

Supplementary Figure Legends

Supplementary Figure 1. Characterization of the new 1-339 Pot1-DBD construct. A) The domain map of Pot1 shows the location of the new construct relative to previous studied constructs (1-3). B) The ¹⁵N -HSQC spectrum of 1-339 closely resembles that of 1-389, suggesting the same global fold. Weak peaks are due to chitin-binding domain contamination. C) Representative EMSA and fitted curves from EMSA data illustrate the similarity in DNA-binding activity between constructs.

Supplementary Figure 2. The offset refractive index and light scattering traces of Pot1-DBD+12mer indicate mixture of species not seen in the Pot1-DBD+15mer complex. Conditions are the same as Figure 3B (34 μ M Pot1-DBD, 20 mM Tris-HCl pH 8.0, 400 mM NaCl).

Supplementary Tables

Supplementary Table 1. Shifted residues from Figure 1C

Supplementary Table 1. Shifted residues from Figure 10.							
Shifted >0.5	Split Peaks	Unassigned in Unassigned in		Unassigned in			
ppm		Pot1-DBD only	pN and DBD	pC and DBD			
Val6	Ile207	Thr41 Ser8		Ser200			
Ile7	Asp269	Gly47	Gly23	Phe201			
Phe52	Thr292	Ile48	Glu24	Arg212			
Arg118	Lys293	Cys76	Phe27	Asp226			
Gln120	Glu301	Leu105	Leu36	Lys227			
Ser202		Ile110 Gln37		Asp235			
Leu203		Val290	Lys38	Tyr248			
His212		Arg291	Lys39	Thr249			
Glu270			Asn40	Ser250			
His271			Val49	Ser251			
Ile294			Lys50	Ser252			
Leu304			Ser55	Arg255			
Ser315			Glu64	Gly256			
			Trp65	Asn277			
			Tyr70	His296			
			Trp72	His305			
			Asp73	Gly306			
			Asp77	Asp307			
			Thr78	Ser308			
			Ser79	Ala309			
			Ser80	Lys310			
			Ile81	Arg311			
			Gly82	Tyr312			
			Leu83	Asn313			
			Gln84	Met314			
			Lys90				
			Asn93				
			Gly102				

Shifted >0.5	Split Peaks	Unassigned in	Unassigned in	Unassigned in
ppm		Pot1-DBD only	pN and DBD	pC and DBD
			Gln103	
			His108	
			Gln109	
			Arg116	
			Asp117	
			Gln126	
			Phe127	
			Asp134	
			Phe135	
			Ser136	
			Asn138	
			Ser139	
			Lys140	
			Asp141	
			Thr142	
			Leu143	
			Cys144	
			Gln146	
			Met148	
			Lys153	
			Asp156	
			Lys157	
			Lys167	
			Ile168	
			Trp169	
			Asp170	
			Glu171	
			Gln172	
			Thr173	
			Asn174	

Supplementary Table 2. Binding affinities for Pot1-DBD constructs tested

Protein	15mer K _D	Fold	12mer K _D	Fold
Construct	(pM) ^a	change ^b	(pM)a	changec
Pot1-DBD_WT	4 ± 1	-	5 ± 1	-
Pot1-DBD_Y224A	3.2 ± 0.7	0.88	5.9 ± 0.5	1.3
Pot1-DBD_linkerdel	1.3 ± 0.5	0.37	3.2 ± 0.7	0.70

 $^{^{\}rm a}$ Apparent K_D values are averaged from triplicate EMSA experiments. Representative data are shown in Figures 2 and 5.

^b Fold change is relative to the Pot1-DBD_WT+15mer affinity

^c Fold change is relative to the Pot1-DBD_WT+12mer affinity

Supplementary References

- 1. Lei, M., Podell, E.R., Baumann, P. and Cech, T.R. (2003) DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. *Nature*, **426**, 198–203.
- 2. Dickey, T.H., McKercher, M.A. and Wuttke, D.S. (2013) Nonspecific Recognition Is Achieved in Pot1pC through the Use of Multiple Binding Modes. *Structure*, **21**, 121–132.
- 3. Croy, J.E., Podell, E.R. and Wuttke, D.S. (2006) A new model for Schizosaccharomyces pombe telomere recognition: the telomeric single-stranded DNA-binding activity of Pot11-389. *J. Mol. Biol.*, **361**, 80–93.