(C)dC]

I−1.(5) Also using equation (9)
we find:

φ(Ĉ)=rI ·prandom(Ĉ)[
1

2
(1+erf(

Ĉ−µ√
2σ2

))]rI−1, (10)

where erf(x) is the error-function. Eq. (10) is displayed in
Figures S5 and S6. In order to extend the standard result
above to correlated data we simply replaced I by Ieff =rI
above, with r being an effective inverse correlation length.
The result above with r=1 is exact for independent (and
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Figure S5. Illustration of the probability density, φ(Ĉ), for the largest value,
Ĉ, of N Gaussian random numbers, see equation (10). The green area
corresponds to the p-value as defined in equation (8) and given explicitly,
for Gaussian random numbers, in equation (11). We used parameters: µ=0,
σ2 =1 and rI=10.

hence uncorrelated) random numbers. Interestingly, we find
empirically that the functional form given in equation (10)
fits nicely also to our correlated data provided we choose
r 6=1, see Figure S6 (green bars and red solid curve). Thus, in
practice, r is obtained by fitting to equation (10). To obtain an
intuitive picture as to why we can simply use the functional
form above also for correlated data, let us imagine a set
of random numbers, I , where every consecutive set of five
numbers are perfectly correlated; different sets are, however,
independent. For this case, we can turn the I random numbers
into a set of independent random numbers by keeping only
I/5 independent numbers, and, thus, equation (10) applies
with r=1/5. The value of r is found empirically to be rather
insensitive to the choice of the length I . This insight might,
in the future, allow us to extract r from a small set of random
barcodes by fitting to equation (10). Such numerical speed up
for p-value calculations will be of importance when handling
large data sets and ultralong DNA molecules.

Finally, we note that the p-value, equation (8),
can be explicitly evaluated, using the fact that

φ(Ĉ)=(d/dĈ)[
∫ Ĉ
−∞p(Ĉ

′)dĈ ′]rI . Therefore, in our case, we
have

p−value=1−[ 1
2
(1+erf(

Ĉ−µ√
2σ2

))]rI (11)

where we used equation (10) and the fact that erf(∞)=1 and
that erf(−x)=−erf(x). Equation (11) provides an explicit
expression for the p-value, for gauging the quality of match of
an experimental barcode to a theoretical barcode of “length”
I (more precisely, I , the number of attempts at placing the
experiment on top of the theoretical barcode). The quantities
r, µ and σ are estimated, using the method described above,
again, see Figure S6 for an example of our procedure at work.

Finally, let us discuss some future challenges for the
probabilistic approach for quantifying theory-experimental
agreement introduced here. Firstly, note that our p-value
is based on using random barcodes as reference. Future
database tools may be sophisticated. For instance, rather than
random DNA barcodes as reference, it could be advantageous
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Figure S6. Determining the three fitting parameters (µ, σ and r) in the
probability density for the best cross-correlation value for randomized
barcodes, see equation 10. The blue histogram contains all the cross-
correlation values when comparing the experiment with a theoretical
barcode using a randomized DNA sequence, where I=14562 attempts were
used. From this histogram a mean µ and a variance σ are extracted by
fitting (black curve). We obtained µ=2.9·10−4 and σ=0.16. The green
histogram contains only the maximum cross-correlation values, Ĉ, from these
comparisons. The red curve is equation 10, where fitting was used to extract
the inverse correlation length r. Here, r=0.12 was obtained.

to use the full set of known sequences in the database
as a reference, and also include expected experimental
molecule-to-molecule fluctuations. Secondly, we note that
in some types of applications, one may be interested in
studying the uniqueness of best placement of the experimental
barcode on the theoretical counter part: are there several,
well-separated (uncorrelated), positions along the theoretical
barcode that provide an almost as good match as the best
match? Addressing such an issue, along the probabilistic lines
introduced here, would require not only the p-value for the
best match but also a p-value for the second best match et c.

Supplementary Experimental Results
In the main text we discuss the relationship between a visually
appealing fit (large Ĉ) and a reliable experiment-theory match
(low p-value). Figure S7 compares Ĉ and p-value for the 36
fragments studied. We see that there is no direct correlation
between the two. This result is due to the fact that there
are some, in general shorter, fragments that yield a visually
“good” fit but where the probability of an equally good fit to a
random sequence is as likely.

In the main text we introduce an Information Score (IS)
that reflects how many distinct features, peaks and valleys,
there are in each barcode. Figure S8 shows that IS is linearly
related to the length of a fragment. This is expected since a
longer fragment will on average have more distinct features
than a short fragment and the increase should on average scale
linearly with length.

In the main text we use p-values to separate the correct
strain CCUG 10979 from eight other strains. In Figure S9
we compare p-value for CCUG 10979 and each of the other
strains for individual fragments. We see that for fragments
with IS above 100 a vast majority of the fragments have a
lower p for the correct strain.
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Figure S7. Cross-correlation (Ĉ-value) and p-values for all 36 experimental
DNA fragments fitted onto the genome of CCUG 10979. We see no direct
correlation between a low Ĉ-value and a low p-value. As discussed in the
main text this can mainly be explained by the difference in the information
content of the different barcodes.
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Figure S8. Fragment length as a function of Information Score (IS) for all
36 experimental DNA fragments (see main text). We observe a clear, almost
linear, relation between the two. This is expected since a longer fragment on
average will contain more values and peaks, which leads to a higher IS.
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Figure S9. Individual graphs for comparing each reference strain to CCUG 10979. p-value for all 36 fragments (squares) fitted to CCUG 10979 (x-axis) and
each of the reference strains (y-axis). The 12 fragments with an information score (IS) above 100 are shown as full symbols. The dashed line corresponds to equal
values for both strains.


