

Figure S1:

<u>Model I:</u> Rho is recruited to the EC by binding to the nascent RNA via the *rut* site, translocates along the RNA, and eventually catches up the EC and dislodges it. This model predicts that RNAP-elongation and Rho-translocation have to be kinetically coupled¹.

<u>Model II:</u> Rho forms complex with EC prior to loading onto the RNA following which Rho gets activated to drag the mRNA through itself, and termination occurs by allosteric modification of the EC. Kinetic coupling as well as translocase activity of Rho may not be required in this model. Also *rut* site mediated recruitment of Rho is not necessary^{13,14}.

Figure S2: A) Locations of different point mutations in Rho. Mutations in primary and secondary RNA binding regions are indicated. Top view shows the primary RNA binding site, while the bottom view shows the RNA exit channel and secondary RNA binding sites. B) and C) Functional defects of PBS and SBS mutants explained through cartoons. D) Experimentally determined binding constants of WT and PBS Rho mutants for DNA and RNA molecules those are indicated in the parenthesis.

Early region of rac prophage containing the racR/t_{rac} terminator sequences cloned before a

10	ncZ reporter				→ RS83			
	CCATAAACTG	CCAGGAATTG	GGGATCG GAA	TTCGCTTCAC	TGACATATTC	TGCGAACAAC	ATGCCGAACG	Նո
	TCGTAAATAT	GACCAGTCAA	TATCAGGACGA/	AG TTCTTCGCA	<mark>C AGAACCTCA</mark>	<mark>C CTCTTGTTGC</mark>	ACGTTCAATT	∫P _{RM}
	GCTGGACATC	TCTCGGCAGG	CAA <u>TTGACG</u> T	ACCCCTTTGA	TCCATTGATT	<u>TACGCTT</u> GGA	G<u>G</u>TGATACAC	
	CTAAAAGCCT	AGCCATTGCT	GATTGCCCAC	CGACAACAGC	ACAAGCTTGC	TTGAATGAAT	AGTTCTCTTT	Untranslated
	TTTCATCGAA	TGAACTCCAA	AAACACACAG	AAATATTAGG	CGACGCCTAA	CGCAATTGTC	AATAGGCTGT	region
	GCCTAATGCA	GTAAGGGTAG	GGATTGCCTA	ATGTAATGCG	CATAGGAGA	A TATTAAGCA	ATGCTTAGTG	
Î	GTAAAGACTT	AGGCCGAGCG	ATAGAGCAGG	CCATTAACAA	A AAAATCGCA	TCGGGATCCG	TCAAATCAAA	
	GGCGGAGGTC	GCACGCCACT	TTAAAGTCCA	ACCACCATCA	ATTTATGACT	GGATTAAGAA	AGGCTCTATA	_
8	AGTAAAGATA	AACTTCCAGA	ATTATGGCGT	TTCTTTTCTG	ATGTTGTTGG	TCCAGAGCAT	TGGGGGCTTA	racR
ġ	ACGAATACCC	CATACCAACC	CCCACCAATT	CAGATACAAA	AAGTGAACTT	TTAGATATAA	ACAACCTTTA	
<u>ح</u> ا	TCAAGCAGC	TCTGATGAAA	TAAGAGCGAT	TGTAGCTTTC	CTGTTATCTG	GAAATGCTAC	AGAACCAGAT	
•	TGGGTTGA <mark>CC</mark>	ACGATGTTCG	CGCCTACATA	GCAGCGATGG	AAATGAAAGT	GGGTAAGTAT	CTGAAAGCTC	
	TTGAATCTGA	ACGGAAAAGC (CAGAACATCA CA	AAAACTGG AA	CTTAA			
	ACTTATATGG	TCTGACGGAA	AACTCCTGGA	TTCCGTTATT	TAACCCCCCC	ATCACTTTCT	GCTGTCGCCA	
	TCACCTATTA	GGTTACGCTC	AAAACATTAG	GCATAGCCTA	TTGACAATCA	ATTAGGCATT	ACCTATAGTT	Intragenic
	CCAGCATACC	ACCCACCCCG	CCCCACAGAA	CGCCGGGCAA	TACTTCGAGT	TACCAGGCAG	TGGTAAGGGG	region
	TTAAGTAGCC	AGCCCGAGGC	<u>GTATGAACAT</u>	GACGGCGGGA	TTCAAATTTT	GCAGTGCAGC	AGTTAGTTCC	
	GCCACCCGGC	GTTAAGGGGA <i>G</i>	AGATAAG GGAT	CC				
	TAACTAACTAG	GCGATCCCGACT	CACTATAGAGG	GACAAACTCAAG	GGTCATTCGCA	AGAGTGGCCTTT	ATGATTGACC	lac7
	TTCTTCCGGTT	AATACGACCGG	GATCGAGATCCI	AGGTAGGTAG	GGGCGCGGCAT	TTTAACTTTCTT	TATCACACAG	LUCZ
	GA AACAGCTA	TG ACCATGATT	A CGGATTCACT	GGCCGTCGTTT	ACAAC <mark>GTCGTC</mark>	<u>ACTGGGAAAA</u>	 Бс. ри1	
						· · ·	N3-NK1	

In vitro termination

RO products

Template 1 made from oligo pair RS83/RK-1 Template 2 made from oligo pair RS83/RS845. _____: Termination regions

Figure S3: Sequence of the P_{RM} - t_{rac} -racR region of rac prophage fused upstream of a *lacZ* cassette. Different regions are indicated. Primers used for making the DNA templates are also indicated. In the *in vitro* transcription assays the transcription start site G, shown as a small arrow, is utilized by the RNAP. Promoter is shown in yellow, *racR* in blue highlights. Termination zone as indicated was obtained from *in vitro* and *in vivo* termination assays (see adjacent autoradiogram and figure S8).

P1 TRANSDUCTION PLATES

Figure S4A: *MG1655 rac*⁺ strains were at first transformed with pCL1920 plasmids expressing WT and different derivatives of *rho* mutants as indicated on the top of the pictures. Resultant strains were P1 transduced with a *rho:kan^R* cassette to delete chromosomal *rho*. The pictures showed the number and nature of the transductants obtained in the presence of WT and different rho derivatives as indicated. In cases of WT and the two PBS mutants, Y80C and F62S, transduction efficiency was high and the transductants were healthy-looking. In case of N340S, transductants were small, whereas these were deformed when G324D was present. The transduction efficiency was also poor for these two SBS mutants. There were no transductants in the presence of empty vector. In figure 1B, these transductants were re-streaked on LB plates and incubated overnight at 37°C.

Figure 4B: RS963 and RS555 primers were designed such a way that they will produce ~2kB PCR-

product only if an intact *rho* is present in the chromosome, and thereby will detect the occurrence of the duplication of *rho*. This primer pair will not produce any PCR product neither from *kan^R*:*rho* nor from the pCL1920 plasmids expressing WT or mutant *rhos*, because in each case either N-terminal of rho or *rhlB* is absent. WT MG1655 strain is used as the "+" control, whereas strains transformed with empty vector were used as a "-" control. Absence of the 2kB PCR product indicates absence of rho-duplication. Two transductants (1, 2) for each of the *rho* mutants were tested.

Figure S5. Microarray profiles of genome wide expression patterns of MG1655 treated with A) BCM and B) due to expression of Psu. Psu is expressed from a plasmid and has a drastic effect compared to SBS mutants or BCM. C) Venn diagram showing the overlaps between up-regulated genes of Rho mutants and those obtained after BCM treatment. This is generated using VENNY online tools from http://bioinfogp.cnb.csic.es/tools/venny/index.html. D)Expression profiles of the rac prophage genes in the presence of these two Rho-inhibitors. Expression of *kilR* is up-regulated when Rho is inhibited by Psu and BCM.

0.000	FBS muta			0	F = 1-1 - 1 ·	
<u>Genes</u>	Fold change in gene expression level		evel	<u>Genes</u> <u>I</u>	<u>⊢old change in g</u>	ene expression level
	<u>(Grouped v</u>	<u>alues)</u>			PBS mutants	SBS mutants
•	P <u>BS mutants</u>	SBS mutants		yjtJ	0.5340	3.5846
aaeA	0.8560	3.7106		yjfK	0.4294	3.7685
aaeB	1.9583	3.7579		yjfM	-0.1782	3.0266
aaeX	0.6806	4.5353		yjgZ	2.8882	3.3361
allB	0.2170	3.0600		ујјВ	0.6138	3.3658
aqpZ	-0.1951	3.8572		yjjP	0.4738	3.9590
aslB	1.2368	3.5999		ykgB	0.4550	3.4725
bcsA	0.2331	3.3926		ylcH	0.6785	3.9251
cadA	2.2939	5.4593		ypdF	1.6239	3.3379
cadB	1.2461	3.1624				
caiC	0.3784	3.1889				
caiD	0.2293	3.4299				
cbrA	1.3545	3.2240				
cbrB	0.8678	3.1717	Nor		no these offers	
ecpD	1.0164	3.3764	NON	-CODING regio	ons those affect	ed less by PBS mutants
etp	2 7829	5 0305		<u>(gene expr</u>	ression in anti-s	sense direction)
eutD	1 8017	3 3614		Co-ordinates	Fold change in o	nene expression level
eutG	0.5982	3 3481			(Grouped va	lues)
flu	1 8894	3 4883			PBS mutants	SBS mutants
frvC	1 000/	3 0/05		357915-358022	1 2001	3 4466
afcC	2 0520	6 0420		499198-4002/2	1 6630	4 1688
yice mdt^	2.9029	0.0432		507176_507000	-0 6072	3 632/
mutA	0.0001	3.2401		527170-527005	-0.0973	4.2527
mutL	2.0040	3.5415		52/004-520354	-0.1204	4.3537
phoH	1.8294	3.3983		528721-528816	-0.8110	3.2165
pitB	7.6934e-3	3.0954		216//1/-2169/	51 2.2526	4.9453
rhsB	1.2866	3.1663		2663267-26634	56 2.1295	4.1394
sfmH	-0.3877	3.1238		2807516-28076	38 2.0076	4.2569
sgcX	3.6982	3.5332		2995714-29968	50 2.9151	5.3990
thiC	1.5139	4.8160		3621910-36222	.50 0.7082	3.1326
thiE	1.6363	4.2424		3766662-37669	13 0.5788	3.8835
thiF	1.6704	4.0786		3766915-37672	.79 0.0850	3.6723
thiG	0.8281	3.8829		3767971-37681	69 0.4993	3.5761
thiH	0.8979	3.5300		3826689-38269	67 0.0577	3.0610
thiS	0.9938	3.9311		3951437-39515	00 0.4482	3.2183
uhpT	2.3552	4.4967		3955844-39559	92 1.2378	3.6199
vagK	1.8767	4.1309		4028995-40291	83 2.0502	3.6462
vadl	1 1385	4 7311 CE	P4-6	4425446-44257	16 1.5729	3.6507
yag ⊥ VadM	1 4124	3 2965		4425717-44261	18 0 4648	3 2787
vbcK	0 1373	4 4540		4506699-45069	65 1 3087	3 9089
vbcl	-0.0450	3 7604	D12	1506066-45078	26 1.5007	3 51/8
vboN	-0.0430	3.7034 D		4571042 45749	79 1 2672	2 0425
yben	0.0400	3.7032		407 1942-407 40	00 0 5095	2 9064
yuer vefD	0.0190	3.149/		4602226 46022	20 0.0800	5.0304
YDID VHD	0.5121	3.2270		4002220-40023	32 2.0404	J.441Z
ydi U I O	1.1082	4.3139				
ybtQ	0.9176	5.2946				
yciW	3.6497	3.1442				
ydcC	0.8906	4.4863	Figure S6	. List of gene	es and non-co	ding regions less affect
ydeO	0.3647	3.1981		nte compare	d to that abta	inod for SPS mutants
ydeP	1.8224	3.2871	r DS Mula			
ydeQ	2.1027	4.8034	Genes be	elong to the p	rophages (CP	4-6, DLP12, Qin, CP-44
ydeS	1.1530	3.8827	indicate	d in colors Sir	milar to rac n	onhage these propha
ydfU	1.0241	3.2317 Qin	maicated			
vdhS	2.6417	7.0625	genes are	e also not mu	ch affected by	y PBS mutants. Numbe
vdiO	0.1592	3.1277	fold chan	iges in gene e	xpression w.r.	.t. WT.
veeR	2.7713	3.8542		0		
veeS	2,7728	3.2037 CF	P-44			
veell	1 1379	4 0239				
VeaR	-0 0215	6 0768				
vfhN	-0.0213 1 N878	4 2225				
vfbP	1.00/0	4.2020				
yiiir wai7	2.0090	4.3419				
ygı∠	1.0328	3.6525				
yhcA	0.6425	3.3130				
yhhH	1.6212	3.1063				
yhhl	1.8361	4.3626				
yhiD	-0.2105	3.0049				
yhjH	1.9629	3.5160				
yibV	0.7608	5.0041				

Figure S7. Genes and non-coding regions those are severely affected by PBS mutants.

ybcK region

A)

(GTTGATTTGT	GCCGGTGTGT	TGATTATTAA	TTTATTGTCA	CGAAGCACAC	CACATTAAAA	TAATTTGTTT	CTAAACGACT		
Ż	AAAATATGGA	GGCTCTTATA	TTTATATGAG	CCTCGTTTTA	TGCTTTTTGT	TAATGTCTTT	ATTTTTTATG	TATTCTTTTG	σ	70
5	t <mark>G</mark> ctttcaag	ATTATGGCGT	AAGAAAATTG	CAATACGATT	ATTGTTGTAT	ATTCAAGATA	Å TGTGACCTT	AATTGTCTTT	a [romoter
5	ТТАААТАААА	ААТАААСААА	AATTATATCC	CACCACTAAG	GTTTATAAAA	GCATACGTTA	GCAGGTGTCA	CC A<i>TG</i>AAAAA	[.	
Ż	AGCCATAGCA	TATATGCGAT	TTTCATCACC	AGGTCAGATG	TCTGGCGACT	CATTAAACCG	ACAGAGAAGA	CTTATTGCTG	ì	
Ż	AATGGTTAAA	GGTAAATAGT	GATTATTATC	TTGATACCAT	AACATATGAA	GATTTAGGAT	TAAGTGCATT	CAAAGGAAAG		
(CATGCACAAT	CAGGAGCTTT	TTCGGAATTT	TTAGATGCTA	TAGAGCATGG	TTATATATTG	CCAGGAACTA	CATTGTTAGT		
5	TGAAAGTCTG	GACAGACTTT	CAAGAGAAAA	AGTCGGTGAA	GCGATTGAAC	GTCTGAAATT	GATTTTGAAT	CACGGTATTG		
Ż	ATGTTATAAC	TCTTTGCGAC	AATACAGTCT	ATAATATTGA	CTCTTTGAAT	GAGCCATATT	CATTAATAAA	AGCCATACTT		
Ż	ATAGCACAAA	GGGCAAATGA	AGAAAGCGAG	ATAAAGTCAA	GTCGGGTTAA	ATTATCATGG	AAGAAAAAAC	GGCAGGATGC		
Ż	ACTGGAATCA	GGTACGATTA	TGACGGCGTC	TTGTCCGAGA	TGGCTCTCCT	TAGATGACAA	AAGAACGGCT	TTTGTTCCAG		
Ż	ACCCCGACAG	GGTGAAAACT	ATTGAGCTAA	TTTTTAAACT	CAGGATGGAA	AGGCGCTCAT	TGAATGCAAT	AGCCAAGTAT		
5	TTAAATGATC	ATGCTGTAAA	GAATTTCTCA	GGAAAAGAAA	GTGCATGGGG	ACCTTCTGTA	ATTGAAAAAT	TATTAGCGAA	Ι.	ihck
5	TAAAGCTCTG	ATAGGTATTT	GCGTACCTTC	ATATCGTGCA	AGAGGGAAAG	GGATAAGTGA	AATCGCTGGC	TATTATCCCA	['	<i>JDCK</i>
(GAGTCATATC	AGATGATTTG	TTTTACGCTG	TACAGGAAAT	TCGGTTGGCA	CCTTTTGGTA	TTAGCAATAG	TAGCAAGAAT		
(CCTATGCTAA	TAAATCTACT	TCGAACAGTT	ATGAAGTGTG	AGGCTTGTGG	TAATACCATG	ATTGTTCATG	CGGTATCTGG		
Ż	AAGTTTGCAT	GGCTATTATG	TTTGTCCGAT	GAGAAGATTA	CATCGATGTG	ACAGGCCATC	AATAAAAAGA	GATTTGGTTG		
Ż	ATTATAATAT	CATTAATGAA	TTGCTTTTTA	ATTGTAGCAA	AATTCAACCA	GTTGAAAACA	AGAAAGATGC	TAATGAAACT		
	TTAGAGTTAA	AAATTATTGA	GCTTCAGATG	AAAATTAATA	ATTTAATCGT	TGCATTGTCT	GTCGCGCCTG	AAGTTACCGC		
Ķ	TATAGC <mark>AGAG</mark>	AAAATAAGAC	TATTAGATAA	GGAATTACGA	AGGGCTTCGG	TATCATTGAA	AACTTTGAAG	AGTAAAGGTG		
1	TAAATTCATT	CAGTGATTTT	TATGCTATTG	ACTTAACCAG	TAAAAATGGA	GAGAGAG	GCCGTACACT	TGCCTATAAA		
Ż	ACATTCGAAA	AAATCATAAT	TAATACGGAT	ААТААААССТ	GTGATATCTA	TTTTATGAAT	GGCATTGTTT	TTAAACACTA	J	
1	TCCTTTAATG	AAAGTAATAT	CCGCCCAGCA	GGCGATAAGT	GCTCTCAAAT	ATATGGTTGA	TGGTGAGATT	TATTTCTAAA		
5	TAATGATCTC	GGATTTTAAG	TTATGCTATG	GTGATAAAGT	GCAAGACAGA	ATTAATTATC	TTTGACGAAA	CTTAATGGGT		

Figure 8A. Different elements of *ybcK* are indicated. Untranslated region is shown in yellow. Transcription start sites are shown by bent arrows. Primer pair RS848/849 was used for RT-PCR reactions to measure *in vivo* transcriptions described in figure 3E. It is likely that the untranslated region contains the Rho-loading site(s) and the termination occurs inside the gene.

yagN-M region

	RS1083							
TTACGAAAAT	GGCACGAGAA	AATTGAGACA	TGGATCTTAA	ATGAAGCAGG	TATTACCATA	AAAAACAACG	TTGATATGCG	σ ⁷⁰
TTGATTCCAT	ТАААААТСАА	CATATTACAA	AATATC <mark>ATCA</mark>	ACT <mark>A</mark> TTGAT	C AAGATAGAT	T TTCATGTAT	C GTAATACACA	promoter
GTTTAGTCAA	TGATACAGCA	ACTACACAGG	AGATAAGCCA	ATG GCAACCC	CAGCAACTGT	ATCCATAGAA	CCCACTCTGG	
CAGCTATCAG	AGCTCGCTGG	TGTATTAATT	CAAGTAAAAC	AACTCAATCC	TTTAACGATC	CTGCGTCCAT	GGAAGAGGTT	
GTCGAGTATC	TCAAAGGAAC	ATACTCAGCT	CTTCGCAAGT	CTGTCGCATG	CGCCAAACTG	AAAATTTTAC	ATCTTAAACA	_ yagN
AAGAATGCAA	AATGCTACTA	ACTTTCTCGC	GCGTCTGATG	TCATGTAAAA	ATCAGGCATC	CAGATCGCAT	CACAGTACGG	
CTAAATCAGC	TAAAAGTGCC	TTATCATCAG	ATTCAGGTGA	TGGTAGTGAC	CCCGACCCCG	AGCCCGAAAC	GTTTCCTTCT	
GCCTTCATTA	CTACCCCTAC	TAATTCAATA	ATGCTTAAAG	CTTTCTTTGC	CAATATCTCA	ATCACTGAGG	TGGCAAAATG	لـ د
<mark>a</mark> gcgcattca	AACTCCCGGA	TACATCTCAA	TCACAGCTCA	TTTCAACAGC	TGAGTTAGCT	AAAATCATTA	GCTACAAATC	Intorgoni
TCAAACCATT	CGTAAATGGC	TTTGTCAGGA	CAAATTGCCT	GAGGGGCTAC	CTCGCCCAAA	ACAAATCAAT	GGCCGCCATT	ragion
ACTGGTTACG	TAAAGATGTC	CTCGATTTTA	TAGATACATT	TTCTGTACGA	GAAAGTCTGT	AATAAATTAC	AGATTTAATT	region
TTATTGATTT	ATAGCGATGT	TGCCCCGAGA	AAAATGGGGC	AACACTGAGA	AATTTCAGAT	AGTAGTTTTA	TATTGAGATA	2
ACAAAGAGGT	TTCCTTAAAA	ATG TCTAATA	GTGTTACTAA	TTTTGAGATG	AGCAGCGTTC	TACCAGGAAA	AAAACCTTGT	
CAACGCAAAA	ACAATGAGTC	<u>ACAGGTA<mark>GTA</mark></u>	CAGACTACTC	ССАТААААА	ACACTCAGTC	ACGTTCAAAA	ATCAATCTTC	
ATTAGGAGTA	ATTGATCATT	ATGCCAGACT	ААСАААТААА	TCTCACTCTT	CCGTAATAGC	GGAAGTTGTG	GATTTGGCTA	
TCCCTATATT	AGAAAAATGC	AATCGTCATA	ACTGGTCAAT	AAATGAAATA	AAAAATGACC	TGTTAAAGTT	CTCTATAAAA	
GAAAGCATCA	ATCGAAGCCG	AGGTAAAACA	GAAGTAACTC	TGGAAGAGTA	CTGTTCGTTA	ATCTGGAAAA	CGAACATCAT	vaaM
GAGTCCATTA	AAAATCCCCA	TTGCAGATTA	CTTTCAACTG	AACGCTAATG	ATGAATTCAT	GGGGAAAGAT	GAAAAAACAG	<i>,</i>
TTATACGTGA	AAGGCTATCC	TCGCTAAGGG	AAAATTACGA	TATGGAAAAA	GCCATTTACA	TTTACAATCA	AAGACATTTT	
GATGTAAAGC	ATCAAAGTGT	CTCAGGATAT	TCAAACATTA	TTCTTATTCA	TAGAACAACC	TTTGAGGGTT	ATTACTTTGA	
TGCCGGGCAG	GCTCTACTCT	TGTCAACATC	CCAATTGATT	ATATTCGGGA	TAAATGAAGT	TCTTAGAAGA	AAGGGGATTG	
TTATGCCTTA	TCCGGTTGTT	TGTTĠ <mark>GATTG</mark>	ATATTTACCA	TGTCAATGAA	ATGGTGGTTA	TGCTGCCAGT	GCTCCGCAAA	
ACAGATGTTT	CCAACCGTGT	TAATGTACCG	GATGACATCA	TTATAAACCC	ATACTCACAA	GAGAGCAGAA	CCTAA RS847	

Figure 8B. Different elements of yagN-M operons are indicated. Untranslated region is shown in yellow. transcription start sites are shown by bent arrows. Primer pairs RS1083/1084 and RS846/847 were used to make DNA templates for *in vitro* transcription by PCR and for qPCR reactions, respectively.

Figure S9: The predicted secondary RNA structures of rut site regions of different terminators determined by the M-fold program. The terminators *trpt'* and *tR1* are shown in A) and B). Rut sites are indicated by dotted ovals. Compositions of the bases in each of these regions are indicated together with the free energy (Δ G)of the secondary structure formation. C) The 210 nt untranslated region preceding the *racR* region is folded as a whole and part wise. The part, 60-119nt has the lowest Δ G and also is G-poor. The region 1-59 nt has also G-poor sequence. And hence, these regions of the untranslated part of t_{rac} would have the Rho-loading sites.

Figure 10A. The region (in red), 61-120nt, has the lowest free energy of secondary structure formation and high C/G ratio, and hence is likely to have Rho-loading site(s).

M-Fold plots of 87nt untranslated region of yagN-M operon

Figure 10B. The region (in red), 41-87nt, has the lowest free energy of secondary structure formation and high C/G ratio, and hence is likely to have Rho-loading site(s).

Figure S11: **A)** *In vitro* termination assays on different terminators. Termination zones for each are indicated by dashed vertical lines, and their mean distances from the start site are indicated below the autoradiograms. t_{yag} has two termination zones. Last lane of this panel is in the presence of NusG. Size of the transcripts of the t_{yag} panel aligns to the RNA ladder. It should be noted that like t_{rac} , t_{yag} is also highly NusG-dependent, as indicated from the early termination bands. **B)** Cartoons showing the mean distances between the *rut* site and the termination zones for different terminators. The positions of *rut* sites and the termination zones are w.r.t. the transcription start site. DNA template ends are roughly aligned with the position of the run-off (RO).

N340S Rho mutant (RS1428). Different oligo-pairs, as indicated, were used to probe the terminated RNA products initiated from P_{RM} promoter. Two reactions were loaded for each case. These cDNAs were from terminated RNA because the amount of the product is much higher in the presence of N340S mutant. **B)** Cartoon showing the positions of various oligos used and the lengths of cDNA products aligned to different regions of *racR* region. This indicates that the major *in vivo* termination events occurred inside the *racR* region.

Table S1: List of oligos used.

Oligos	Description
RS83	ATAAACTGCCAGGAATTGGGGGATC; upstream oligo of pTL61T vector
	sequence, 5' biotinylated
RS139	TTAATACGACTCACTATAGGGAGATCGAGAGGGACACGGGCG; T7
	promoter fused to the start site of T7A1 promoter
RS147	GCGCGCGGATCCCCCCATTCAAGAACAGCAAGCAGC; lambda TR1
	reverse primer with BamHI site.
RS401	GCGCGCGTGGTGCAACGGGCGCTGGG; <i>lacZ</i> specific FP for qPCR
Rs402	GCGCGCCAACTCGCCGCACATCTG; <i>lacZ</i> specific RP for qPCR
RS404	<i>GAATTGTGAGCGCTCACAATTC</i> GGATGCCAGACCGCGCTGGGTAAGC
	G; RP with 5'-lacO fusion, used to generate roadblock downstream of rut sites
	of for T7A1-H19B TR1 template
RS555	CTG CTT CAG GAT GGC AAA AAT AAT GTC C ; internal RP (123-96bp)
	of <i>rho</i> gene used for checking rho deletion by PCR
RS845	GAATTGTGAGCGCTCACAATTCTTAGCGCCTCGGGCTGGCT
	5'-lacO fusion used to generate roadblock on P_{RM} -racR/ t_{rac} template
RS846	CCTTATCCGGTTGTTGTTG; yagM specific FP for qPCR
RS847	TTAGGTTCTGCTCTCTTGTG; yagM specific RP for qPCR
RS848	CCTGAAGTTACCGCTATAGC; ybcK specific FP for qPCR
RS849	CTCTCGTCCATTTTTACTGG; ybcK specific RP for qPCR
RS852	AATCGCAAAGCAATCTTGGT; gshA specific FP for qPCR
RS853	GCAACACGTTGCTGTTGATT; gshA specific RP for qPCR
RS854	CTGGTAACAAACCAGAGTGG; <i>rpoC</i> specific FP for qPCR
RS855	TCAGACGGTTGTTACGGTTA; <i>rpoC</i> specific RP for qPCR
RS955	GAATTGTGAGCGCTCACAATTCTTAGGTATTCGTTAAGCCCC; RP with
	5'-lacO fusion, used to generate roadblock on P_{RM} -racR/t _{rac} template
RS956	GAATTGTGAGCGCTCACAATTCTTAGGGCGCGAACATCGTGG; RP with
	5'-lacO fusion, used to generate roadblock on P_{RM} -racR/ t_{rac} template.
RS963	AACAATGTCGACTTAACCTGAACGACGACGATTAC; <i>rhlB</i> specific
	primer for checking <i>rho</i> deletion by PCR
RS995	TTAATACGACTCACTATAGGGAGAGAGTGATACACCTAAAAGCCTAGCC;
	T7 promoter fused to the start site of P_{RM} promoter.
RS1034	CATTGCTTAATATTCTCCTATGCGC; RP for RNA preparation on
	R\$1352
RS1035	TGCGACCTCCGCCTTTGATTTGACGG; RP for RNA preparation on
	RS1352
RS1036	GAGGTGATACACCTAAAAGCCTAGCC; FP at transcription start site of
	T7A1 of pRS1352
RS1037	TTGGTATGGGGTATTCGTTAAGCCCC; RP at <i>racR</i> gene of pRS1352.
RSRK-1	GTTTTCCCAGTCACGAC; reverse primer in <i>lacZ</i> gene.
RK23B	TGGAGTTCCAGACGATACG; reverse oligo to generate T7A1-H19B/TR1
	terminator template
RS1083	GGCACGAGAAAATTGAGACATGG; FP in yagN region, to be used to
	prepare t_{yag} terminator template
RS1084	CTACCTGTGACTCATTGTTTTTGCC; RP in yagM region, to be used to
	prepare t_{yag} terminator template

NusG	T_{R1} -LacZ	T_{R1} -trpt'-LacZ	T_{rac} -LacZ
alleles	β –galactosidase	β –galactosidase	β –galactosidase
	activity	activity	activity
WT	259.4 ± 5	$20.2\pm~0.08$	61 ± 0.5
V160N	634.3 ± 60	34 ± 0.8	2421 ± 46
G146D	461.3 ± 9	49 ± 0.9	1865 ± 64
L158Q	460 ± 10	48±2	2766 ± 75

Table S2: β -galactosidase activities of different lacZ fusions under different conditions.