Supporting Information

Ionic Permeability and Mechanical Properties of DNA Origami Nanoplates on Solid-State Nanopores

Calin Plesa[†], Adithya N. Ananth[†], Veikko Linko[‡], Coen Gülcher[†], Allard J. Katan[†], Hendrik Dietz[‡], Cees Dekker[†]

† Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

‡ Physics Department, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, 85748 Garching near Munich, Germany.

Table of Contents

	page
1 - Nanoplate Conductance in 1M KCl	2
2 - Nanoplate Conductance in 100 mM KCl	8
3 - Salt Dependence of a Honeycomb Nanoplate	10
4 - Spike Events and Nanoplate Recaptures	10
5 - Multi-Level Conductance in Docked Nanoplates	12
6 - Comparison of Single-Stranded and Double-Stranded DNA Tails	16
7 - TEM and AFM Characterization	17
8 - Nanoplate Design Details	23

1. Nanoplate Conductance in 1M KCl

Here we present the relative conductances for all the nanoplate designs docked onto nanopores of various diameters. First, the data for individual nanoplates is shown at 200 mV (Figures S1-S3). Subsequently data for all designs is shown at 100 mV, 200 mV, and 300 mV (Figures S4-S6). Relative conductances were determined using the mean value of the current after nanoplate docking divided by the mean value of the bare pore current, as described in Eq. 6. Solid lines represent fits using the model described in the main manuscript. The bottom x-axis is the measured bare pore conductance for that respective data point, while the top x-axis is the estimated diameter of the nanopore based on the formula

$$d = \frac{1}{2\pi\kappa} \left(\pi G_{pore} + \sqrt{\left(\pi G_{pore}\right)^2 + 16\pi\kappa l G_{pore}} \right) \quad . \quad (S1)$$

where the measured conductivity of the buffer κ is 13.5 S/m and the effective thickness is taken to be 8.6 nm as previously determined.¹ We observe the relative conductance increase as the nanopore diameter is increased from 5 nm to 30 nm, as predicted by Eq. 6. The voltage dependence of the fit parameter α is shown in Figure S7. The value of α is observed to decrease, indicating that the plates become less permeable, as the applied voltage is increased. A number of IV curves for each type of plate, docked onto various size nanopores are shown in Figure S8-S11.

Figure S1 - Relative conductance for Rothemund Rectangle (RR) nanoplates at 200 mV in 1M KCl.

Figure S2 - Relative conductance for 2 Layer Lattice (2LL) nanoplates at 200 mV in 1M KCl.

Figure S3 - Relative conductance for 3 Layer Lattice (3LL) nanoplates at 200 mV in 1M KCl.

Figure S4 - Relative conductances for the four different nanoplate designs at 100 mV in 1M KCl.

Figure S5 - Relative conductances for the four different nanoplate designs at 200 mV in 1M KCl.

Figure S6 - Relative conductances for the four different nanoplate designs at 300 mV.

Figure S7 – Dependence of the fit parameter α on the applied voltage. Smaller values of α represent less leakage through the nanoplate. We observe, with the exception of the 2LL nanoplate, that the leakage decreases as the voltage is increased. Error bars represent 95% confidence intervals, *i.e.* 2 standard deviations from the least squares fit.

In Figure S7 we see the counter-intuitive trend that thicker plates seem to have a higher leakage. Several observations and considerations indicate that leakage currents passing underneath the plate do not contribute significantly to the nanopore current: (1) Since the tails that protrude from the center of the DNA nanoplate are used to thread the plate into the pore, it is very unlikely that the nanoplate will be off center by more than the radius of the pore, relative to the axis of the pore. This ensures full coverage of the pore,

leaving no path for a leakage current between the SiN surface and the nanoplate in all but the very largest nanopores. Moreover, if an effect of non-complete coverage were present, we would expect our model to underestimate the relative conductance in large pores, since the presence of leakage currents would increase the value of the relative conductance observed. No such effect is observed in our data. (2) We can take a different approach that might lead to leaking currents and assume that the nanoplate is properly centered on the nanopore but that there is a small gap remaining between the SiN surface and the bottom surface of the plate which allows ions to flow through. The leakage current will then involve a surface-current contribution. The ratio between the bulk conduction through the ion permeable nanoplate and the surface leakage component increases as the pore becomes smaller which implies that the leakage currents would have a much larger effect in small pores. As a rough quantitative estimate of this type of effect, let's assume that a potential leakage current between the plate and the SiN surface is due to the contribution of the counterions shielding the surface change. Using equation 1 from Smeets et al^{2} we calculate the contribution of the counterion current relative to the bulk ionic current. At 1M KCl for a 20 nm pore, 5.8% of the total current (14nS of 251nS total) is due to the counterion current. If the pore diameter is reduced to 5 nm, the surface contribution increases to 19.6% (3.6nS of 18.3nS total). So we would expect the contribution of a potential leakage current to increase 3.4x between 20 nm and 5 nm. This is not at all what we observe. (3) The presence of leakage currents would have the effect of increasing the relative conductance, and we thus expect that our model would give smaller relative conductances compared to experimental data. Accordingly, the gap between model and experimental values would be largest at the smallest pore values. In fact we see just the opposite: Looking at Fig S2, S3, S4, and S5, it seems that the model over-estimates the relative conductance. Hence, also this observation indicates that a significant leakage current is not present.

Figure S8 – IV curve for an RR nanoplate docked onto a 4.5 nm pore. The nanoplate is pulled through the nanopore at 540 mV, after which the current returns to the bare nanopore values.

Figure S9 – IV curves for HC plates docked onto three different size pores. Black arrows indicate the voltages at which the nanoplates were pulled through the nanopore. The uncertainty in the current data is 0.25 nA (STD). a) A plate on a 4 nm pore. b) Four plates on a 14 nm pore. c) Four plates on a 28 nm pore.

Figure S10 – IV curve of a 2LL plate docked onto a 26 nm pore (red). The blue curve shows the IV characteristics for the bare nanopore.

Figure S11 – IV curves for 3LL nanoplates docked onto two different size pores. The black arrows indicate the voltage at which a nanoplate was pulled through the pore. a) 6.6 nm pore b) 13 nm pore.

2. Nanoplate Conductance in 100 mM KCl

The relative conductances for all the nanoplate designs docked into nanopores of various diameters in 100 mM KCl, 10 mM Tris, 1 mM EDTA, and 11 mM Mg^{2+} . The data for all designs is plotted at 200 mV and 300 mV. We observe a similar trend as seen with the data taken in 1M KCl, *i.e.*, a smaller RC for smaller pore diameters. The conductance model used to fit the data at 1M KCl, gives a poor fit at 100 mM

KCl. The model should, at low salt, be extended by integrating the contributions of surface charge, similar to previous work by Smeets *et al.*²

Figure S12 - Relative conductances for the different nanoplate designs at 200 mV in 100 mM KCl.

Figure S13 - Relative conductances for the different nanoplate designs at 300 mV in 100 mM KCl.

3. Salt Dependence of a Honeycomb Nanoplate

The relative conductance of all nanoplates is observed to increase as the ionic strength is decreased from 1M to 100 mM. This trend is shown for HC nanoplate data in Figure S14 for three different applied voltage levels. Similar trends are observed for 3LL and RR nanoplates (data not shown).

Figure S14 – The relative conductance observed at low (100 mM) and high (1M) KCl concentrations for Honeycomb (HC) nanoplates docked onto 20 nm pores at 200 mV (top-blue), 300 mV (middle-red), and 400 mV (bottom-magenta).

4. Spike Events and Nanoplate Recaptures

If a nanoplate is very flexible and the nanopore's diameter is sufficiently large, the nanoplate is instantly pulled through the nanopore instead of being docked. These events show up in current traces as fast, high amplitude spikes as shown in Figure S15 for RR nanoplates passing through a 24 nm pore at several voltages. We successfully carried out recapture experiments, shown in Figure S16, in order to confirm that the nanoplates are being pulled through the nanopores.

Figure S15 – Short spike events observed for RR nanoplates in a 24 nm pore at voltages of 200 mV or higher.

Figure S16 - The recapture of RR nanoplates that are pulled through a 24 nm pore. (a) An event is observed at a voltage of 100 mV. The voltage is then switched to -200 mV, 120 ms after the first event. The nanoplate is recaptured 228 ms after switching. (b) Two short events are observed at 200 mV applied voltage. The polarity is reversed 2.98 s after the first event and 530 ms after the second. After reversal two recapture events are observed at 530 ms and 4.29 s after switching.

5. Multi-Level Conductance in Docked Nanoplates

Current traces from docked nanoplates often exhibit spontaneous sudden jumps in the current level. Examples of this multi-level conductance effect are shown in Figure S17 for HC nanoplates in several different pores. The phenomenon of multiple conductance levels was observed with all nanoplate designs, in all pore diameters, at all salt concentrations tested. The source of this effect is attributed to mechanical buckling and re-orientation of the nanoplate. This is supported by the observation that current level jumps are often observed before a docked nanoplate is pulled through the nanopore, as shown in Figure S18 and Figure S19.

Statistics on docked nanoplates reveal that, except for the 2LL nanoplate, 60% to 75% of docked nanoplates have multiple levels at 100 mV applied voltage, as shown in Figure S20. The effect occurs more frequently as the voltage is increased. The magnitude of these jumps, given as the change in relative conductance normalized by the average relative conductance, is shown in Figure S21. It varies from 0.05 to 0.07 at 100 mV, and increases to 0.08 to 0.1 at 200 mV.

In considering possible sources for the observed current jumps we also considered the free staple oligos present in the DNA nanoplate solution after purification. The possibility of free staples causing the observed current jumps can be ruled out by several experimental observations. (1) We observe that not all nanoplates show the current jumps, even within the same experiment with the same buffer containing excess staples. For example, in Figure S20 at 100 mV, at least 25% of events show no jumping behavior. If excess staples were the cause we would expect all plates to show some jumping behavior. (2) We typically see current jumps occur in both directions, *i.e.* towards higher and towards lower current values. If current jumps were due to staples approaching the plate, the observance of both downward and upward current jumps would mean that staples which are brought to the nanoplate either pass through the plate, which is extremely unlikely, or return back into solution which is also unlikely due to the high electric fields. (3) Let us nevertheless assume that free staples temporarily get stuck to the surface of the DNA nanoplate. What magnitude current drop would we expect? The magnitude of the jumps we observe ranges from 5% to 10% of the baseline value (Figure S21). If we assume optimistic values for the hydration volume of the free staples (3 nm radius of gyration) and use the standard volume exclusion formula to calculate the expected

current blockade produced by a free staple inside the pore we find values that vary from 1.5% for 20 nm pores, to 36% for 5 nm pores. This does not match our observations which show no significant pore size dependence for the current jumps. Furthermore, excluded volume analysis states that there should be no voltage dependency for the normalized blockade, while our data shows that the normalized blockade increases with voltage for most plates (Figure S21). (4) Using pessimistic retention values of 30% for the low-MW oligos and 95% for the high-MW DNA nanoplates, if we start with 20 nM scaffold DNA and 200 nM staples, we estimate final concentrations of 14 nM nanoplates and 14 nM staples after 4x purification (assuming a retention volume of 58uL). Such a free staple concentration of 14 nM should produce an event rate of ~4Hz. The observation that the frequency of buckling is observed to vary substantially among different plates in the same experiment, suggests that the free staples are not the source of buckling.

Figure S17 - Examples of Honeycomb nanoplate docking events in several different pores exhibiting multiple conductance levels.

Figure S18 - a) A 3 Layer Lattice nanoplate is captured in a 10 nm pore at 100 mV. The applied voltage is then increased to 200 mV, 300 mV, and 400 mV. The nanoplate is finally pulled through the pore after the voltage was set to 400 mV. b) Close-up of the trace in the seconds before the nanoplate is pulled through. The presence of multiple levels in the current trace right before the nanoplate is pulled through (Figures S18, S19) supports the hypothesis that these levels are related to mechanical buckling of the nanoplates.

Figure S19 – Examples of two other nanoplates exhibiting, similar to the data in Figure S18, multiple conductance levels right before being pulled through the pore.

Figure S20 – Percentage of events which displayed conductance levels jumps, while docked into a nanopore, as a function of voltage. In all cases we see the percentage of events with jumps to increase as the voltage is increased.

Figure S21 – The normalized magnitude of the conductance levels shifts (Δ RC/RC) as a function of voltage. The magnitude of the jumps increases as the voltage is increased, except for the 2LL nanoplate.

6. Comparison of Single-Stranded and Double-Stranded DNA Tails

Two HC nanoplates, one with a ssDNA tail and another with a fully hybridized dsDNA tail, were compared, as shown in Figure S22, in order to determine if the nanoplate's tail influenced the observed conductance values. The slightly lower relative conductance seen for the dsDNA tail can be explained by its larger excluded volume, since the tail is threaded through the pore while the nanoplate is docked.

Figure S22 - Relative conductance for Honeycomb nanoplates with single-stranded and double-stranded DNA tails docked at 200 mV in 1M KCl. The slightly lower conductance of the nanoplate with a dsDNA tail is attributed to the tail's higher excluded volume.

7. TEM and AFM Characterization

The long single stranded tail forms a large blob above the nanoplate as visible in Figures S23 and S24. The nanoplates were also scanned with AFM under a variety of different ionic conditions and found to be stable (Figure S25).

Figure S23 – An AFM image of a RR nanoplate with the ssDNA tail visible. The scale bar is 50 nm.

Figure S24 - An AFM image of a 2LL nanoplate with the ssDNA tail visible. The scale bar is 50 nm.

Figure S25 - The RR nanoplate imaged at three different ionic strengths. No significant differences are noticeable between the different ionic conditions. Left: 0 mM KCl, Center: 100mM KCl, Right: 1000mM KCl.

Montages of the TEM micrographs for all plates are shown in Figures S26 to S29.

Figure S26 – The negative stain micrographs of the RR nanoplate, with the average shown in the top left.

Each micrograph is 137nm x 137nm. Adapted from Sobczak et al.³

Figure S27 – The negative stain micrographs of the 2LL nanoplate, with the average shown in the top left. Each micrograph is 91nm x 91nm.

Figure S28 – The negative stain micrographs of the 3LL nanoplate, with the average shown in the top left.

Each micrograph is 91nm x 91nm.

Figure S29 – The negative stain micrographs of the HC nanoplate, with the average shown in the top left.

Each micrograph is 91nm x 91nm.

8. Nanoplate Design Details

A detailed description of each nanoplate design is provided. CanDo modeling results are shown for each plate (Figure S30 to S33) as heat maps of the RMS fluctuations in different regions of each object. Briefly, these fluctuations are determined by applying external forces to an origami object which has been modeled as a series of elastic rods where cross-overs are rigid constraints and observing the structural relaxation using finite element analysis.⁴ The scaffold routing diagrams are provided for each plate design (Figures S35 to S38) as generated by caDNAno, as well as a gel-electrophoresis characterization of assembled plates (Figure S34). Finally, we provide the sequences of all of the oligo-staples used to generate each nanoplate.

Figure S30 – CanDo simulation of the HC plate. This plate is predicted to exhibit the lowest flexibility of all of the designs, as evidenced by the small RMS fluctuations present over much of the plate.

Figure S31 – CanDo simulation of the RR plate. This plate is predicted to exhibit the highest flexibility of all of the designs.

Figure S32 – CanDo simulation of a 2LL plate. This plate is predicted to exhibit a lower flexibility than the RR plate, but higher than 3LL or HC.

Figure S33 – CanDo simulation of a 3LL plate. This plate is predicted to exhibit a low flexibility, slightly larger than the HC.

Figure S34 – The spin-filtered nanoplates run on a 2 % agarose gel containing EtBr. From left to right: scaffold 7560, HC (7560), RR (7560), scaffold 7704, 2L (7704), 3L (7704). The scaffold is a reference only for the running speed of structures, the concentrations are not comparable. All the excess strands have been filtered out as described in the methods.

Figure S35 – The scaffold routing for the HC plate. Generated using caDNAno v 0.2.

Figure S36 – The scaffold routing for the RR plate. Generated using caDNAno v 0.2.

Figure S37 – The scaffold routing for the 2LL plate. Generated using caDNAno v 0.2.

Staple	sequen	ces for	HC	plate:

sequence	description	length
GCTATATTTTCATTTACTAATGTACCAATTTCATCAACATTAATCAAAA	core	49
CATCTTCAATAAGACCTGTTTGTAGGGCACATGTAAAAAGGTAACATGT	core	49
GTTGATAGAGAGTTATTGCCCCTAAATCGGAACCCAGGGCGC	core	42
AACAGTGAGGAGTGAATCACCAGTAGCACCATTACGCTTTTG	core	42
CTTGAGTCAACAGTCGTTAGTGGCTACAGAGGCTTTCTTT	core	49
GAAACATAAGGATTTAGGTGTGGCCGCTTTTGCGGCCGATAT	core	42
AAACAGTAAGATTTTGCTAAATTGCGAATAATAATCGACAAA	core	42
AGCCACCCAGAATGAATAAGTTTTAAATAAACCGAACTGGCA	core	42
GAAAGTAATCAAGTCAGCACCAATTATTCATTAAATTCAACCGATTGAG	core	49
GAACAAAGCCTTTACAGAGAGAAACGATAACGAAAATACCAG	core	42
TCACCGGAACCAGACCCCCTTTAGCGTCTTATTCT	core	35
AGATAACACACCCTCATAGTTGTTTCCATTAAACGAACCTAA	core	42
AATTGAGTTAAGCCTTAGACGAAGTTTTTAAAGAC	core	35
TAACTGACCACAAGACAATGACCGAACATATTACG	core	35
ACCGTTCAGAGCCACCACCCTTTTTCTGTATGGGTCATCGGA	core	42
CAGATAGAATAGCATTGATATAGTTTCGTCACCAGCAGCCCT	core	42
GCAAGCCTTCCAGATTCAGCGGAGTGCACACGGGGTCAGTGC	core	42
AGGATTAAGGCTCCAAAAGGATCGAGGTATTCGGTCCTGACG	core	42
CAGTATGGGCAACACCAGAGCCGCCGCCATTGGCCATAGCTAATCAGAG	core	49
ATAAGTICAAAAGAGGAAACGCAATAATTACTGGTGAAAGCGAGGGATA	core	49
GAAACGCGACTCCTAAGTTACCAGAAGGAATAAGAATCCTCAAACCCAT	core	49
GGCGGATTAATGCCATACATGCATTAGCCCATTTG	core	35
GCCGTCGCACCCTCCAGTAAGCTCAGAGTATGGTT	core	35
	core	42
	core	49
	core	42
	core	42
	core	49
	core	4Z 25
	core	42
CGATTATTAGCAACAAATGAACATTTTCCAGTCTCACCGCCATCACAAT	core	40
TCGATAGTTGCCTTATTAGCGACCGCCACCCTCAGCCCGGAA	core	42
GAACCGCAGAGGGTAGTACCACGTTGAAAATCTCCGCTTGAT	core	42
GTAAGCTTATTGTGTCGAAATCCGCGACAATTACGTAGGAATAGCTTCA	core	49
TCATTACAAGAGGAAGCCCGAGAGAATGATATTCAAAATGGT	core	42
ATGCAGACAAATATCGCGTTTTAATTCGACCACATACTTTAA	core	42
AAAGATTGGAAGCAAACTCCAAATTGCTACGCTTA	core	35
AAAACGAGTTGGGAAGGCACCGGTAAAACCACAGA	core	35
AACCGCCGTCATAGGCCACCAACAAAAGGGCGACAGGTGAATGAA	core	49
TGATTAAAAAGACAGAGCCGCCACCAGACAAATAAGCAAGAA	core	42
AGAAACAAACGTAAGCGCATAAAGAAGTTTTGCCAAGCGTCC	core	42
GAATTACTGAGATTAGGCATACACTATCATAACCCACGGTGT	core	42
TCAGGACACTAACGGAATCTTTGCGGGAGGTTTTGTTCTAAG	core	42
GAGGGGGGGGTGTACCAACTTTCTTGCTTGCCTTTATCAAGAG	core	42
AGAGGCTGTCATAAACCATAACAACGCAAGGATAA	core	35
ACGATAACCCCTCAAATGCAATGACCATTAGATAC	core	35
TCGTTTACAAAAGGCTGCTCCGGAGATTAAAGGAACAACTTT	core	42
GATTAGTCCATATAGAATATATAGGTAAAGATTCAGCCGGAGGAAGAAC	core	49
GTACCGTCGATCTAGGAGAATTAAAAACAGGGAAGATTTATC	core	42
GTCACCGGCCAAAGCCGGAACCGCCTCCCGTCGGCATTTTCGACCCTCA	core	49
	core	42
	core	35
GCATCAAATCAGGTAATACTGCGGAATCTTTGCAAGGCTGGCT	core	49
AAAGATTCCAAATCCCAGAACCGCATAAGATCGTCAGTATAG	core	42
		·

AAGACTTCAAGAACGCTTGAGAATGACAAAGACAG	core	35
AAGCGAAAGCTCAACTGGAAGTGCGAACGAGTAGACTGAGAG	core	42
GAGAGTATTTGCGGAACGCGAAATAGCAAGCAAATCCGTTTT	core	42
GTACAACATGTTACTTAGCCGTTGATACATAACGCCCAGACG	core	42
GAAGATGAGTACCTTACCATACAGCAAATACCGAATTTTTAT	core	42
TTAAACAAAAAAAAAGCGGGGTGAACCTAAGACTGTCACCAATTATCACC	core	40
	core	35
	coro	35
	coro	40
	core	49
	core	30
	core	30
	core	42
	core	42
	core	42
CTCATATCATAGCAAGAATGGTCATTGCTTTAGTTCTAAAGT	core	42
TAATGTGATGCTGTCCAGACCCATCAGTCTTATGCACACTCA	core	42
GCAAATATTCGCATATAATTCTCACCCAAATCAAGAAACCGT	core	42
ACGCTGAGAGCCAGTCAAAATTTTGGATTCTGTAAATCGTCGTGATGCA	core	49
ATGTCAAACGCTGGCAGTGAGAGCCCCCGATTTAGCCGCGCTGCCGATT	core	49
CCAAGTAAATAATCGGCGGTTGCGAGAAAGGAAGGTGGCAAG	core	42
ACTGATAGCTCATGGGTTGCTTAAAGCATTCACCGGTCGGATT	core	43
CCTTTTTTAGCTTATATCATCTTAATTTGAAAGCGTTCACCA	core	42
TAAATTTAGATAGGGTTGAGTAAAGAACCTATCAGACAATAT	core	42
CATTTTGATAAATCAAAAGAACATATAACGTGCTTAATCAGT	core	42
CAGCATTATCGTAACAAACAACCAATTCTTTCATTTGAGCAA	core	42
CCTTTAACCAATAGGGGTCGAGGTGCCGTTGACGA	core	35
	core	42
TCAATATGAGGAAGATAGATATGAGTAGAGCCATTGGGCGAA	core	42
	core	42
	core	3/
	coro	40
	core	49
	core	42
	core	30
	core	42
	core	49
GAAAAATACCAATCCCGCACTCATCGTGAACGGTAACGAGCA	core	42
	core	42
TCTGAAAATATTTTGTGAGGCGGTCAATCAGATTTTAGACAG	core	42
TACCGCCAAGAACTGTAATAATTGCTGAACCTCAA	core	35
GTGGACTAAAGAGTCTGTCCATTGATTACAAACTAGATTAGA	core	42
CCAACGTTAGCCCGTTGTTAAGGAAGATGCATTAACTGTTTA	core	42
TCCTCGTATCCCTTGCCCTGAATCAGAATACAGGCATTTCGC	core	42
AGAGCGGAATCCTGAGAAGTGCGAACCATGCGCGATATTAGA	core	42
AAAGGGAATGGCGAAAATCCTGTTTGATACAGGAGTAATGCGTCAATCG	core	49
ATGCAGATATAAAGTACCGACATTTAGGCTGACCTTAAAAGT	core	42
GCACGAAGCAACAGGAAAAACGCCCTAAAACATCCATACATT	core	42
AACCACCTTTACATTGGCAGATAAGAATAACGCCATTAATTG	core	42
GTCACGCGAACGTGTGCGTATTTCCAGTAATTAATAAAGGGT	core	42
AGAATCGATTACTATGATTATTGAAAACATAGCGAAACCTCCTTAATTT	core	49
ATTTCAAAACAATATGAAAGGCATCACCCATCACTCCGAGTA	core	42
TTTTTTGGAACGCCAATGTGAAAGCTAATTTATTATCAAAA	core	42
TGAGGATCTGAATAATGGATTATGTGAGTGAATAAATCAAGAAGCAAAA	core	49
ACGCCAGGAGCTAAGGTGGTTGCGGTCCTCATATGTACCCCG	core	42
GAACGGTAACAGAGTGAATGGCGACAACTCGTATTTGGCAATTAAAGAA	core	49
GGCAAATAAAATATAAACAGTACATAAAACATTTAATTATTC	core	42
TAGAACCTTTACATCGGGAGATTACCTGAAACAAAATTAATT	core	42
GTTGGGTGAATCCTCAGATGAAAATCCTACAGACA	core	35
	core	42
ΑΑΤΟΟGΑΑΑCAAACCCTTGCTTATACTTTTAGAAG	core	35
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	core	35
ΔΤΤΩΡΤΔΡΡΩΤΑΤΤΔΔΡΔΡΡΩΡΟΤΩΡΛΔΛΡΔΡΔΑΤΟΔΤΟΔΔΤΤΔΔΤΤΤ	core	10
	core	43
	core	+ <u></u> 25
		30
	core	42
	core	42
	core	49
ACATTATGAGATAGAATAAAAAGGGCGCGAAGAAAAACGCGC	core	42

TTGAGTAAGAAGGATATGCGTTAAATAAGGCGTTATGACCTAGAGACTA	core	49
GCCGTCAGTTATCTCAACAGTACGGATTCGCCTGAGAGGCGAACAATTT	core	49
CTTTACACTGATTGTATTTGCGAATATACAGTAACATAATCGCAAGACA	core	49
TCCGGTAAAGCCTTTACAATTCAGTTACAAATAAGAATAACA	core	42
TTTTTTTTTTTTTTAAGGTGGCATGTAAACGTTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTAATATTGACGGAGTAATCAGTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTCAGATGAACTAATAGTAATTTTTTTT	polyT_left	49
GGAGGGAAGGTATTTTTTTTTTTTTT	polyT_left	28
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTAGCGACAGATTAAGAGGCTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTTTTGTAGCAAACCCTCAATTTTTTTT	polyT_left	49
TTTTTTTTTTCAGGGAGTTAAAATCACCGTACTCTTTTTTTT	polyT_left	49
CATTTGAATTACTTTTTTTTTTTT	polyT_left	25
ТТТТТТТТТТТТТТСАТААТСАААА	polyT_left	26
TTTTTTTTTTGTCAGAAGCAAAGCTCATTCAGTGTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTACAAGAGTCAATTAACCGTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTTAATGTTTAGCGAGCTGAATTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTTTGTTTATCAGGAAAGAGGATTTTTTTT	polyT_left	49
TTTTTTTTTTTAATAAGGCTTGCCGCTGAGGCTTGTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTGTTACAAAA	polyT_left	25
TTTTTTTTTTTTTTGAGACTCCATTGTATCGTTTTTTTTT	polyT_left	49
TTTTTTTTTTCCTGTAGCCAGCAAACATTATGACTTTTTTTT	polyT_left	49
TTTTTTTTTTTTTTAACAACTAATATCGGCCTTGCTGTTTTTTTT	polyT left	49
TTTTTTTTTTTAGGAGGTTTAGTTTTGCCATCTTTTTTTT	polyT_left	49
TTTTTTTTTTTTCTACGTGAACCAGCGTCTGGCCTTTTTTTT	polyT left	49
TTTTTTTTTTTTTTCAATATCTGGAATACCAATTTTTTTT	polyT left	49
TTTTTTTTTTCCTGTAATACTTCTGACTATTATATTTTTTTT	polyT_left	49
TTTTTTTTTTGTAATATCCAGAGGCGATGGCCCATTTTTTTT	polyT_left	49
TTTTTTTTTTCCGACCGTGTGATATACAAATTCTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTCAATATGATTGCATTAATTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTGAGCGCTAATTCTTACCGAAGCTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTGATAAGAAATCACCATTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTCCAAGAACGGGATCGTAGGAATCTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTCCACTACGAAGAAAAATCTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTGGCCAACACATTTTGCGTTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTGTAATAAGAGAAACGCGCCTGTTTTTTTT	polyT_right	49
AATTTAATGGTTTGAAATATTTTTTTTTTTTTTTTT	polyT_right	35
TTTTTTTTGAGGCAGGTCAGACGAGCATTGACAGGAGGTTTTTTTT	polyT_right	49
TTTTTTTTTTTGAGCGTCTTTCCTTAACGTCAAAATTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTACGTTAATTTGCTCCTTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polyT_right	39
TTTTTTTTTTTTTCCTTTTTAAGAAAAGTAAG	polyT_right	35
TTTTTTTTTTTTTTGTAGCATTTACGTAATGTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTGCGGGCGCTGGGACATTCTTTTTTTTT	polyT_right	49
TTAGCAAACGTAGAAATTTTTTTTTTTTTTTTT	polyT_right	32
TTTTTTTTTTTTGAACAAAGAAACCACC	polyT_right	32
TACAAACTACAACGCCTTTTTTTTTTTTTTTTT	polyT_right	32
TTTTTTTTTTTAACCTCCCGACTACCAACGCTAACTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polyT_right	49
ACGCTGAGAAGAGTCAATAGTGATTTTTTTTTTTTTTTT	polyT_right	39
TTTTTTTTTTTTTTATACATACATAAAGGT	polyT_right	32
TTTTTTTTTTTTACCAGTATAAAATTTTCGAGCCATTTTTTTT	polyT_right	49
TTTTTTTTTTTTTGAATCGGCCGCGAAAGGATTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polyT_right	49
TTTTTTTTTTTTTTATTACCGCGCCCGGCGTTTTAGCGTTTTTTTT	polyT_right	49

Staple sequences for **RR** plate:

sequence	length
TTACAAAATCGCGCAGAGGCGAATTTAATGGA	32
AACGGATTCGCCTGATTGCTTTGAGAGTGAAT	32
GTAACAGTACCTTTTACATCGGGATATTAATT	32
GATTTTCAGGTTTAACGTCAGATGAATATACA	32
TGCACGTAAAACAGAAATAAAGAAAAATCCTT	32

GAAGGGTTAGAACCTACCATATCAAGTTTGAG	32
CCTGATTGTTTGGATTATACTTCTAGAAACCA	32
TCAATTACCTGAGCAAAAGAAGATTACATTTA	32
TAATAACGATATCAGAGAGATAACTCCAAATA	32
AAAGTTACAAGCCCAATAATAAGATACAAAAT	32
CCTTTTTATAGCAATAGCTATCTTAGAATAGC	32
CGGCAAAAGGGTTGAGTGTTGTTCAAAGGAGC	32
GCGAAAATTCCACTATTAAAGAACCGAACGTG	32
AGCAAGCGAAGGGCGAAAAACCGTCCCCCGAT	32
TGCCCTTCCCACTACGTGAACCATCGTAAAGC	32
TTAAGACTCCTGAACAAAGTCAGAAAAAATGA	32
ATGGTTTACGATTGAGGGAGGGAATAGCGACA	32
TTCCGGCAAGGAAGATCGCACTCCGACTGTAG	32
AACTCACACAGTTTGAGGGGACGACGACAGTA	32
GCTTTCCATGTAGATGGGCGCATCTGTAAACG	32
GCATTAATCGGATTGACCGTAATGTAAATTTT	32
GCGGTTTGCAACCCGTCGGATTCTCAATAGGA	32
TATAAAAGCCGACTTGAGCCATTTCCATTACC	32
GTTTATTTAATTATTCATTAAAGGAATGAAAC	32
TTGACGGATGTCACAATCAATAGAAAACGCAA	32
CATTCAACCCAGCGCCAAAGACAAAGCCGAAC	32
TCGGCCTCCCGCTTCTGGTGCATGAGTGAGCT	32
GCATCTGCTTAATTGCGTTGCGCTTCCGAAAT	32
CACGTTGGGTCGGGAAACCTGTCGCCCAGCAG	32
ACAAACGGGAATCGGCCAACGCGCAGAGTTGC	32
GCGAGTAACGTATTGGGCGCCAGGCAGCTGAT	32
CACCGTCAAAACGCAAAGACACCATGGCATGA	32
GAATCAAGGGAACCAGAGCCACCACCTCATTA	32
CGCGTTTTGCGTTTGCCATCTTTTCTGAATTT	32
GATTGTATTCAGAAAAGCCCCAAACATAGCCC	32
TTAATATTAGCATGTCAATCATATAATGCCTG	32
TGTTAAATCAAGAGAATCGATGAAAAGGGTGA	32
ACGCCATCTATCAGGTCATTGCCTCCATCAAT	32
ATTAGCAAGAGCCACCACCCTCAGCCAGCATT	32
CATCGATACAGAGCCGCCACCCTCCGATTGGC	32
GCCTCCCTGCAGCACCGTAATCAGGGTAAATA	32
AAATCACCTTTGCCTTTAGCGTCAAAGGGCGA	32
CCTTATTACATCGGCATTTTCGGTAACAGGAA	32
GTTGATAAAAGCAAATATTTAAATGTAACCGT	32
GTAAAACTTTGTTAAAATTCGCATGGATAGGT	32
GGAGCAAACAGCTCATTTTTTAACCCGTGGGA	32
ACAAAGGCAAAAATAATTCGCGTCAAATGTGA	32
CACCCTCAGGCCGGAAACGTCACCTGAATTAT	32
AAGCCAGAAGTGCCTTGAGTAACATATAGCCC	32
ACCGTTCCGGAGTGTACTGGTAATGGAGGTTT	32
AGAACCCTTTCAACGCAAGGATAAGGCTTTTG	32
AGTAATGTCCCTGTAATACTTTTGTTGACCAT	32
GAAAGGCCAAGCTAAATCGGTTGTTAACCTGT	32
ATGATATTAGCAAAATTAAGCAATCGAGCTGA	32
GACAGGAGTTCTGAAACATGAAAGTTAGGATT	32
CTTGATATTTAATGCCCCCTGCCTCGGATAAG	32
ATAAACAGTCACAAACAAATAAATCCGGAACC	32
ACGGGGTCATGGAAAGCGCAGTCTCATAATCA	32
ATGATACAAGTAAGCGTCATACATAAATTTTT	32
GCCTTTATCATATATTTTAAATGCGTACCCCG	32
CATTATGAGTAGGTAAAGATTCAACGGTAATC	32
AGAGCATAGGAGACAGTCAAATCAGAGAGTCT	32
AAAGAATTCAACCGTTCTAGCTGAAGAGATCT	32
ACCTATTAGTTGAGGCAGGTCAGAAGAACCGC	32
GGAATAGGAGCAAGCCCAATAGGACAACAGTT	32
AGTACCGCCCTCAGAGCCACCACACAACTAA	32
ATTCTGCGATTCCATATAACAGTTACCCTCAG	32
	-
TAGATACATATGCAACTAAAGTACGATTGCAT	32

TTAGCTATGAATATAATGCTGTAGAAGACTTC	32
AAAGGTGGCATTTTTGCGGATGGCTCAAAGCG	32
AGCGGGGTCCTGTAGCATTCCACAGTTTTGTC	32
TGCCGTCGACTGAGTTTCGTCACCATTTTCTG	32
ACCGTAACAGAGGGTTGATATAAGGTGCCCGT	32
TCAGGGATTGTATCACCGTACTCAAAGTTTTA	32
AACCGCCACACCCTCAGAACCGCCGATTCCCA	32
GAAGTTTCAACGAGTAGATTTAGTCGGGAGAA	32
GTTTTAAATTTCGCAAATGGTCAAACCAAAAA	32
TAATTGCTATTTCATTTGGGGCGAAAGCCTC	32
TAAGAGGTCATCAATTCTACTAATGGCAAGGC	32
CTACAACGTTTGCTCAGTACCAGGATTTCGGA	32
TCAGCGGATATCGGTTTATCAGCTATCGGAAC	32
AGGAATTGAAAAAAAAGGCTCCAATTTGAGGA	32
ACTATTATATCAAAAATCAGGTCTCACGTTGA	32
CAAAAAGATTAAACAGTTCAGAAAAGATACAT	32
AAATATCGCATAAATATTCATTGATAGTAAGA	32
AACCAGACAGACTGGATAGCGTCCACCAGACG	32
GTCTTTCCGACAATGACAACAACCTGAGGCTT	32
TATGGGATTTCTTAAACAGCTTGACGGGATCG	32
AACCTTGCTTATCAAAATCATAGGCCGACCGT	32
AATTTTCCGATTAAGACGCTGAGAAATAAACA	32
ACAAACAAGAGGATTTAGAAGTATACATAGCG	32
TGCCCGAAATAGATTAGAGCCGTCGAAGATAA	32
TAACATTAATCTAAAATATCTTTAAACACCGC	32
CCAGAAGGAAATCAACAGTTGAAACAGCAGCA	32
ACAATTTCTATATGTAAATGCTGAAAAACTTT	32
AACAGTACTTTAACCTCCGGCTTAATCTTCTG	32
AGGTGAATTTTGCTAAACAACTTTACCCATGT	32
TTTAATTGGTGAGAATAGAAAGGACCTCATTT	32
AAATCTCCCGAATAATAATTTTTTTTTACCCTG	32
GACCATAAAGTCAGAAGCAAAGCGGGTGTCTG	32
CAAATGCTTTAAGAGGAAGCCCGACTCAACAT	32
GGAATCGTCGTTTTAATTCGAGCTTTAGAGCT	32
AAATGTTTCGGAAGCAAACTCCAACCTTTTGA	32
GTTGCGCCAGACGTTAGTAAATGAAGTACAAA	32
GAGGGTAGTAAAACGAAAGAGGCAGGGAACCG	32
CTAAAGACAAATACGTAATGCCACAGATGAAC	32
ΔΟΟΔΑΤΑΟΔΟΔΑΔΟΔΤΤΟΔΤΟΔΟΤΤΤΟΟΔΤΤΑ	32
AACGCCAAAAAACGAACTAACGGAAGAACCGGA	32
ACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG	32 32
AACGCCAAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG	32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA	32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA	32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGGAAAGACAGCTGCTTTCG	32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGCAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGCAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGATGGAAGAACCGGA ACGATAAATGCGATTTGGGAAGAACAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGCAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGATGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGACAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGCAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGACAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGCAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGATGAACGAAGAACCGGA ACGATAAATGCGATTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGAAAGAACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGAAAGAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3
AACGCCAAAAACGAACTAACGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGAACCGGA GCAACACTCAGGACGTTGGGAAGACAAAGCTG ACGATAAATGCGATTTTAAGAACTCTGACGAG GCAGGGAGGCGCGAAACAAAGTACTGTCGAAA TCACCCTCCACTCATCTTTGACCCAGCCGGAA CACTAAAAGCAGCGAAAGACAGCTGCTTTCG CACCAACCCAAC	32 32 32 32 32 32 32 32 32 32 32 32 32 3

ATACATTTTTCGACAACTCGTATTATTGCGTA	32
AACAACTACGTTATTAATTTTAAAAAATTATT	32
GGAAGGTTTCATTTTGCGGAACAAGAATAATG	32
CAGTTGGCAGCGGAATTATCATCAAATATAAT	32
TATATAACATTTGAATTACCTTTTTATTCATT	32
GTGATAAACAACGCTCAACAGTAGCTGTTTAT	32
CCGGAATCATGCGTTATACAAATTGAAAAATA	32
AAAATACCGATAGCCCTAAAACATGCCTGTTT	32
AACAGAGGTTGAATGGCTATTAGTATATCCAG	32
CTGCAACAAAGCGTAAGAATACGTAACAGGAA	32
AATGAAAATGGCCAACAGAGATAGTTTGACGC	32
TTCAAATAGCAGAGGCATTTTCGAAAGGTAAA	32
ACCTAAATGCCATATTTAACAACGTAAACAAC	32
TGAGAATCTTAATGGTTTGAAATATCTGAGAG	32
TATAAAGCTAAGGCGTTAAATAAGAGAGTCAA	32
AGTATCATATAATTACTAGAAAAACGCCATTA	32
	32
	32
	32
GGACATTCATCTAAAGCATCACCTTATCTGGT	32
TAATTTAGTATTTTAGTTAATTTCGGTTGGGT	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
	32
AGGCCACCATGGAAATACCTACATAACCCTTC	32
	32
AICGIAGGGICCAGACGACGACCAACCAACAIG	32
GATTAGTTATATTATTATCCCAACCACAAGA	32
TTATCCTGAGCCTAATTTGCCAGTGCAAGAAA	32
CGCTGCGCGGGCGCTGGCAAGTGTACGAGCGT	32
AATGCGCCGGAAGGGAAGAAAGCGCAGTTTGG	32
CTTTGACGTGACGGGGGAAAGCCGGGTGGACTC	32
TTAGAATCGGAACCCTAAAGGGAGCTATCAGG	32
CTAAGAACGCCTTTACAGAGAGAAAGAATTAA	32
GACTTGCGTTTTTGTTTAACGTCGGGTAATT	32
AGAAACGAGGAGGTTTTGAAGCCTTACCGCAC	32
AAACAGCCGCTATTTTGCACCCAGCTTATCAT	32
CTTTCCAGAATCTTACCAACGCTAAGCGGTCA	32
GGGCGCTAGTAACCACCACACCCGTCTTTGAT	32
GCGAGAAAGCTACAGGGCGCGTACCCATCACG	32
TTAGAGCTAGCACGTATAACGTGCAATCAGTG	32
ACTAAATCAGAGCGGGAGCTAAACCGGTACGC	32
AAATAGCAGCGAGGCGTTTTAGCGTTATTTTC	32
ATTGAGTTCAGAAGGAAACCGAGGAAATTCAT	32
CAATGAAAAGAAAAGTAAGCAGATAGCCAGCT	32
CCGAGATATCCCTTATAAATCAAAACCGAAGC	32
AACAAGAGCCTGTTTGATGGTGGTCACTGCCC	32
CAACGTCAGTCCACGCTGGTTTGCTGCCAGCT	32
GCGATGGCACCGCCTGGCCCTGAGGGGGGAGAG	32
CTGAACACCCTTATTACGCAGTATTGGCAACA	32
GAGCGCTAGAATACCCAAAAGAACCGGAATAA	32

Staple sequences fo	or 2LL plate:
---------------------	----------------------

sequence	description	length
TTTTTTTTGTTCCAGTTTGGAACAAGAGTCCACTATTTTCTTTT	rightside_polyT	45
TTTTTTTAACAGCTGTAGGGTTGAGTGTTTTTTTTT	rightside_polyT	37
TTTTTTTGTGAGCTAACTCAAGACGGGCTTTTTTT	rightside_polyT	37
TTTTTTTTGGTCGGCGGGTGCCTAATGATTTTTTT	rightside_polyT	37
TTTTTTTTAAGCTACGTGGTTCTGACGTTTTTTTT	rightside_polyT	37
TTTTTTTTCTGGAGTGAGTAAACAGGGCTTTTTTTTT	rightside_polyT	37
TTTTTTTGGCCAGTGCCAAGCGCTCGCCTTTTTTT	rightside_polyT	37
TTTTTTTCAAAGCGCGTTGTAAAACGACTTTTTTT	rightside_polyT	37
TTTTTTTAACGGCGGATTGAAAACCAGGTTTTTTT	rightside_polyT	37
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	rightside_polyT	37
TTTTTTTATCAGGTCATTGCCGTTAATATTTTTTT	rightside_polyT	37
TTTTTTTTATTCATTATCTACAAAGGCTTTTTTTT	rightside_polyT	37
TTTTTTTCGAGGCATAGTAAGTCATAAATTTTTTT	rightside_polyT	37
TTTTTTTAACTGGCTCCAAAAGGAATTATTTTTTT	rightside_polyT	37
TTTTTTTAGAACCGGATATTATTTTAAGTTTTTTT	rightside_polyT	37
TTTTTTTCGAAATCAGTAATCTTGACATTTTTTT	rightside_polyT	37
TTTTTTTTAAACGGGTAAAAAATTGTGTTTTTTT	rightside_polyT	37
TTTTTTTCGCATAACGAGGAAGTTTCCATTTTTTT	rightside_polyT	37
TTTTTTTAATTGCGAATAATATCGCCCATTTTTTT	rightside_polyT	37
TTTTTTTCGCCTGTAGAACAACTAAAGGTTTTTTT	rightside_polyT	37
TTTTTTTGTATCACCGTACTAACTACAATTTTTTT	rightside_polyT	37
TTTTTTTTGCCCCCTGCCCGGAATAGGTTTTTTTT	rightside_polyT	37
TTTTTTTCAAATAAATCCTCACAGTTAATTTTTTT	rightside_polyT	37
ATTGGCCTGGAACCGCATCACCGGAACCAGAGTTTTTTT	rightside_polyT	40
TTTTTTTCCACCACCTGATATTCACAAATTTTTTT	rightside_polyT	37
TTTTTTTCGGAACCCTGCGCGTAACCATTTTTTT	leftside_polyT	37
CGGTCACGCTAAAGGGGCCGTAAAGCACTAAATTTTTTT	leftside_polyT	40
TTTTTTTCCACACCCGCCGCGACAGGAATTTTTTT	leftside_polyT	37
TTTTTTTCGGTACGCTGAGTAGAAGAACTTTTTTT	leftside_polyT	37
TTTTTTTTCAAACTATCGGCATTCACCATTTTTTT	leftside_polyT	37
TTTTTTTGTCACACGCTGATAGCCCTAATTTTTTT	leftside_polyT	37
TTTTTTTAACATCGCCATTAACCTTGCTTTTTTTT	leftside_polyT	37
TTTTTTTGAACCTCAAATAGATAATACATTTTTTT	leftside_polyT	37
TTTTTTTTGAGGATTTAGGGAGCGGATTTTTTT	leftside_polyT	37
TTTTTTTATTATCATACAGAAATAAAGATTTTTTT	leftside_polyT	37
TTTTTTTAATTGCGTAGATTTATTCATTTTTTTTT	leftside_polyT	37
TTTTTTTTCAATTACACATAAATCAATATTTTTTTT	leftside_polyT	37
TTTTTTTTATGTGAGTGAATTAGGTCTGTTTTTTT	leftside_polyT	37
TTTTTTTAGAGACTAATCTTCTGACCTATTTTTTT	leftside_polyT	37
TTTTTTTAATTTAATGGTTTGCCAACGCTTTTTTT	leftside_polyT	37
TTTTTTTTCAACAGTCCAGACGACGACATTTTTTTT	leftside_polyT	37
TTTTTTTATAAACAACATGTCTTATCATTTTTTTT	leftside_polyT	37
TTTTTTTTCCAAGAATATTCTAAGAACGTTTTTTT	leftside_polyT	37

TTTTTTTCGAGGCGTTTTAGCCTAATTTTTTTTTT	leftside_polyT	37
TTTTTTTGCCAGTTAATTAGACGGGAGATTTTTTTT	leftside_polyT	37
TTTTTTTATTAACTGAACACAAGCCCTTTTTTTTT	leftside_polyT	37
TTTTTTTTTAAGAAACGTAGAAAATACTTTTTTT	leftside_polyT	37
TTTTTTTATACATAAAGGTGAGGGAGGGTTTTTTTT	leftside_polyT	37
TTTTTTTAAGGTAAAGTCACCAATGAAATTTTTTT	leftside_polyT	37
TTTTTTTCCATCGATAGCAGCACCGTAATCAGTAGCGACATTCA	leftside_polyT	45
TTTTTGGGCAGGGCGCGCGCGCGGCGTTTTTATAATCAGTACTTCTT	core	46
AAAGGGCGGGCGGTTTGCGGTCCAACAATTCCACACAACAGCTCGA	core	46
TCCTGTTTTCTATCAGGGCGATGGCCCACTACACGTATAA	core	40
GCCCGAGAATTGCCCTCACCAGTGCATTAATT	core	32
AGGGAAGAAGAGTCTGTCCGTGTGAAATTGTT	core	32
CGCTGGTTTGCCCCAGCAGGCGGACGTATCGGCCAACGCG	core	40
TCACCGCCTAAAGTGTAAAGCCTGCCTATCTCTGAGTGCGGCTTGTTA	core	48
CGCCGCTAGTCGAGGTAGCCCCCGATTTAGAGCTTGACGCGCTAGG	core	46
GTACTATGCTAAACAGGAGGCCAGAACAATTGATTAGTACATTCTG	core	46
TGACGAGCGTGAACCACGGCGAACGTGGCGAGAAAGAAAA	core	40
CGGGGAGAAAAAACCGGATGGTGGTTCCGAAATCGGCAAGCAGCAA	core	46
GCGTATTCAGTCGGGAAACCTGCCAGAGTCATTCGTAATCACATAA	core	46
GGGTGGTTTAAAGAACATAAATCAAAAGAATA	core	32
GCTGCATTAATGAGCTTTCCTCGTGAAAAACG	core	32
GCGTTGCGGGTGACATTTTAGGCGCCTGGTTG	core	32
CGAGTAAAAAGCGAAAGGAGCGGGGGGAAAGCTCACCCAAATCAAGT	core	47
CGGAAGCATGGCCCTGAGAGAGTTAATCCCTTGTGGACTCCAACGTC	core	47
GTAGCAATGAGGCCACGAGCGGGAGGTTGCTT	core	32
ACGCAAATGACCTGAAAGCCCTTGAATCGGCT	core	32
TTCCTATCCTCAACAGCAGTTGCCGGTCTTGCTCGTGCCAATCCGCTC	core	48
TAATATCCGATTAAAGTGAGAAGTAAGTGTAG	core	32
ATTACCGATCGTCTGAAATGGACACCAGCAGGCTATTATCAATATC	core	46
ACGACACGCAGTTCCCACTGAGCCTTATGACAACTCGTTGCAAGGC	core	46
TGGGGAACTCAACATGGAAATACCGTCAGTAT	core	32
CCTCGATAGCTTCTAAATACCGACTTTTCCCA	core	32
TAAAAGGGAATAACATCACTTGCCCAGAATCCGGATTTTAGCTTAATG	core	48
GCCAACATTTGAATGAAGATAAGCCAGCAGCAAATGAAACAATT	core	44
ATCATTTCTGTAAGCAATGTCCTAAGTGGTTGTGAAGGAAG	core	44
TCTGACCTGGATCCCCGGGTACCGATACGAGCCCGCTTTCGGGCGCCA	core	48
GTGTAATGACTCTATGTCTATTTACTTTCTCAGGAGAAGCCCGCTTCT	core	48
ACAATATTGAGATAGAGACGCTCACCAGCCATTGCAACAGTAGAATCA	core	48
AGAATACGTGAAAGGAATTGCTGGCGAAAGGG	core	32
CGGTGGGCACGAATATAGGGGGGTATAATCCTTAGTGCTGA	core	40
CCTGCCATCTCCGAACAGTTGGAACTGACAAACCCAGCCACTCACT	core	48
ATTGTCAAACCGACCAGACGCATTTCATGGTCATAGCTGT	core	40
ACGCTGAGAAACAGAGGTGAGGCGTACATTTTACCCTTCTTAACCGTT	core	48
CACGACTTAAGTGCACCGCCTGCAGCCCGAAC	core	32
ACCCTCAAGTCTTTAATGCGCGAAACCAGTAAATTGGCAGCTTGCTGG	core	48

TGGTCAGGAGCACTCGACAACATCATTTTGCGGAACGATGAATA	core	44
GATTAAGAGGGCGAGCACTCCGGCGCATCGTAACCGAGCCCCAA	core	44
GTCACGACCATTCGCCGGTGCCGGCCGTAATGGGATAGGTATATTTAA	core	48
GAGCCGTCAATATCAAAAAGCATCAAAATACCGAACGAAC	core	48
AACAACTAAGATGATGGCAATTCACCTACCTACAGTATACCAAG	core	44
GAAGGTTATTGTTTGGATTCGCGTCTGGCCTT	core	32
CGCCAGAGGTTACGACGACAGTATCGGCCTCATTCATGCGGGATGTGC	core	48
TCGGTGCGCAGCTTTCATCAACAATTTTTTAAACAGGAACGGTA	core	44
TGTTGGGATTGGGTAAATGTTCTTCCGCCAAAATAACCCCAAGACGGA	core	48
ATTCAGGCAACAACCCGTCGGATTAAATTCGCATTGTAAACTGAGAGT	core	48
GTAACATTTCGTATTAAATCCTTTACAGTGCCTCAACAGTTGGCACAG	core	48
CCAGTTTGAGGGGATTAATTTTAACGGGAGAA	core	32
TGTAGATGAGCCAGCTTTCCGGCACAGGGTGGCGCCAGGGAGTGCGGC	core	48
CACGTAAACATATTCCCACCAGAAAAGTATTAGACTTTACAAAAATCT	core	48
ATATCAAAGATGAAACAAACATCCATTTGATATTAATAGAAGAG	core	44
CTTCTGAACAGTCAAATCACCATCAATATGAT	core	32
GGAACGCCATCAAAAATAATTATAACAACCCCGGTTGATA	core	40
AACCAATAGTTCTAGCTGATAAAAAACGAGAAAATGTCGACGAT	core	44
ATTAAATTTAGCTATTTTGAGAGGAATCCCCGCGGAATCGAGCAACA	core	48
TTTTACATAAGTTTGAAATCCTGATCTAAAATATCTTTAGTTGGCAAA	core	48
ATCAGAAATGCATCTGCCTGTAGCGGCCTCTTCGCTATTA	core	40
AGGCGAATTTCAGGTTTAACGTCAAAAGAAACTGATTATCATAGATTA	core	48
TTACAAAAATCGTCGCATTACCTTCTTAGGTTGGGTTATAAACTTT	core	46
GTCAATCATATGTATAACGGATTCTCCTTGAA	core	32
ATCGTAAAGTAATAGTAATGACCAAGTTGAGATTTAGGATCTACGT	core	46
AATCGATGAAGATTGTATAAGCAACACGTTGGGAGCGAGTTGCGCAAC	core	48
CTGGAGCACCAATACTCTCAAATGATGCAGATACATAACGCATTATAC	core	48
GCCGGAGAGCTGATGCAAATTACAGGTAGAAA	core	32
TGAGAAAGAACAAAGAAGTTTTGCCAGAGGGGACTAGCATATTCAACC	core	48
TTCTGTAATCGCGCAGAAGAAGATATTATTTG	core	32
CCTTAGAAGCCTGATTAAAATTAATAATGGAAGGGTTAGAATCAATAT	core	48
GATAGCGTAACAAGAGGGAGAGGGTTTGTTAAATCAGCTCTTAAATGT	core	48
TCAATAGTGATAAATATTCAAATATCGCCATATTTAACAAAAGTAC	core	46
AGAGGCTTTTGCAATAGCGATAGCCGGAATCA	core	32
AAAAACCATGAGATGGTAATAAAATGAACGGTGTACAGAAGGCGCA	core	46
CTATCATATGAATTACCAGTCAGGGCTGACCT	core	32
ATGTAAATTTACATTTAACAATTTAAGAAAACGCTTTGAAACAGTACC	core	48
ACGCGAGAATAACTATAGACGCTGTAATTTTC	core	32
AATCGCAATAGGCAGAGGCCCAACTTTGAAAG	core	32
CGAACTAACGGAACAACATTATCCTAAGAACGAGTAGTAA	core	40
GACCGTGTGAATTTATACCTCCGGTTTTAATGGAAACAGTCTGAGCAA	core	48
AGGCGTTTATGCGTTATACAAAGCGCCTGTCGACAAAATACCGCAC	core	46
ATTGGGCTAAATAGCGGATTCATCTAAATCAAAAATCAGG	core	40
TTTAATTTTCAGTGAATAAGGCACCAAGCGGACGGTCAAGGGTAGC	core	46
AATCATTGACCCTCGTTTCAACTACTTTAAACAGTTCAGATTAATGCC	core	48

CTTATGCGCATTACCCAAATCAACTGTATCATGCTCCATGCTAAAGAC	core	48
ACGAGAAACACCATTACTAGAAAAAACAAGAA	core	32
ATTGAGAATATTTTAGTTAATTTCCCTTTTTACAAAATCAAACCTTGC	core	48
ATAGGCTGACGTTGGGAAGAAAAAATACCACATTACCAGATTAGACTG	core	48
TCATCAAGCGCGACCTCGCCTGATATACGTAATGCCACTAGACAATGA	core	48
GAGAATATACGCCAACTAGTATCAAAATAAGAATAAACACTTAGATTA	core	48
TTCGAGCCTTTATTTCATGCGAAAGACAGCA	core	32
ACTGAATTAAATCTTTGACCCCCAGCGATTATTTGCCCTGAGGACAGA	core	48
TTATCAAGTAGAAACCAATCAACGGGAGGTATCAGATAATTATTTA	core	46
AAGTCCTGAGCCTGTTATGTAATTGACAAAGA	core	32
CGAAACAAAACGAAAGAGGCAATCTTAAACCCGCTTTTTTTGCTA	core	46
ACTAAAACACTCATAATATCCCATGTTGCTAT	core	32
AAACCAAGGGTAAAGTAATTCTGTAGGGCTTAAGTATAAAGAAATACC	core	48
TCATCGACAAGCAATTTGAAGCTTACCAACGCTAACGGGTAATT	core	44
AACGGCTTTAAAGGAGCTTGAGGCTCCAAAAGGAGCCCAATAGG	core	44
TTTGAGGATTACTTAGCCGGAACGCCAGGCGCGCTGCTCATCAACTTT	core	48
TTTTTCATCGATATATCAACAACCAATTTTTTCACGTTGATTTCGTCA	core	48
TTATCCGGCGGGTATTTGTCTTTCTCAGCTAATGCAGAACTTCTTACC	core	48
TTACCGCGCCCAATAGGAACAAGCACGAGCATCAATAGAT	core	40
AGGAATCATTTTTGTTTAAAAATGAATTTTCT	core	32
GCGGGATCGTCACCCTCAGCACGTTTTAGCTTGCTTTCGA	core	40
GCAGGGAGACAGAGGCCCAACCTAAAGTACAACGGAGATTGTAACAAA	core	48
TCGGTCGCGAGTGAGAATAGAAAGGCATTCCACCAGTACACAGGAGGT	core	48
GGTGAATTAAGAATACTCGGAACGATCATAAGGGAACCGA	core	40
TCCTGAATCCTTAAATCAAGATTACCTAATTTAAGCCGTTAGTAATAA	core	48
GTATCGGTTTATCGCACCCAGCTACCCACAAG	core	32
TCCCAATCAGAGAGGAGCGCTAAACAATGAAATAGCACGCAAAG	core	44
AACAACTACGATCTAACCCATCCACCCTCAGAACCGAATAAGTT	core	44
GGAAGCGCCAAAATAATTCCAGAGCGAACCTCCCGACTTGTAATCGGC	core	48
AATAACATGAACAAAGTTACCAGTAAGACTACACCACCAAAGAC	core	44
CAAAAATGCGCAATAATAATTAGGATTAGCGG	core	32
TTAGTCGTAATTCATTTTCAGGGATAGCAAGCCTTTAATTGTATGGGA	core	48
AAAGTTTTTCAGTACCAGGCGGAAAAGTATTTAACGGATTTACC	core	44
TTAGCGTATTCAACAGAAAAAAAAAAACCGATAGTTGCGCCCGAAGGCA	core	48
CAGACAGCGGTTGATATAAGTATAGCCTATTTCCGTATAAATTAAAGC	core	48
AAGTCAGAGAGCGTCTACAGCCATTAGAAGGC	core	32
AGAGCAAGAATATCAGAGAGATAACAATTTTAGAAACGAT	core	40
CAATAATACGAGGAAAAAAAAAAGCAGCCTTTACCAAATAA	core	40
AGAGCCACCACCTGAGTTAAGCCGTCACAAT	core	32
CAGAACCGGTACCGTAACACTGAGAAATCTCCTTTCAGCGTGAGGCTT	core	48
TTAGTACCAACAGTGCCGGAACCTGTCAGACG	core	32
CCTTATTATCATTAAAGGTGAATTAGCACCCAAGTTTGCCTTTAG	core	45
AATACCCATTGAGCCATTTCACCAGAACCACC	core	32
TGAGACTCCTCAAGAGAAGGACGGCAAATGATACAGGAGT	core	40
TAAGAGGCCGCCGCCAGCATTGAAACCGCCTATTAGCGTTTGCCA	core	45

TAAAAGAAAATAGCTAAGATAGCCAAAAACAG	core	32
GTACTGGTCCACCCTCGGTTTTGCGTCGTCTTTCCAGACG	core	40
AAAAGGGCGACAGAATATTACCATTAGCAAGG	core	32
TACATGGCTTTTGTAGAAAATTCATGTAGCGCAATTAGAGCCAGCAAA	core	48
GTTCCAGTAGCCCCCTACCCTCAGAGCCACCACCCTCAGA	core	40
GTCTCTGAGGTCAGTGCCTTGAGTGCCACCCTGTCGAGAGCCTCATAG	core	48
CAGAATGGTAATCAAACTCCCTCAGAGCCGCCACCCTCAGCAGGAGGT	core	48
GAAATTATCGCAGTATGTTAGCAAAAGTAAGCTCTTACCGCCTGAACA	core	48
CCGGAAACTATTGACGACCGATTGGCAACATA	core	32
ATCACCAGTATCACCGACCAGCGCGGAATAAGTTTATTTT	core	40
GCCGCGGGGTTTTCATCGGCATTTTCGGTCATAAGCGTCAACCAGAGC	core	48
CGTCAGACTATGGTTTTCACCGACAAAGAACTGGCATGATAAGGAAAC	core	48
TCTTTTCAAAAGCGCATGAGGCAGATTATTCTGAAACATGTAAGTGCC	core	48

Staple sequences for **3LL** plate:

sequence	description	length
TTTTTTTAAACCGTCTATCAGGGCGATGGCCCACTAGCGCCAGG	rightside_polyT	45
TTTTTTTCGGCAAAATCCCTTATAAAACTCCAAC	rightside_polyT	35
TTTTTTTCCAGTGAGGTCAAAGGGCGAATTTTTTT	rightside_polyT	37
TTTTTTTGCTCACTGCCCGCTCTTTTCATTTTTTT	rightside_polyT	37
TTTTTTTTCCTGTGTGAAGGTTCCGAAATTTTTTTT	rightside_polyT	38
TTTTTTTCACGACACTTAATTGCGTTGCTTTTTTT	rightside_polyT	37
TTTTTTTCAGGGCTTAAGCTCCCAGAGTTTTTTTT	rightside_polyT	37
TTTTTTTCATCTGTAAGCTCATAGCTGTTTTTTTTT	rightside_polyT	38
TTTTTTTTAAGTGTCTGTAATGAGTAAATTTTTTT	rightside_polyT	37
TTTTTTTGTAACGCCAGGGTGCACGACTTTTTTTT	rightside_polyT	37
TTTTTTTAGCGCCATTCGTGCGGCCCTGCTTTTTTT	rightside_polyT	38
TTTTTTTAGATGGGCGCGATTAAGTTGGTTTTTTT	rightside_polyT	37
TTTTTTTTCTGGCCTTCCTGTGTTGGTGTTTTTTTTT	rightside_polyT	37
TTTTTTTTAAGCAAATATAAACCAGGCAATTTTTTT	rightside_polyT	38
TTTTTTTCCCTGACTAAATAATTCGCGTTTTTTTT	rightside_polyT	37
TTTTTTTTAGACTGGATAGCGGTCTTTATTTTTTT	rightside_polyT	37
TTTTTTTCATAGTAAGAGGGAAGATTGTATTTTTTT	rightside_polyT	38
TTTTTTTTACGTTAAATAGTAAAATGTTTTTTTTTT	rightside_polyT	37
TTTTTTTCGAGTAGTAAATTGAAAAATCTTTTTTT	rightside_polyT	37
TTTTTTTGCTGACCTTCAGAATTACGAGGTTTTTTTT	rightside_polyT	38
TTTTTTTCGCGACCTAGAAACACCAGAATTTTTTT	rightside_polyT	37
TTTTTTTGAAAGAGGCAAAATCGAAATCTTTTTTT	rightside_polyT	37
TTTTTTTAACGAGGGTAGCGCATAGGCTGTTTTTTT	rightside_polyT	38
TTTTTTTCCGACAATACCAACCTAAAACTTTTTTT	rightside_polyT	37
TTTTTTTTTTTCACGTTGTAGTTGCGTTTTTTT	rightside_polyT	37
TTTTTTTTTCTTTCCAGACGACAGCATCGGTTTTTTT	rightside_polyT	38
TTTTTTTGCAAGCCCTTGCGAATAATAATTTTTTTT	rightside_polyT	37
TTTTTTTAAGTATAGCCCGGCAGGGATATTTTTTT	rightside_polyT	37
TATTAAGAAATGCCCCCTGCCTATTTCGGAACCTATTTTTTT	rightside_polyT	43
TTTTTTTTTTTTTTGAAAAAGTTTTGTCGTTTTTTT	rightside_polyT	38
CATGGCTTTTTACCGTTCCAGTAATTTTTTTT	rightside_polyT	32
TTTTTTTGCGTCATAAGAGGGTTGATATTTTTTTT	rightside_polyT	37
TTTTTTTGCTTGACGGATTAAAGGGATTTTTTTTT	leftside_polyT	37
GGGAAAGCGAGCCCCCGATTTAGATTTTTTT	leftside_polyT	32
TTTTTTTTTTTAATGCGCCATACCTACATTTTTTTTT	leftside_polyT	38
GCGCGTACCTGCGCGTAACCACCACACCCGCCGCGTTTTTTT	leftside_polyT	43
TTTTTTTTAGACAGGAACGCTTTGATTTTTTTTT	leftside_polyT	37
TTTTTTTAGTAATAATTCTGACCTGAAATTTTTTT	leftside_polyT	37
TTTTTTTTGACGCTCAAAAACCCTCAATTTTTTTT	leftside_polyT	38

TTTTTTTGCGTAAGAATACGCAGAAGATTTTTTTT	leftside_polyT	37
TTTTTTTAAAACAGAATAGATAATACATTTTTTTT	leftside polyT	37
TTTTTTTCAATATCTGGTTAGAACCTACCTTTTTTT	leftside polvT	38
TTTTTTTTGAGGATTTAGAGAACAAAGTTTTTTT	leftside polvT	37
TTTTTTTAAACCACCGAGAAACAATAACTTTTTTT	leftside polvT	37
TTTTTTTATATCAAAATTTTTCCCTTAGATTTTTTT	leftside polyT	38
TTTTTTTGGATTCGCCTGATCAAAATTATTTTTTT	leftside polyT	37
TTTTTTTTTTTCGATTAGACTACCTTTTTTTTTTT	leftside_polyT	37
ΤΤΤΤΤΤΤΤΑΤΟΟΤΤΩΑΑΑΑΩΤΤΑΤΑCΑΑΑΤΤΤΤΤΤΤΤ	leftside_polyT	38
TTTTTTTTACCTCCCCCTTACATCTTCTTTTTTT	leftside_polyT	37
	leftside_polyT	27
	leftside_polyT	20
	leftside_polyT	27
	leftside_polyT	27
	leftside_poly1	37
	leftside_poly1	30 07
	leftside_poly1	37
	leftside_poly1	37
	leftside_poly I	38
	leftside_polyT	37
TTTTTTTTGAACTGGCATTAAAGGTGAATTTTTTTT	leftside_polyT	37
TTTTTTTACAATCAATAGTCAAAATCACCTTTTTTT	leftside_polyT	38
TTTTTTTTTATCACCGTCACCGCAGCACCTTTTTTT	leftside_polyT	37
TTTTTTTGTAATCAGCCAGAGCCGCCGCTTTTTTT	leftside_polyT	37
TTTTTTTGGAACCAGAGCCACCACCGAACCACCA	leftside_polyT	35
TTTTTTTCAGCATTGACAGGAGGTTGAGGCAGGTCAAATGAAAC	leftside_polyT	45
ATCGGAACAGAAGTGTGAGCGGGAGAAGAACCAACAGGATTTACA	core	45
AAATCAAGTTTTTTGGAACGCGCGAGAGTTGCTATATAAA	core	40
CGGCGAACGTGGCGACGGTCACGTATGGTTGCTTTGACAGCCATTG	core	46
AGCGAAAGGAGCAGTTTGGAACAAGCCCTGAG	core	32
GCGCTGGCAAGTGTAGGAAAGGAATAGAATCATTTTATAAATCACGCA	core	48
GCTGGTTTACGAGCCGGAAGCCCACTCTTTAGGCGGGATCGAATCGGC	core	48
AGGCGAAATAGCCCGAGATAGGGTTGAGTGTTGTTCCGGCGGTCCAC	core	47
TTGATGGTATTGTTATAACTCACACTGACAAACGGTCTTGACGTGGTG	core	48
CAGCTGATAGTGAGCTCCGCTCACGAATTCGTAATCATGGAACTCGTC	core	48
ACGGGCAAGTGGTTTTTTTCCAGTCGGGAAAC	core	32
GGGAGAGGCATTAATGAATCGGCCACTGAGAC	core	32
GTATTGGCGTGAACTATTAAAGAACGTGGTCAAAAGAAATCCTGT	core	45
AATTAACTTTGAATTTCTGGCCTTAACACCACCTTGAGTTGAAA	core	44
CATCACTTCAATACTTGTACGCCAGAATCCTGCCTAAAGG	core	40
TCAAACTAAAGGGACAGGCTATTAATCGCCAT	core	32
TCGGCCTTGTCTGTCCTCAGTGAGGCCACCGAGGTCGAGG	core	40
GCTGGTAAAGCGTGCTTTCCTCGTGGGAAGAATGCCGTAAAGCACTAA	core	48
GTGTAAAGGTCTGACGCGACCATGGTTGGAAGCAGTTCCCCAGGAGAA	0010	48
	0010	-10
040440410000040040000010040104004104000	core	40
	core	40 40
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGCC	core core	40 40
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGCC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCCGAGCACGTATAACAACGCGCGCTAGG	core core core	40 40 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG	core core core core	40 40 48 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA	core core core core core	40 40 48 48 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC	core core core core core core	40 40 48 48 48 40 40
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGTGGGCATCTATGAT	core core core core core core core	40 40 48 48 48 40 40 40
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATTATACTTCGAAATAA	core core core core core core core core	40 40 48 48 48 40 40 40 45
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC	core core core core core core core core	40 40 48 48 48 40 40 40 45 46
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCTGCGCACCGCTTCT	core core core core core core core core	40 40 48 48 48 40 40 40 45 46 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGGACCGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCGCGGGGCAGTGGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTCCCAGTCACGACGTAATGGGA	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGGACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCGCGGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTCCCAGTCACGACGTAATGGGA CAAATATCCTCGTCGATAGAACCC	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 48 24
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TCACOCACTGATCGCCTCACGACGTAATAA	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTATACTTCAGGTGCCGGGCCATGGAAGATC CAAATATCTCACCAGAGTAATAA	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24 24
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATAGCTTCATGCTTCCCAGTCGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTATACTTCGGGGCCATGGAAGATC GGGCCTTCCCGGGTATTGAGTGCCCTGGGCCCATGGAAGATC	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTTTACGCGATCGGTGCGGGCCATGGAAGATC GGGGCCTTCCCGGGTATTGAGTGCCCTGGGGGGCCATGGAAGATC GGGACTTGACTTCGGTATTGAGTGCCCTGGGGGCCATGGAAGATC	core core core core core core core core	40 40 48 48 40 40 40 40 45 46 48 48 24 24 24 48 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTTTACCTGGGGCCATGGAAGATC GGGGCCTTCCCGGGTATTGAGTGCCCTGGGGTGCCGGCCATGGAAGATC GGGACTTGAGTTTGGATATTCCTGATGAATAAATCGCGCAACAGAGA ACCGACAGCCATTCAGGCTGCAAGGCATCGTGCCGGCCATGGAAGATC	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24 48 48 48 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTTTACGCGTGCGGGCCATGGAAGATC GGGGCCTTCCCGGGTATTGAGTGCCCTGGGGTGCCGGCCATGGAAGATC GGGACTTGAGTTTGGATATTCCTGATGAATAAATCGCGCAACAGAGA ACCGACAGCCATTCAGGCTGCAAGGCATCGTATAGGTCAC TCTTTAGGACAGTGCCCTGAAGCATCGTATAGGTCAC	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24 48 48 48 48 48 48 48
AATGGATTAAAAACGCTCATGGAAGCTACAGGAGGAGGACC TTGGCAGATAAAGCATCGCCTGCAAGCACTAAGACAACTCTTAAAAGT TCACATATGAACAATATTACCGCCGAGCACGTATAACAAGGCGCTAGG TTGGTCGGAGCCATTTCACATAAAGTCCCGCCGCCAGGGTCAGTGCCA TGGCACAGACAATATTCGTTGTAGGCCTGAGTAGCTAAAC GCAGTTGCCCCAGCCACTGACCTCGGTGGGCATCTATGAT TAAAAATAAACAATTCCAACTAATCATCATCATTATACTTCGAAATAA AGACGGAAGGGAACTCAACAACACTGTCGTGCCTAATGTGCCCTTC CTTGTTACGGTTGTGATGAATTGTGGGGATGTGCTGCGCACCGCTTCT CTGGTTGGCTTAGTGCATTCATGCTTTCCCAGTCACGACGTAATGGGA CAAATATCTCGTCTGATAGAACCC GAAAAATCTTCACCAGAGTAATAA TGACGCAGTCTAATCATTTTACCTGGGGGCCATGGAAGATC GGGGCCTTCCCGGGTATTGAGTGCCCTGGGGTGCCGGCCATGGAAGATC GGGGCCTTCCCGGGTATTGAGTGCCCTGGGGTGCCAGCTGCGGTTTGC GGAATTGAGTTTGGATATTCCTGATGAATATAATCGCGCAAAAGAAGA ACCGACAGCCATTCAGGCTGCAAGGCATCGTATAGGTCAC TCTTTAGGACAGTGCCCTAAAACGTCTTTAATGCGCGAAGTAAAAGA AAAATAACATTCTCTCGCTATTAGACGACGAGGGAACAAGTAAAGA AAAATAACATTCTCTCGCTATTAGACGACGAGGGAACAAGTAACAAC	core core core core core core core core	40 40 48 48 40 40 40 45 46 48 48 24 24 24 48 48 48 48 48 48 48

TTCTAAGTCTCGATAACCGAACTGGTGACACCGAGCTCAATTCCA	core	45
TTGAGTATTACAAACAGTAACAATTACCTTGTAAATCATTAAGAC	core	45
TATTAATTGTATTAAATCCTTTGCCTGATAGCACGCTGAGCCCCGACC	core	48
AGCTTTCTTCTCCGTCAGTATCGCAATTTGTTAAATCAGAAAAGATT	core	48
CGGAATTATAGATTAGAAATCAACCTGAACCT	core	32
TGAATAATGGAAGGGTCAGTTGGCAGCCGTCAGGTGAGGCACCACCAG	core	48
TCCTGATTGGAAGGTTATCTAGCTCAGCAAAT	core	32
AGAAATTGTTGCTTCTTTTTAATGATAGTGAAAAATGCTGGAAAACTT	core	48
GCACTCCATTCGCATTAAATTTATTTAATTCGATATGTACCGATAAAA	core	48
TCCGGCAACTGTTGGGAAGGGCTCGCCCTGATGACAATTCATTTCT	core	46
GGTGCCGGTTAAATTGGCCATCAAATTATAGTAAAAATCAGTCCAATA	core	48
	core	48
TTGACCGTTGTAAAGGCGAAAGCAACCTTGAGTGACCGAATATA	core	44
TGATGAATATATGTTTTATCAACCGACCAAAAGCCTCAGTAGG	core	43
	core	48
	core	48
	core	48
GTCGCTATTAATTAATATTTGCACTACATCGGAGAAGGAGATTTTGCG	core	48
	core	18
	core	40
	core	48
	core	48
	core	45
	core	47
	core	48
	core	40
	core	40
	core	48
	core	40
	core	43
	core	44
	core	40
	core	48
	core	32
	core	48
	core	48
	core	40
	core	48
	core	24
GTATCATAATTTCACAGTGAATAACAACATATGCAGACTCGTTTA	core	45
	core	45
	core	37
GAATACACTAAAACACAACAGCTTCCATCGCCGGAACAAC	core	40
	core	48
	core	48
ATAAAAACTCATCGTAGTTTTAGCTCCCATCCAAGTCCTG	core	40
	core	48
GICAGAGGAIAAAAGAAGIAIGIIGGAGGGAAAGCCAGCAGCCGGAAA	core	48
GUGUTGUAGTUAAAAATGAAAATGAAAATACAAGCAAATCAGAACCTTATCATT	core	48
	core	48
	core	48
	core	48
GCAATAATGACTCCTTGAGTTAAGGAACACCCAGAATAAC	core	40

AGGAAACGAATTAGGGTAAATATTTGCCTT	core	30
AAAATCTCCAAAAAAACCACCACCCCCATGTACGGATAAG	core	40
TAAAGGAAAATAGGAACTCATTTTAATAGGTGTATCACCGTCTCTGAA	core	48
GGCAACATGTAATTGACAGAGAGAAAGAAACGAATCTTAC	core	40
ACTTTTACGCCTGTAGCATTCCACAGAGAAGGATTAGCGGTGCCTTGA	core	48
GGGATTTTTTTGCGGAACCGATACGGGTAAAGACCCCCAGGAGATTT	core	48
ATGAATTTTTAGCGTAACGATCTACATGAAAGTGCCGTCG	core	40
CCAAAGACCCCCTTATTAGCGTCAACCACCCTGGCCTTGA	core	40
CGATTGAGAGCAAACGTACCAGAAAGTAAGCAGATAGCCGTTATCCTG	core	48
GTACAAACCATGATTAGCGGGGTTTAATAAGTTTAAAGCCAGAATGGA	core	48
CTGAGTTTGGAGTGAGAAAAGGAGCGAGGTGAATTTCTTA	core	40
CTCAGAGAGGCTCCAATAGAAACACGCATGATCGTCTTTGAGGA	core	44
CGTCACCGACGATTCAGAGCCGCCACCAGGAACCGCCTGCCATCT	core	45
TTAGCAAGAAATCACCAGTAGCACAACAAAGTTAGAAAATCTTAATAT	core	48
CCCTCAGAAATCCTCATTTAACGGGGTCACCCTCAGAGCCGACTGTAG	core	48
TAGCGACACATCGATAGACTTGAGCCATTTGG	core	32
GAATCAAGTTGACGGATATGGTTTGACACCACGGAATAAGAATTAACT	core	48
TTTCATAAAAAATTCAAATTATTCATGATTAAAACGGAATATAGCTAT	core	48
TAGCGTTTCCCTCAGAGCCGCCACCCTCAGAACCGCCAGCATTTTCG	core	47
GTCATAGCAAAAGGGCGACATAACATAAAGGT	core	32
GTAACAGTGCCCGTATTGTACTGGTTGCTCAGAGGTTTAGCCGCCACC	core	48
TTGATGATACAGGAGAAACAGTTGGCTGAGACTCCTCAAGACAGCC	core	46
TATTCACAAACAAATACATTACCACGCGTTTTTACTCAAC	core	40
AAGCGCAGTACTCAGGTACCAGGCCGTAACACTCATAGTCTGTAT	core	45

REFERENCES

1. Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Modeling the Conductance and DNA Blockade of Solid-State Nanopores. *Nanotechnology* 2011, 22, 315101.

2. Smeets, R. M. M.; Keyser, U. F.; Krapf, D.; Wu, M.-Y.; Dekker, N. H.; Dekker, C., Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. *Nano Lett.* 2006, 6, 89-95.

3. Sobczak, J.-P. J.; Martin, T. G.; Gerling, T.; Dietz, H., Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature. *Science* 2012, 338, 1458-1461.

4. Castro, C. E.; Kilchherr, F.; Kim, D.-N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H., A Primer to Scaffolded DNA Origami. *Nat Meth* 2011, 8, 221-229.