Supplementary Table and Supplementary Figures

"Converting a Binding Protein into a Biosensing Conformational Switch Using Protein Fragment Exchange (FREX)" by Huimei Zheng, Jing Bi, Mira Krendel, and Stewart N. Loh

Table S1. Stability parameters of FN3 mutants.

Figure S1. Simulations of Eqs. 1-3 in the text.

Figure S2. Guanidine hydrochloride-induced denaturation of FN3 variants monitored by Trp fluorescence.

Figure S3. Size exclusion chromatograms of WT FN3-HA4 and the GSSV \rightarrow YGGG mutant used in the present study.

Figure S4. Size exclusion chromatograms of (FN3^{BN}+P48+SH2) and (FN3^{BN+I75V}+P48+SH2).

Figure S5. Unprocessed fluorescence spectra of FN3^{BN+I75A} (labeled with donor at the N-terminus) plus acceptor-labeled P60.

Figure S6. Switching kinetics monitored by FRET.

Figure S7. Images of Cos7 cells transfected with EGFP-FN3^{BN+I75A}, mCherry-P48, and SH2.

Table S1. Stability parameters of FN3 variants (pH 7.0, 20 °C) obtained by fitting denaturation data to the equation $\Delta G = \Delta G^{H2O} - m[GdnHCl]$. C_m is the midpoint of denaturation. Errors are standard deviations of triplicate experiments.

FN3 variant	ΔG^{H2O} (kcal mol ⁻¹)	m (kcal mol ⁻¹ M ⁻¹)	$C_{m}(M)$
FN3 ^{BN}	5.79 ±0.7	2.02 ±0.3	2.78 ±0.04
FN3 ^{BN+V77A}	4.18 ±0.5	2.29 ±0.6	1.96 ±0.3
FN3 ^{BN+V77G}	4.50 ±0.1	2.80 ±0.1	1.61 ±0.04
FN3 ^{BN+175V}	4.10 ±0.3	1.47 ± 0.1	2.77 ±0.01
FN3 ^{BN+175A}	2.25 ±0.1	2.05 ±0.1	1.11 ±0.03

Figure S1. Simulations of Eqs. 1-3 (see text) showing fractions of N*LP (**A**) and N*P (**B**) as a function of ligand concentration. Data sets were generated using $K_{ex} = 10^5 \text{ M}^{-1}$, $K_a = 10^8 \text{ M}^{-1}$, and K_{unf} values of 5×10^{-5} (black circles), 0.02 (blue squares), and 10 (red diamonds). Concentrations of *N* and *P* were set to 2 μ M each. Lines in panel A are best fits of the simulated

data to the one-site binding equation; fitted $K_{a,app}$ values are $9.7 \times 10^5 \text{ M}^{-1}$ and $2.2 \times 10^5 \text{ M}^{-1}$ for the red and blue data sets, respectively. Simulations were performed using the Gepasi program [Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. *Trends Biochem. Sci. 22*, 361-363].

Figure S2. Guanidine hydrochloride (GdnHCl)-induced denaturation of FN3 variants monitored by Trp fluorescence. For each emission spectrum (350 - 450 nm), the wavelength of maximum fluorescence (F_{max}) was determined using the peak analysis package of the Igor Pro program (WaveMetrics). These data were then fit to the two-state linear extrapolation equation to generate the lines above. Samples were prepared by mixing a solution of protein ($5 - 10 \mu$ M) in 20 mM sodium phosphate (pH 7.0) with an identical solution of protein in the same buffer plus 5 - 7 M GdnHCl, using a Hamilton Microlab 540B dispenser. Samples were equilibrated for 3 h at 20 °C. Data were collected on a Horiba FluoroMax-4 fluorometer with an excitation wavelength of 280 nm. Final denaturant concentrations were determined by index of refraction.

Figure S3. Size exclusion chromatograms of WT FN3-HA4 (black) and the GSSV \rightarrow YGGG mutant used in the present study (red). Protein concentrations are ~30 μ M. Data were collected using a Superdex-75 column (GE Healthcare).

Figure S4. Size exclusion chromatograms of (FN3^{BN}+P48+SH2) (black) and (FN3^{BN+I75V}+P48+SH2) (red). Protein concentrations and experimental conditions are identical to those of Fig. 2 of the text.

Figure S5. Unprocessed fluorescence spectra of FN3^{BN+I75A} (labeled with donor at the N-terminus) plus acceptor-labeled P60 are overlaid to show ratiometric changes in fluorescence intensity as a function of increasing SH2 concentration, from zero (black) to 50 μ M (dark red) SH2.

Figure S6. Switching kinetics monitored by FRET. **(A)** and **(B)** show on-rates (closed symbols) and off-rates (open symbols) of the P48 and P60 sensors, respectively. FN3^{BN+I75A} labeled with Alexa488 at the N-terminus (2 μ M) was pre-mixed with Alexa495-labeled P48 or P60 (2 μ M). SH2 (50 μ M) was then added and fluorescence emission spectra were recorded as described in the text. Dissociation measurements were performed by adding a 10-fold excess of unlabeled FN3^{BN+I75A} (20 μ M) to the above ternary complexes. **(C)** The rate of ternary complex formation

does not depend on SH2 concentration. Experimental conditions are identical to those in panel A except protein concentrations are 0.5 μ M FN3^{BN+175A}, 0.5 μ M P48, and 10 μ M SH2 (black circles), 20 μ M SH2 (blue squares), or 40 μ M SH2 (red triangles). Lines are best fits of the data to single-exponential functions. Fitted k_{on} values are (from lowest to highest SH2 concentration and in units of 10⁻⁴ s⁻¹): 5.45, 6.84, and 5.86.

Figure S7. FRET images of Cos7 cells transfected with: **(A)** EGFP-FN3^{BN+I75A} and mCherry-P48, and **(B)** EGFP-FN3^{BN+I75A}, mCherry-P48, and SH2. Boxes indicate areas in the cell that

were photobleached. Colored borders around images in panel B denote cells in which the ratio of FRET efficiency inside versus outside the box is >3 (red), 2 - 3 (blue), and <2 (purple).