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Converting Polygenic Effects into Marker Effects. Conditional mean
approach. Let us reintroduce the polygenic model here,

y=Xβ+ ξ+ «; [S1]

where

ξ=
Xm
k=1

Zkγk =Zγ [S2]

is the polygenic effect. We replaced the summation by a compact
form of matrix multiplication. The joint distribution of ξ and γ is
multivariate normal with mean and variance given by
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respectively. The converting formula is the conditional expecta-
tion of γ given ξ, which is
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The predicted genomic value is the conditional expectation of ξ
given y,
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Substituting ξ in Eq. S5 by this conditional expectation in Eq. S6
yields
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where λ=ϕ2=σ2 and In is an identity matrix with order n. There-
fore, the estimated marker effects are

γ̂ =EðγjξÞ= λ̂ZT
�
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�−1�
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�
: [S8]

Replacing m by
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�
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and noting that Ka =ZZT=ca, we have an alternative expression
for γ̂,

γ̂ =EðγjξÞ= 1
ca

λ̂ZT
�
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�
[S10]

We can take advantage of the eigen-decomposition to solve the in-
verse involved in Eq. S10. This concludes the derivation of Eq. 5 in
the main text.
Ridge regression approach. Alternatively, we can use the ridge re-
gression approach (1) to deriving the converting equation, pro-
vided that the ridge parameter is defined as the variance ratio

η= σ2
��

ϕ2�m�=mσ2
�
ϕ2 =mλ−1: [S11]

The ridge regression coefficients for the following model

y−Xβ=Zγ + « [S12]
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Therefore, the estimated marker effects are
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Placing the two converting equations together, we have
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These two equations appear to have different forms but they give the
same estimated marker effects. For the conditional mean approach,
the matrix to be inverted has a dimension n× n, whereas the matrix
to be inverted for the ridge regression approach has a dimension
m×m. For computational convenience, the conditional mean ap-
proach should be used if m> n; otherwise, the ridge regression
approach should be used.
We used both equations to convert the estimated genomic

values intomarker effects and they produced the same solutions. The
converted marker effects are given in Dataset S2 for the four traits.
For trait 1,000 grain weight (KGW), the large peaks of the esti-
mated effect profile for GBLUP are consistent with the other two
methods, although they are in quite different scales. The SSVS
method has shrunken all small effects into zero and leaves only
three large effects in the model. The LASSO method shows more
nonzero effects. The GBLUPmethod shows small effects all of over
the genome. Interestingly, the predictabilities of the three methods
are very similar, regardless of the differences in the estimated
marker effects. This result further supports the notion that accurate
estimation of individual marker effects is not crucial to genomic
selection. It is the pattern of the genetic effects distributed along the
genome that plays an important role.
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Restricted Maximum-Likelihood Method Incorporating Epistasis.
For the multiple variance component model, the fast eigen-
decomposition algorithm cannot be used here. Instead, the like-
lihood function must be evaluated in its original form. Once the
Newton–Raphson iteration is converged, we get the estimates of
variance components and the Hessian matrix as a by-product. The
Hessian matrix then provides an approximate variance–covariance
matrix using
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This is a 7× 7 covariance matrix whose elements are given below:

Square roots of the diagonal elements are the SEs of the esti-
mated parameters, denoted by a column vector StdErrðθ̂Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½varðθ̂Þ�

q
. The correlation matrix (standardized covariance

matrix) was obtained using
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The model with six genetic variance components is the full model.
Various reduced models were also evaluated. For example, if only
the additive variance is included, the model is called the additive
model or model 1 with a model size 1. The dominance model
includes both the additive and dominance variances and is thus
called model 2. The full model is called model 6. The model num-
ber represents the model size. Table S2 lists all six models eval-
uated in this study.
We wrote an R program to perform the REML variance

component analysis. Results of the R analysis were confirmed by
PROC MIXED in SAS (2). The estimated variance components,
including all genetic variance components and the residual var-
iance, are given in Table S2. We can see that as the model size
increases, the estimated variance component of each type de-
clines; this indicates that when more variance components are
included in a single model, the total variation tends to be shared
by all components. Reduction of the residual variance as the
model grows is even more obvious. In the end, the residual
variance becomes extremely small compared with the pheno-
typic variance.
Under the full model (model 6), yield (YIELD) had no main

effects. Among the four types of epistatic effects, additive ×
dominance seemed to play a more important role. However,

under models 1 and 2 where epistatic effects were excluded,
neither the additive nor the dominance variance was zero. The
additive and dominance variances actually captured part of the
other types of genetic variances. Epistatic variances also con-
tributed more than the additive and dominance variances for
trait tiller number (TILLER). Each of the additive and epistatic
variances contributed about half of the total genetic variance.
The last trait, KGW, was almost exclusively controlled by the
additive variance.
Fig. 1 Upper shows the goodness of fit for each trait under all

six models. Clearly, adding epistatic variances had improved the
goodness of fit for all traits. In the end, the full model fitted
perfectly to the data for all traits. The perfect goodness of fit
does not mean that all traits are 100% controlled by genetics.

The perfect fit is an artifact caused by the model overfitting the
data. However, the relative contribution of each component to
the total genetic variance may be meaningful. For example, trait
KGW is primarily controlled by the additive variance, which
agrees with common knowledge of this trait. The predictability
drawn from fivefold cross-validation analysis is much more reli-
able than the goodness of fit to evaluate the total genetic con-
tribution. In the cross-validation analysis, lines predicted do not
contribute to parameter estimation and thus will correct model
overfitting. Fig. 1 Lower shows the predictability for each trait
under each of the six models. Interestingly, none of the traits
shows any improvement of predictability as the model grows.
The simple additive model performed as well as the full model.
For the purpose of predicting genomic values, there is no benefit
to add epistatic variances. Of course, our sample size is small and
thus this conclusion may only apply to small sample sizes.
There are at least two reasons to explain why adding more

variances did not improve the predictability. First, the estimated
parameters (variance components) may be highly correlated
between different types of effects. We examined the correlations
between the estimated variance components. Some of the vari-
ance components are indeed highly correlated. Table S6 lists the
correlation matrices for all traits under the full model (model 6).
We have observed some common patterns from the table. The
additive variance often has very little correlation with the dom-
inance variance, which means that these two parameters are
separable. However, the additive variance is always correlated to
the residual variance. The dominance variance has extremely
high correlation with the dominance × dominance variance.
The high correlation coefficients mean that the estimated
parameters are not stable, especially when the model is large.
Because of the high correlations, the variance components of
small models can usually capture the variances excluded from
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the models. Therefore, not much information had been actually
lost for the small models. We now examine the additive vari-
ance and residual variance because they were estimated from all
six models. Fig. S1 shows the plot of the estimated parameter
(additive variance) against the model size. The estimated vari-
ance is labeled Estimate and the SE of the estimate is labeled
StdErr. The estimated variance sharply decreases as the model
size increases, but the SE has increased as the model grows. The
same trends were found for the estimated residual variances, as
shown in Fig. S2. Therefore, the high correlations and large SEs
for estimated parameters (variance components) contribute to
the lack of improvement by adding epistatic variances to the
model. Increasing sample size is necessary to reduce the correla-
tions and the SEs.

The next question is why some parameters tend to have high
correlations than other parameters. We examined the similarities
between all pairwise kinship matrices, a total of 6ð6− 1Þ=2= 15
comparisons. We used the Pearson correlation coefficient to
measure the similarity between a pair of kinship matrices. The
correlation matrix is given in Table S4. The correlation co-
efficients do vary across different pairs of comparisons. Matrices
Ka and Kd have a low correlation. The highest correlation occurs
between Kd and Kdd. Our conclusion is that the high correlations
of the estimated parameters (variance components) are also
caused by the high similarities between the kinship matrices.
Increasing sample sizes does not help to reduce the similarity
between pair of kinship matrices.

1. Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1):55–67.

2. SAS Institute Inc (2009) SAS/STAT: Users’ Guide, Version 9.3 (SAS, Cary, NC).

Fig. S1. Estimated additive variance and its SE plotted against model size.
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Fig. S2. Estimated residual variance and its SE plotted against model size.

Table S1. Six different models evaluated in the study, where an
“X” in a cell means that the corresponding variance component
(column header) is included in that model

Model σ2a σ2d σ2aa σ2dd σ2ad σ2da σ2

1 X X
2 X X X
3 X X X X
4 X X X X X
5 X X X X X X
6 X X X X X X X
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Table S2. Variance components estimated from six polygenic models for the four quantitative
traits of rice

Trait Model a d aa dd ad da e

YIELD 1 14.4911 23.3308
2 13.1129 9.0443 19.2088
3 11.2609 7.73516 7.38906 14.0566
4 10.7365 0.00001 7.80710 7.23373 12.2930
5 4.32190 0.00001 7.27218 5.442035 16.7565 4.90684
6 0.00001 0.00001 7.00964 5.271305 18.2771 5.54845 1.96303

TILLER 1 1.38792 1.39981
2 1.38792 0.00001 1.39981
3 1.05890 0.00001 0.61650 0.97550
4 1.05895 0.00001 0.61645 0.00001 0.97549
5 1.05896 0.00001 0.61650 0.00001 0.00001 0.97545
6 0.44516 0.00001 0.58511 0.00001 0.12044 1.13048 0.37376

GRAIN 1 254.636 124.165
2 245.599 24.3225 113.847
3 193.179 14.9761 69.4831 74.4618
4 192.990 0.00001 68.5104 17.41830 69.7084
5 150.877 0.00001 66.8473 6.55935 110.184 21.5337
6 150.913 0.00001 66.8373 6.579376 110.180 0.00001 21.5147

KGW 1 2.82000 0.54720
2 2.69618 0.26283 0.43694
3 2.38064 0.21624 0.32088 0.25818
4 2.34714 0.00001 0.32697 0.245812 0.18642
5 2.34717 0.00001 0.32699 0.245813 0.00001 0.18641
6 2.26561 0.00001 0.31201 0.227324 0.00001 0.18803 0.11309

Table S3. Estimated variance components (estimate), the SEs (StdErr), and the correlation
coefficient matrix r( θ̂) of the estimated parameters under the full model (model 6)

Trait a d aa dd ad da e Estimate StdErr

YIELD a 1 0.029 −0.032 0.014 −0.548 −0.799 0.711 0.000 8.765
d 0.029 1 −0.168 −0.916 −0.041 0.005 0.265 0.000 10.707
aa −0.032 −0.168 1 0.109 −0.077 −0.090 −0.293 7.010 4.798
dd 0.014 −0.916 0.109 1 −0.058 −0.031 −0.242 5.271 9.253
ad −0.548 −0.041 −0.077 −0.058 1 0.246 −0.677 18.277 10.277
da −0.799 0.005 −0.090 −0.031 0.246 1 −0.634 5.548 9.406
e 0.711 0.265 −0.293 −0.242 −0.677 −0.634 1 1.963 7.655

TILLER a 1 −0.164 −0.081 0.140 −0.708 −0.520 0.714 0.445 0.592
d −0.164 1 −0.008 −0.864 0.142 −0.041 0.086 0.000 0.476
aa −0.081 −0.008 1 −0.142 −0.189 −0.076 −0.121 0.585 0.337
dd 0.140 −0.864 −0.142 1 −0.079 0.028 −0.177 0.000 0.494
ad −0.708 0.142 −0.189 −0.079 1 0.172 −0.670 0.120 0.675
da −0.520 −0.041 −0.076 0.028 0.172 1 −0.665 1.130 0.648
e 0.714 0.086 −0.121 −0.177 −0.670 −0.665 1 0.374 0.507

GRAIN a 1 0.117 −0.241 −0.014 −0.481 −0.686 0.724 150.913 90.846
d 0.117 1 −0.079 −0.936 −0.077 −0.188 0.369 0.000 64.553
aa −0.241 −0.079 1 0.011 −0.020 −0.046 −0.253 66.837 41.571
dd −0.014 −0.936 0.011 1 −0.063 0.090 −0.252 6.579 59.507
ad −0.481 −0.077 −0.020 −0.063 1 0.231 −0.655 110.180 84.790
da −0.686 −0.188 −0.046 0.090 0.231 1 −0.759 0.000 104.073
e 0.724 0.369 −0.253 −0.252 −0.655 −0.759 1 21.515 69.356

KGW a 1 0.200 −0.117 −0.200 −0.434 −0.228 0.481 2.266 0.553
d 0.200 1 −0.165 −0.969 −0.118 −0.069 0.653 0.000 0.646
aa −0.117 −0.165 1 0.128 −0.202 −0.123 −0.156 0.312 0.182
dd −0.200 −0.969 0.128 1 0.134 0.010 −0.662 0.227 0.639
ad −0.434 −0.118 −0.202 0.134 1 −0.153 −0.506 0.000 0.422
da −0.228 −0.069 −0.123 0.010 −0.153 1 −0.446 0.188 0.383
e 0.481 0.653 −0.156 −0.662 −0.506 −0.446 1 0.113 0.296
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Table S4. Correlation matrix between six different kinship
matrices (K)

Ka Kd Kaa Kdd Kad Kda

Ka 1 0.1501 0.6056 0.2078 0.8441 0.8439
Kd 0.1501 1 0.2565 0.9751 0.2681 0.2649
Kaa 0.6056 0.2565 1 0.3552 0.7278 0.7225
Kdd 0.2078 0.9751 0.3552 1 0.3652 0.3628
Kad 0.8441 0.2681 0.7278 0.3652 1 0.7382
Kda 0.8439 0.2649 0.7225 0.3628 0.7382 1

Table S5. Spearman rank correlation coefficients of predicted
genomic values between three methods of genomic prediction

Trait LASSO SSVS GBLUP

YIELD LASSO 1 0.8105 0.9124
SSVS 0.8105 1 0.65439
GBLUP 0.9124 0.65439 1

TILLER LASSO 1 0.89106 0.92744
SSVS 0.89106 1 0.99327
GBLUP 0.92744 0.99327 1

GRAIN LASSO 1 0.9171 0.96796
SSVS 0.9171 1 0.88387
GBLUP 0.96796 0.88387 1

KGW LASSO 1 0.98161 0.98387
SSVS 0.98161 1 0.97939
GBLUP 0.98387 0.97939 1

Other Supporting Information Files

Dataset S1 (XLXS)
Dataset S2 (XLXS)
Dataset S3 (DOC)
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