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Supplementary Text

S1 Oversampling high degree individuals in RDS

Individuals with many contacts are more likely to be recruited during RDS than those with few
contacts; we demonstrate the extent of this oversampling using simulations. We ran simulations
of RDS on networks of 10,000 individuals (for networks with Poisson and long tailed degree
distribution, mean of 10). We compared the degree distribution of the population to the degree
distribution of the sampled individuals, to see if there are any significant differences.

We plotted the degree against the probability of being selected to determine if high degree
nodes have a higher probability of selection. In every simulation there was oversampling of
high degree individuals, Fig. S1. The mean degree was higher in the simulations than in the
underlying population (increasing from 6 to about 7.45), the variance in degree was slightly
higher in the simulations than in the underlying population, Table S1.
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Figure S1: Oversampling of high degree individuals in RDS simulations. RDS samples were
carried out on each of 100 networks of 10,000 individuals for both Poisson (A) and long tailed
(B) degree distribution. Note scales on (B) are logarithmic. Oversampling of high degree
individuals occurs in both networks.
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Property Poisson Long tailed

Popn Sample Popn Sample

Mean 9.99 10.97 10.03 57.72
Variance 9.98 10.04 537.00 2801.10
Minimum 0 2 1 1
Maximum 29 29 195 195

Table S1: The mean of the degree of individuals in the RDS simulations. RDS samples were
carried out on each of 100 networks of 10,000 individuals, with Poisson or long tailed degree
distributions (mean degree 10). Oversampling of high degree individuals occurs in both networks,
but particularly so in the long tailed network.

S2 The Volz-Heckathorn estimator

The most commonly used estimator to calculate the population mean of a property using an
RDS sample uses probability-theoretic methods (defined by Volz and Heckathorn (Volz and
Heckathorn, 2008) and again by Goel and Salganik (Goel and Salganik, 2010)). This estimator
adjusts by the given degree of the individuals sampled (the number of contacts), to remove the
bias caused by the over-representation of high degree individuals. The estimator is derived as
follows (Volz and Heckathorn, 2008):

A chain referral sample such as RDS is analogous to a random walk on a network; this is
a Markov Process (MP) which at equilibrium occupies a node with probability proportional to
degree (Salganik and Heckathorn, 2004). Therefore, a chain referral sampling procedure such
as RDS will recruit individuals with probability proportional to their degree. As the random
walks (RDS samples) are finite and irreducible, there is a unique equation for the MP and the
MP will converge to it.

Therefore, for a network where node i has degree di the probability of node i choosing node
j is σij = 1/di. Then, the vector x∗i = di/

∑
j dj is an unique equilibrium for the MP.

To define their RDS estimator, Volz and Heckathorn use a Hansen-Hurwitz (HH) type es-
timator (Hansen and Hurwitz, 1943) with selection probabilities pi = di/Nd̄, where du is the
average degree of the population. The selection probabilities are estimated by p̂i = di/Nd̄, where
d̄ is an estimate of the average degree of the population and N is the whole population size.

Now by (Salganik and Heckathorn, 2004), d̄ can be estimated using a ratio estimator of HH
estimators.

d̄ =

∑n
i=1

di
npi∑n

i=1
1

npi

=
n∑n
i=1

1
di

(S1)

where n is the sample size. Let fi be the variable of interest, for example age. Then let Tf be

the total value of f in the population (so Tf =
∑N

i=1 fi). Then the HH estimator of Tf is

T̂f =
1

n

n∑
i=1

fi
p̂i

=
1

n

n∑
i=1

d̄Nfi
di

=
d̄N

n

n∑
i=1

fi
di
. (S2)
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If N is unknown (which is common), then the estimate of the average f in the population (e.g.
the average age) is

< f̂ > =
d̄

n

n∑
i=1

fi
di

=

∑n
i=1

fi
di∑n

i=1
1
di

(S3)

using Eqn. (S1).
If we wish to estimate the proportion of a population of type A, for example the proportion

female, then we let fi be an indicator function such that fi = IA(i) which equals 1 if node i ∈ A
and 0 else. Then,

P̂A =

∑
i∈A

1
di∑n

i=1
1
di

. (S4)

Volz and Heckathorn showed that their estimator was accurate (had low bias compared to
previous estimators), but acknowledge that it is still assuming with replacement and one recruit
per respondent and is more accurate for larger sample sizes. These formulas are commonly used
to estimate population properties from an RDS sample, using RDSAT, a freely available RDS
analysis tool (Volz et al., 2007).

S3 Network and transmission model

We model a population of size n = 10, 000. We model networks with Poisson and long-tailed
degree distributions. The long tailed degree distribution is a power law with an exponential cut
off (power α = 1.5 and the cut-off is τ = 1000). Both distributions have a mean degree of 10.
We connect the network using the configuration model: nodes (individuals) are each assigned a
degree chosen from a defined degree distribution. Each node then has that number of “stubs”.
We choose two stubs at random from a list of all stubs and connect them with an edge (with
the condition to exclude double edges and self-loops).

The transmission model structure is susceptible-infected-susceptible (SIS); we do not parametrise
the model for any particular pathogen, although this is a suitable framework for Hepatitis C,
where recovery may occur (spontaneously or through treatment) but individuals may be re-
infected. The prevalences we consider (up to 40%) are realistic in many PWID populations. The
model is initialised with 1% of the population infected. Each time-step a node i will become
infected with probability equal to p = 1− (1− α)ki where α is the probability of transmission,
per infected contact, per time-step and ki is the number of infected contacts of node i. Infected
nodes may recover (to the susceptible state) with a fixed probability r each time step. Nodes
may die in all states, with an increased probability if infected. Nodes which die are replaced one
time-step later by a susceptible node (which retains all contacts of the dead node, for simplic-
ity). We chose parameters such that on both networks the stable equilibrium was around 30%
prevalence, due to the long tails in the power law distribution this stable prevalence was reached
within around 5 years, on the Poisson distributed network this took around 10 years. The time
scales didn’t matter to this investigation, as long as the RDS samples were taken at around the
same prevalences on both networks (and the consecutive samples were taken over a time when
prevalence was still increasing).
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S4 Analysing reported contact numbers in the Bristol datasets

We define the distance z between two degree distributions f and h as

z =

〈
|fk − hk|
fk + hk

〉
, (S5)

where the average 〈〉 is over the range of k (the term |fk − hk|/(fk + hk) is interpreted as zero
if fk = hk = 0). The distance between the 2006 and 2009 Bristol distributions is zB = 0.0214
(assuming a range of 0 ≤ k < 1000).

The contact number distribution in the Bristol data is approximately long-tailed (Fig. 1
in the main text) in that reported numbers vary by several orders of magnitude, so we used a
long-tailed degree distribution (power law with an exponential cut off, mean degree of 10) to
represent it.

For each rounding scheme, we draw samples from the long-tailed distribution, and obtain
the distance z as defined above. The values of z in themselves are not easily interpretable, but
when compared to zB they provide measures of the distance to the empirical distributions in
terms of the distance between each of these.

The rounding schemes we apply are shown in Table S2, each with a label then used in the
subsequent table and figure.

Rounding label Description

0 As drawn from candidate distribution (no rounding)
1 Rounded up to nearest 5, ∀k
2 Rounded up to nearest 10, ∀k
3 Increased by 5, ∀k
4 Rounded to nearest 10 if k ∈ [10, 100], or to nearest 100 if k > 100
5 From Bristol (’06+’09) if k < 10, else as in scheme 4 (above)

Table S2: Description of each rounding scheme.

Table S3 lists the average relative z-distance, z = (z06 +z09)/(2zB), for each rounding scheme
(where zX is the mean distance to the Bristol data of year X), along with standard deviations for
averages over 104 sampled distributions. Fig. S2 displays the information in the tables visually.

Rounding label z SD(z)

0 5.173868 0.288580
1 2.702984 0.198006
2 2.347472 0.157871
3 5.471744 0.292656
4 1.429304 0.051137
5 1.206379 0.060924

Table S3: Mean relative distances, z, to the Bristol distributions of each rounding scheme (as
described in main text) applied to samples drawn from a long-tailed sitribution (power law with
an exponential cut-off, described in Section S3); and standard deviations for averages over 104

samples.

The distance results show that adding 5 to every degree is worse than drawing directly
from the fitted distribution; rounding all degrees up improves upon no rounding; and the more
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Figure S2: Mean distances z for each rounding scheme, from Table S3.

sophisticated schemes 4 and 5 yield distributions closest to the empirical ones. In other words,
artificial distributions generated by schemes 4 and 5 are as close to the empirical ones as the
two empirical ones are to each other. This would seem to justify a posteriori this choice of
underlying distribution, as well as the hypothesis that people do indeed tend to report their
perceived degrees in this way.
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Supplementary Figures

0 20 40 60
0

20

40

60

80

100

Months

P
re

va
le

nc
e 

(%
) 

Long−tailed degree distribution

 

 

Susceptible
Infected
Removed

0 20 40 60
0

20

40

60

80

100

Months

P
re

va
le

nc
e 

(%
)

Poisson distributed degrees

 

 
A B

Time 2Time 2 Time 1Time 1

24 months 24 months

Figure S3: The prevalence in the modelled epidemics. The black lines indicate the times of
the surveys, consecutive surveys were 24 months (2 years) apart. (A) Long-tailed distributed
degrees. (B) Poisson distributed degrees.
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Figure S4: The estimates from RDS, for networks with a long-tailed degree distribution. The red
dashed line indicates the actual median prevalence in the simulated populations. (A) Sample size
300, (B) Sample size 600. The Volz-Heckathorn estimate of prevalence is always more accurate
than the raw data, however inaccuracies in the degrees can increase the error. The variance
in both raw and adjusted data is large with both sample sizes, however the estimate is more
accurate when the sample size is larger.
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Figure S5: The estimates from RDS, for networks with a Poisson degree distribution. The red
dashed line indicates the actual median prevalence in the simulated populations. (A) Sample size
300, (B) Sample size 600. The Volz-Heckathorn estimate of prevalence is always more accurate
than the raw data, however inaccuracies in the degrees can increase the error. Generally, RDS
estimates from the Poisson network are more accurate than from the long tailed network, see
Figure S4. The Poisson degree distribution has a smaller range of degrees and consequently
a lower correlation between degree and infection than the long tailed degree distribution, this
leads to less biased RDS estimates from these networks compared to the long-tailed network.
As with the long-tailed degree distribution, a larger sample size results in lower errors.
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Figure S6: Box plots illustrating the extent of the errors in estimates of the increase in prevalence
between two consecutive RDS surveys of the same population, in a network with a Poisson degree
distribution. Consecutive samples were taken in 100 populations, the actual prevalence increased
from 21% to 32% in the 2 year gap: this difference of 11% is indicated by the dashed line across
the plot. The methods are fully described in the main text. Generally samples from a network
with a Poisson degree distribution more accurately estimate the prevalence than those from a
network with a long-tailed distribution (Figure 3 in the main text), however the variation and
range in estimates is very large, as in the long-tailed simulations.
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Supplementary Tables

Mean
preva-
lence at
time 1
(%)

Mean
preva-
lence at
time 2
(%)

Mean differ-
ence [95%
CI]

Proportion of
samples which
underestimate
the increase

Mean percent-
age error in the
underestimate
[95% CI]

Proportion of
samples which
overestimate
the increase

Mean percent-
age error in the
overestimate
[95% CI]

Actual 19.2 30.1 10.9 [9.5 – 12.6]
Raw 61.2 69.8 8.5 [1.6 – 15.6] 0.68 39.61 [2.41 –

84.43]
0.31 17.73 [2.08 –

36.49]
V-H ad-
justed, real
degrees

18.0 29.4 11.4 [2.4 – 20.8] 0.48 34.68 [2.31 –
83.28]

0.51 44.69 [3.15 –
96.88]

V-H ad-
justed,
degree
rounded to
nearest 5

28.5 42.0 13.5 [5.5 – 22.6] 0.34 26.49 [1.50 –
60.10]

0.66 49.88 [5.55 –
120.92]

V-H ad-
justed,
degree
rounded to
nearest 10

34.9 48.8 13.9 [6.2 – 22.5] 0.29 26.67 [0.48 –
70.66]

0.71 49.99 [6.28 –
107.82]

V-H ad-
justed,
degree in-
creased by
5

31.8 44.4 12.6 [3.6 – 21.7] 0.29 38.96 [1.97 –
76.13]

0.70 39.71 [3.60 –
93.22]

V-H ad-
justed,
degree
rounded
as Bristol
data, 1

18.2 29.6 11.4 [2.5 – 20.7] 0.48 34.84 [1.72 –
82.83]

0.51 44.88 [4.66 –
95.89]

V-H ad-
justed,
degree
rounded
as Bristol
data, 2

28.9 43.1 14.3 [2.1–24.2] 0.25 47.59 [1.82–
86.37]

0.75 56.49 [3.65–
114.07]

Table S4: Long tailed degree distribution: the results of 100 consecutive (paired) RDS samples
for a population with increasing prevalence. Adding degree inaccuracy shifts the proportion of
samples which over- and under-estimate so that more samples over-estimate the increase than
when accurate degrees were used. The range of over-estimates (95% confidence intervals) is huge,
indicating that using consecutive samples to evaluate the prevalence trends in a population may
lead to inaccurate conclusions. Compare to Fig. 3 in the main text.
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Mean
preva-
lence at
time 1
(%)

Mean
preva-
lence at
time 2
(%)

Mean differ-
ence [95%
CI]

Proportion of
samples which
underestimate
the increase

Mean percent-
age error in the
underestimate
[95% CI]

Proportion of
samples which
overestimate
the increase

Mean percent-
age error in the
overestimate
[95% CI]

Actual 20.6 32.2 11.5 [10.4 –
12.5]

Raw 22.4 34.6 12.2 [5.3 – 17.6] 0.40 23.18 [1.92 –
66.05]

0.60 26.19 [1.61 –
59.70]

V-H ad-
justed, real
degrees

20.8 32.5 11.6 [6.1 – 16.8] 0.47 23.46 [1.19 –
68.87]

0.53 23.56 [2.16 –
54.51]

V-H ad-
justed,
degree
rounded to
nearest 5

21.1 32.9 11.8 [5.8 – 16.9] 0.45 24.09 [4.09 –
67.48]

0.55 24.50 [3.04 –
57.91]

V-H ad-
justed,
degree
rounded to
nearest 10

21.1 32.9 11.8 [5.5 – 17.0] 0.44 24.49 [1.84 –
65.91]

0.56 23.80 [2.65 –
54.88]

V-H ad-
justed,
degree in-
creased by
5

23.7 36.8 13.1 [6.0 – 19.1] 0.33 21.14 [0.76 –
70.79]

0.67 31.90 [1.37 –
73.70]

V-H ad-
justed,
degree
rounded
as Bristol
data, 1

21.0 32.7 11.7 [6.4 – 17.1] 0.46 23.44 [3.25 –
64.96]

0.54 23.90 [0.46 –
56.24]

V-H ad-
justed,
degree
rounded
as Bristol
data, 2

20.4 32.4 11.9 [5.4–19.1] 0.46 25.56 [5.26–
67.26]

0.54 29.00 [2.08–
71.89]

Table S5: Poisson distributed degrees: the results of 100 consecutive (paired) RDS samples for a
population with increasing prevalence. In the network with Poisson distributed degrees the over
and under-estimates are slightly lower than in the network with long-tails, around 25% in both
the raw and adjusted data and the average increase (over all 100 repeats) is close to the real
increase between timepoints. In particular, increasing all the degrees by 5 increases the error the
most of all the degree - biasing methods. This was also seen in Fig. S5; increasing the degree
by 5 increased the percentage error from 1 to 4%. However, the errors on the network with the
long-tailed degree distribution are much higher and we note that injecting networks in reality
appear to follow a long tailed degree distribution (the Bristol data for example).
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