Supplementary Figure Legends

SUPPLEMENTARY FIGURE 1

CTCF and RAD21 occupancy across CFTR in airway cell lines. A, B. ChIP for CTCF (A) or RAD21 (B) was performed in each cell type indicated. Data are presented as fold enrichment over IgG. $n \ge 2$ for each cell line and representative data are shown.

SUPPLEMENTARY FIGURE 2

Altered expression of other genes after CTCF or RAD21 loss. Changes in gene expression of *SLC35C2, MUC2, MUC6* measured by RT-qPCR after treatment with NC siRNA (grey) and either RAD21 or CTCF targeting siRNAs (black). *, p<0.05; **, p<0.01; ***, p<0.001 as determined by an unpaired, two-tailed Student's t-test.

SUPPLEMENTARY FIGURE 3

Role of architectural proteins in airway cell lines. A. q3C interactions in Calu-3 and 16HBE14o- cell lines. Details as described in Fig. 2 legend. B. q3C interactions in 16HBE14o- treated with a NC siRNA (grey) or with a CTCF targeting siRNA (black). Arrows mark sites of interest. A graph below expands interactions at the airway-selective DHS-35 and -44 kb sites that show altered interactions with the promoter after CTCF depletion. Data shown have an n=3, ^ marks statistically significant change. Experimental details as in Fig. 2 legend. C, E. Western blots show siRNA mediated depletion of CTCF (C) or RAD21 (E) in 16HBE14o- cells with β -tubulin as the loading control. D, F. RT-qPCR for *CFTR* expression after knockdown of CTCF (D) or RAD21 (F) (black) compared to NC siRNA treated cells (grey). * p<0.05 as determined by an unpaired, two-tailed Student's t-test.

SUPPLEMENTARY FIGURE 1

Α.

Supplementary Table 1

<u>RT-qPCR Primers</u>	<u>Sequences</u>
18s rRNA F	CGGCTACCACATCCAAGGAA
18s rRNA R	GCTGGAATTACCGCGGCT
18s rRNA probe	FAM-TGCTGGCACCAGACTTGCCCTC-TAMRA
CFTR exon 5/6a F	AGCTGTCAAGCCGTGTTCTAGATA
CFTR exon 5/6a R	ATGAGGAGTGCCACTTGCAAA!
CFTR exon 5/6a probe	FAM-CACACGAAATGTGCCAATGCAAGTCCTT-TAMRA
<u>ChIP-qPCR Primer</u>	
<u>Sets</u>	
-80.1 KD F	
-80.1 KD K	
-20.9 KD F	
-20.9 KD K	
Promoter F	
Promoter R	
Intron 1 CTCF F	GCAGTTAATCCTGGAACTCCGGTGC
Intron 1 CTCF R	AAGTCCTTCTCTCATCCACAGGG
Intron 1 DHS F	TCATTGTCAACTGTCAGGTAGCAA
Intron 1 DHS R	CAGAGTTAGGATTCCAGCCAGG
Intron 2 CTCF F	TGGTGGCATTTGCCTTATGCTGGT
Intron 2 CTCF R	AGGGCTCCTTCTTCGTGGTCCT
Intron 8 F (NC) ¹	GCTTCCTCCTGATCAATCTTTAGG
Intron 8 R (NC) ¹	AAAAATTCCTTGCCTCACTATTGC
Intron 10a,b DHS F	TGCTTTATTGAATGGCATTACCTCTA
Intron 10a,b DHS R	AGATGCTTGTGGTAAGGGAGGAG
Intron 10c DHS F	GGAGAGTACTGTCTTATCAGCCATCT
Intron 10c DHS R	CTGGTCTTTTCAACACTTTGAGTCA
Intron 11 DHS F	TCCAAAAGCTGAGACAGGAAACT
Intron 11 DHS R	ATTACATACACAAAAGTACACACATGACT
Intron 14a F	TGAGCCAGAAGTGGCAACCT
Intron 14a R	GCTGCAGACCTTCCCAGTGA
+6.8 kb DHS F	TCTTCTTTCCCATTCACCTTTGTC
+6.8 kb DHS R	TTTTGGTTTCATTTATCAGCACATC
+15.6 kb DHS F	ATCCATTTTCTTCAAGTCTCTCCAT
+15.6 kb DHS R	GGAATGAGGATTGTTTATGATTTGG
+48.9 kb F	GGCATCAGCCAGTCAAGGTT
+48.9 kb R	AGCAGAGGGCAAAGTGGTACTT
+83.7 kb F	CCGGGTCGAACATGCAAAGC
+83.7 kb R	AGCCCTCTGCTGGAAGCGTG
q3C Primer Sets	
Ercc3 F	CCCTGAGGTGAGTTTGTGGAAT
Ercc3 R	AGGATCTCTGTTTAATGGAAAAGCTT
Ercc3 Probe	FAM-CAGAGTCGGATCACGCCTTCATCCTT-TAMRA
Promoter Probe	FAM-CTCCGACACGCAAAGGAAGCGCT-TAMRA
Promoter R	GCAGTGTGGGTCTGATGCAT
-20 9kh Prohe	FAM-CTTGTATTCATTAGGTGACCTGA-NFO MGB
-20.9 kb R	
20.7 KD K	

-80.1 kb	GAGACTAACAAAAGGTTCTGTATCA
-41.7 kb	TGGACCTGGGTACATCTGTC
-36.8 kb	TGTTATGTGCTGGTCGAAGA
-20.9 kb	CCAAATACTGGACAAAAATGAACTTC
-3 kb	TGCCTGGCACAGAGATGGA
Promoter	GCAGTGTGGGTCTGATGCAT
S2	CATTGTGTCAGCAAAGAGCTTAGG
S3	GGTTTAAATATGTGCAAGGAGGATGTC
Int3	TTTTCCCTAGCCTGTCAATTGC
Int8	GCTTCCTCCTGATCAATCTTTAGG
Int10a,b	ACCCTATATCATTGCCCTTTGTATG
Int10c	AAGCATTTTCTCCTTTTCCTCAAC
Int11	TGACTCTGATGTCAAATGTTTCTCAA
Int14a	TGAGCCAGAAGTGGCAACCT
Int18	GCTTGCTGACCCTTCTTCAG
Int19	GGGAGGAGGTGCATTGAAGTTA
Int20(2)	GCGGTTCATAAAGGGTCATA
Int21	TGTTGACTTTTCTCTAATGAAGATG
Ex24	GTGTTGGAGAAGAACTGAAATCATACTT
3'Ins	CTGTGGTTTGAATGTGTTCCCTAA
3'+20kb	CTGCTACAAGCCCACTATACAATATTG
+48.9 kb	AGTGCCGCTAGGTGATCAGATAA
+83.7 kb	GCTGGAAGCGTGGAGTA

 $^{\rm 1}$ NC – Negative control ChIP site

Supplementary Table 2

g3C Statistics RAD21 Knockdown (Fig. 2C,D)		
-80.1 kb (I)	p=0.0195	
-20.9 kb (II)	p=0.0206	
DHS 10c	p=0.0059	
DHS 11	p=0.0137	
3'Insulator (+6.8 kb and +15.6 kb, III)	p=0.0208	
+48.9 kb (IV)	p=0.0207	
q3C Statistics CTCF Knockdown -20.9 kb Bait (Fig. 2B)		
+48.9 kb (IV)	p=0.0495	
q3C Statistics FOXA1/A2 Knockdown (Fig. 2F)		
-36.8 kb	p=0.0448	
DHS 10a,b	p=0.0089	
DHS 11	p=0.002	
<u>q3C Statistics CTCF/RAD21 Knockdown Prom Bait (Fig. 3A)</u>		
-80.1 kb	p=0.0082	
-20.9 kb	p=0.0125	
DHS 10a,b	p=0.0370	
DHS 10c	p=0.0388	
Int14a	p=0.0408	
Int19	p=0.0448	
+48.9 kb (IV)	p=0.0315	
+83.7 kb (V)	p=0.0151	
<u>q3C Statistics CTCF/RAD21 Knockdown -20.9 kb Bait (Fig. 3B)</u>	<u>p-values</u>	
Int14a	p=0.0224	
Int19	p=0.0191	
+48.9 kb (IV)	p=0.0417	
<u>q3C Statistics CTCF Knockdown 16HBE14o- (Fig. S4B)</u>		
-35 kb	p=0.0132	

H3K27ac Statistics (Fig. 5C)	<u>p-values</u>
-80.1 kb (I)	0.0381
-2 kb promoter	0.025
DHS 1	0.004
DHS 10a,b	0.0058
DHS 11	0.0451