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Fig.S 1: Typical computed contact maps (A: coil, B: pearl-necklace-like, C: globular, D: MPS-
like) of the chromatin region located between 12.16 and 13.36 Mbp starting from a coil, predicted
by the Gaussian self-consistent approximation but for a different form of the Hamiltonian. Like
in Timoshenko et al. (1998), we considered here virial-type expansion contact interactions to
account for hard-core repulsion and attraction between monomers: H = (3kBT/2l

2)
∑

n(Xn −
Xn−1)

2+
∑

n<m(Uns + Usδn,m)δ(Xn −Xm)+
∑

n6=m 6=k Uhcδ(Xn −Xm)δ(Xm −Xk) where δ is the
Dirac Delta function.
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Fig.S 2: Predicted contact map of the chromatin region located between 23.23 and 24.13 Mbp of
chromosome 3R when simulated alone (B) or embedded in a larger context (A, taken from Fig.S5C
by zooming to the corresponding area) for the same set of parameters. A priori, the contact map
of a region should depend on the size of the chain and on the primary sequence of the neighboring
chromatin. We remark that the pattern of interactions itself is not affected by the size of the
investigated region. We observe only weak alterations in the long-range intensities with domains
located at the extremities of the chain. In our example, this is due to the absence during the
simulations (in B) of a significant part of the black chromatin that contribute in stabilizing the
black chromatin globule mentioned in Fig.3D of the main text.
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Fig.S 3: (A,B) Contact maps of the copolymer (A10B10)6 estimated from full numerical simulations
for two parameter sets inside the multistability region: close to the boundary with the coil region (A)
or with the microphase region (B). (C) Typical time-evolution of the root mean squared distance
d between monomers of the same epigenomic state (blue line). Conformations can be classified
between two categories: open (d > 3) or closed (d < 3). (D) Boxplots for the distribution of
residence time in the open or closed states for (A) (black) or (B) (red). The lifetime of the transient
contacts between TADs depends on the position inside the multistability region with shorter-lived
contacts close to the coil phase (for (A): 〈τopen〉 = 0.13 ± 0.02, 〈τclosed〉 = 0.13 ± 0.02; for (B):
〈τopen〉 = 0.12 ± 0.02, 〈τclosed〉 = 0.40 ± 0.04). Qualitatively, this observation does not depend on
the stochastic collision frequency used to simulate the heat bath. For a doubled frequency (= 10),
we find for (A): 〈τopen〉 = 0.25 ± 0.03, 〈τclosed〉 = 0.19 ± 0.02; for (B): 〈τopen〉 = 0.14 ± 0.02,
〈τclosed〉 = 0.44± 0.04.
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Fig.S 4: Boundaries of the multistability region for the regions located between 12.16 and 13.36
Mbp (full lines) and between 23.06 and 24.36 Mbp of chromosome 3R. The first chromatin region
has a more complex pattern of epigenomic state leading to a larger multistability region.
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Fig.S 5: (A) Average contact probability between two loci of the chromatin region located between
23.05 and 24.36 Mbp of chromosome 3R, as a function of their genomic distance. (B,C,D,E) Steady-
state contact maps. Taken from experimental data (black, B) or from full numerical simulations for
parameter sets at the multistability/coil boundary (green, D), at the multistability/MPS boundary
(cyan, E) or inside the multistability region (red, C). Legend color as in Fig. 3 of the main text.
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Fig.S 6: Steady-state contact maps of the chromatin region located between 12.16 and 13.36 Mbp
of chromosome 3R predicted by the Gaussian self-consistent approximation as a function of the
strength of specific and non-specific interactions, starting from a coil, a MPS, a globular or an
experimental-like conformations (initial contact maps are drawn at the top right corner). In the
multistability region, depending on the initial conditions, many different steady-state solutions can
be found by the Gaussian self-consistent method, the true thermodynamic averages being a weighted
sum of these different solutions.
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Fig.S 7: Predicted contact maps of the chromatin region located between 12.16 and 13.36 Mbp of
chromosome 3R, starting from a coil, for homogeneous specific parameters (A) (Uns = −40kBT ,
Us = −44kBT ) and when Polycomb-Polycomb interactions are 1.2 times stronger than other spe-
cific interactions (B). Reinforcing Polycomb-Polycomb interactions allows to accurately describe the
experimental contact map without the spurious contacts between the two black domains B0 and B1.
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2 Supplementary Notes

2.1 Block copolymer model

In this section, we describe in greater details the block copolymer model.

We model the chromatin fiber as an interacting self-avoiding bead-and-spring chain containing
N monomers. Each monomer represents 10 kbp of DNA and is characterized by an epigenetic state.
The Hamiltonian of the system H = Hchain +Hinter is made of two contributions:

• Hchain the Hamiltonian of the self-avoiding chain, given by

Hchain =
k

2

N∑
n=2

(Xn −Xn−1)
2 +

∑
n<m

Uhc(rn,m) (1)

with Xn the position of monomer n, k = 3kBT/l
2 (l the segment length of the pure Gaussian

chain), Uhc the pair-wise repulsive hard-core potential and rn,m the relative distance between
monomer n and m (r2n,m = (Xn −Xm)2). Uhc is modeled by a truncated Lennard-Jones-like
potential:

Uhc(r) =

{
U0
hc

[(
σ
r

)5/2 − (σr )5/4 + 1
4

]
for r ≤ 24/5σ

0 for r > 24/5σ

The motivation behind the exponents 5/2 and 5/4 is to insure integrability of the hard-core
potential needed by the self-consistent approximation (see below). The cut-off occurs at the
minimum of the potential to insure continuity. We choose U0

hc = 20kBT and 24/5σ = l.

• Hinter accounts for attractive short-range interactions between monomers and is made of non-
specific interactions modeling compaction effect due to confinement, and of specific interactions
modeling attraction between monomers having identical epigenetic states. Hinter is given by

Hinter =
∑
n<m

(Uns + Usδen,em) exp[−r2n,m/(2r20)] (2)

with Uns and Us the strength of non-specific and specific interactions, δen,em = 1 (0) if the
epigenetic states en and em of monomers n and m are equal (or not), and r0 the typical length-
scale of the short-range interaction. The motivation behind this Gaussian-like potential is that
the number of contacts between two Gaussian chains (the 10kbp-long subchains contained in
each monomer) scales as exp[−d2/(2r20)] with d the distance between the centers of mass and
r0 the typical radius of gyration of the subchain. We choose r0 = l/

√
6.

2.2 Gaussian self-consistent approximation

In this section, we detail the self-consistent approximation used to derive Eq.2 of the main text.

2.2.1 Gaussian approximation and self-consistency

The dynamics of the chain is described by a set of Langevin equations

ξ
dXn

dt
= − ∂H

∂Xn
+ ηn(t) n = 1, ..., N (3)

with ξ the friction coefficient and ηn delta-correlated white noise (〈ηn〉 = 0 and 〈ηαn(t)ηβm(t′)〉 =
2ξkBTδ(t− t′)δn,mδα,β with α, β ∈ {x, y, z}).
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From the set of Langevin equations, one can write the corresponding Fokker-Planck equation
for P (Y, t) the probability distribution function (p.d.f) of the chain conformation Y = {Xn} =
{Xx

1 , X
y
1 , X

z
1 , X

x
2 , ...}

∂tP ({Xn}, t) =
1

ξ

∑
n

[
∂

∂Xn

(
P
∂H

∂Xn

)
+ kBT

∂2P

∂X2
n

]
(4)

At each time point, we approximate P by a multivariate Gaussian distribution

P ≈ 1

(2π)3N/2|det(C̄)|1/2
exp

[
−1

2
(Y − Ȳ (t))†C̄(t)−1(Y − Ȳ (t))

]
(5)

with Ȳ (t) (Ȳi,α = 〈Xα
i 〉) and C̄(t) (C̄i,α;j,β = 〈Xα

i X
β
j 〉) the first and second moment of the Gaussian.

Isotropy of the system imposes already Ȳ = 0 and that C̄i,α;j,β = Ci,jδα,β with Ci,j = 〈Xi ·Xj〉/3.
In the next, we aim to derive an equation that describes the dynamics of C using the approach

developped by Ramalho et al. for approximating p.d.f dynamics but in the context of biochemical
reaction networks {Ramalho et al, Phys. Rev. E, 87: 022719 (2013)}. The general idea is to assume
an initial Gaussian distribution for Y , then to evolve it according to the Fokker-Planck equation,
and then find the Gaussian distribution that best fits it. Let’s first focus on the deterministic part
of this evolution (by putting kBT = 0) before adding the stochastic noise. Consider that we have a
Gaussian distribution P (Y ) at time t (with a covariance C(t)). After an infinitesimal time step dt,
the evolved (deterministic) p.d.f will be

Pe(Y
′) = P (Y )

∣∣∣∣ dYdY ′
∣∣∣∣ =

P (Y )

|det(I + dtJ/ξ)|
(6)

with Y ′ = Y +dt(−∂H/∂Xn)/ξ and J = −(∂2H)/(∂Xn∂Xm) the Jacobian of the (deterministic part
of the) Langevin equations (the opposite Hessian of the Hamiltonian H). Due to the non-linearity
of (−∂H/∂Xn), Pe is no longer a Gaussian. However, we aim to determine the closest Gaussian
distribution P ′ (characterized by a covariance C ′) to Pe in term of information content using the
maximum entropy principle. One requirement of this principle is to minimize the Kullback-Leibler
divergence of P ′ to Pe defined as

dKL(P ′||Pe) =

∫
dY ′P ′(Y ′) log

(
P ′(Y ′)

Pe(Y ′)

)
(7)

Minimization of dKL(P ′||Pe) with respect to C ′ leads to {Ramalho et al, Phys. Rev. E, 87: 022719
(2013)}

C ′ = C + dt(〈J〉C + C〈J〉†)/ξ (8)

with 〈J〉 the average value of J over the Gaussian distrution P (Y ). We now consider the effect
of intrinsic fluctuations. Over dt, the evolution Y ′′ of Y is given by Y ′ augmented by the random
variable ηdt which has a Gaussian distribution with covariance Ndt/ξ (Y ′′ = Y ′+ηdt/ξ). Therefore
the evolved p.d.f with noise is given by the convolution

P (Y ′′) =

∫
dη

(
exp[−(Y ′′ − η)†C ′−1(Y ′′ − η)/2]

Z ′

)(
exp[−η†(Ndt)−1η/2]

Zη

)
=

exp[−Y ′′†(C ′ +Ndt/ξ)−1Y ′′/2]

Z ′′
(9)
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Therefore after dt, the closest Gaussian distribution of the evolved p.d.f is characterized by the
covariance matrix C ′′ = C ′ +Ndt/ξ = C + dt(〈J〉C +C〈J〉† +N)/ξ. Taking the limit dt→ 0 leads
to

ξ
dC

dt
= 〈J〉C + C〈J〉† +N (10)

This equation is formally very similar to the linear noise approximation (LNA) {van Kampen.
Stochastic Processes in Physics and Chemistry, North-Holland (2001)} but with the significant
difference that, in Eq.10, J is average over the current Gaussian distribution while in the LNA J is
evaluated at the average value of Y .

2.2.2 Application to the block copolymer model

By definition of J , we find

Jn,m = − ∂2H

∂Xn∂Xm
=

{
(Xn −Xm)2 1

rn,m

∂
∂rn,m

(
1

rn,m

∂Un,m

∂rn,m

)
+ 1

rn,m

∂Un,m

∂rn,m
for n 6= m

−
∑

k 6=n Jn,k for n = m
(11)

with rn,m and Un,m respectively the distance and the interaction potential between monomers n and
m. 〈Jn,m〉 is then given by averaging over the current Gaussian distribution of Xn − Xm, ie, for
n 6= m

〈Jn,m〉 =

∫ {
2πr2n,m sin θdrn,mdθ

[
(rn,m cos θ)2

1

rn,m

∂

∂rn,m

(
1

rn,m

∂Un,m
∂rn,m

)
+

1

rn,m

∂Un,m
∂rn,m

]
×

exp[−r2n,m/(2Dn,m)]

(2πDn,m)3/2

}
(12)

with Dn,m = 〈(Xn −Xm)2〉 = 〈(Xn −Xm)2〉/3, the third of the mean squared distance between n
and m. Finally, we find for n 6= m

〈Jn,m〉 = −k (2δn,m − δn−1,m − δn+1,m) +
r30(Uns + Usδen,em)

(Dn,m + r20)5/2

+
5σ5/4U0

hc

21/412
√
π

(
1

D
13/8
n,m

)[
2σ5/4

D
5/8
n,m

(
Γinc[1/4, 2

3/5σ2/Dn,m]− Γ[1/4]
)

+25/8
(

Γ[7/8]− Γinc[7/8, 2
3/5σ2/Dn,m]

)]
(13)

with Γinc[a, z] =
∫∞
z ta−1e−tdt the incomplete gamma function. 〈Jn,n〉 = −

∑
k 6=n〈Jk,n〉.

From Eq.10, we derive a corresponding equation for D (Eq.2 of the maint text). Remarking that
Dn,m = Cn,n + Cm,m − 2Cn,m, we find for n 6= m

ξ
dDm,n

dt
= Nn,n +Nm,m − 2Nm,n + (Cm,m − Cn,n)

∑
k

(〈Jm,k〉 − 〈Jn,k〉)

−
∑
k

(〈Jm,k〉 − 〈Jn,k〉)(Dm,k −Dn,k)

= 4kBT −
∑
k

(〈Jm,k〉 − 〈Jn,k〉)(Dm,k −Dn,k) (14)

Since 〈J〉 is a fonction of D, the last equation is self-consistent and allows to compute the dynamics
of the mean squared distance matrix.
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2.2.3 Numerical integration

We choose kBT as the unit of energy, l as the unit of length, and ξl2/(kBT ) as the unit of time. The
set of non-linear equations defined in Eq.14 is solved in the steady-state limit by numerical integra-
tion. For a given epigenetic pattern, starting from different initial conditions, we implement a fifth
order adaptative Runge-Kutta algorithm {Press et al. Numerical Recipes, Cambridge University
Press (2007)} to find the fixed points. For parameter sets located in the coil, globule or microphase
regions (see Fig. 2 of the main text), the algorithm converges, independently of the initial condition,
to a unique fixed point. In the multistability region, it exists several fixed points that corresponds
to the stable and metastable thermodynamic states. The algorithm cannot give the relative weight
of each state in the thermodynamic ensemble.

From the steady-state matrix D, in the Gaussian approximation, the probability Pm,n of contact
between monomers m and n is given by

Pm,n =

∫ a

0
4πr2dr

exp[−r2/(2Dm,n)]

(2πD)3/2
≈ AD−3/2m,n (15)

with a the maximal contact distance and A a numerical factor.

Typically, for each parameter set, we run the integration algorithm starting from 4 different
initial conditions (Fig. S3): 3 from the ”monophasic” regions (coil, globule and microphase) and
one that mimics the experimental HiC-maps.
The experimental-like matrices for a given epigenetic pattern were obtained from the experimental
map by: (1) constructing an ”average” map P̄ by assigning to every couple of monomers the average
contact frequency between the epigenomic domains where they respectively belong to; (2) computing

the corresponding matrix D using Dm,n = A′P
−2/3
m,n , A′ being chosen such that typical intra-domain

distances were of order 1.

2.2.4 Equivalence with the self-consistent method of Timoshenko, Kuznetsov and
Dawson

The approach developped by Timoshenko et al. {Timoshenko et al., Phys. Rev. E, 57: 6801 (1998);
Timoshenko et al., J. Chem. Phys., 117: 9050 (2002) } consists in approximating at each time point
Eq.3 by a set of Langevin equations with a general quadratic potential

ξ
dXn

dt
= −

∑
m

Vn,m(t)Xm + ηn(t) (16)

From this set of equations, one can derive easily the dynamics of matrix C

ξ
dC

dt
= −(V C + CV †) +N (17)

with N = 2kBT/ξI. The self-consistency is given by solving∑
k

Vm,kCn,k + Vn,kCm,k = 〈Xm
∂H

∂Xn
+Xn

∂H

∂Xm
〉 (18)

Timoshenko et al find that, for n 6= m,

Vn,m = −2

3

∂〈H〉
∂Dn,m

(19)
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with

〈H〉 =
∑
n<m

√
2

πD3
n,m

∫ ∞
0

drr2Un,m(r) exp[−r2/(2Dn,m)] (20)

It is easy to verify that −Vn,m = 〈Jn,m〉. This means that Eqs.10 and 17 are identical and proove
that the two approaches are equivalent.

2.3 Numerical simulations

In addition to the Gaussian self-consistent approximation, we also perform full numerical simula-
tions of the model for some parameter values.

The dynamics of the chain is described by the general equations

m
d2Xn

dt2
= − ∂H

∂Xn
− ξ dXn

dt
+ ηn(t) (21)

with m the mass of one bead. The two last terms of Eq.21 represents the coupling with the heat
bath. Note that Eq.3 is derived from Eq.21 by neglecting the inertia of the system.

We choose kBT as the unit of energy, l as the unit of length, m as the unit of mass and√
ml2/(kBT ) as the unit of time. Simulation of trajectories are performed using the standard

velocity-Verlet algorithm coupled to the Andersen thermostat (Frenkel and Smit, Understanding
molecular simulations: from algorithm to applications, Academic Press). The velocity-Verlet al-
gorithm allows to integrate the first - thermostat independent - part of Eq.21 (md2Xn/dt

2 =
−∂H/∂Xn). The Andersen thermostat accounts for the coupling with the heat bath (−ξdXn/dt+
ηn(t)) : at a given frequency, stochastic collisions are applied to every particles of the system re-
sampling the velocities among the canonical ensemble. High frequencies are associated to strong
friction coefficients. In Figs.2 and 3 of the main text and in Fig. S2 of the Supplemental Material,
we perform our simulation with a frequency of 5.
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