Supporting Information

Xue et al. 10.1073/pnas.1412686111

Fig. S1. 7C1 compound nanoparticles efficiently deliver siRNAs to murine lung adenocarcinoma cells in vitro. (*A*) FACS analysis of nanoparticle uptake and GFP knockdown. KP (*Kras^{LSL-G12D/wt*;*p53^{flox/flox}*) cells expressing GFP were incubated with 7C1-small interfering GFP (siGFP; Cy5.5-labeled) at the indicated concentration for 48 h and analyzed by FACS. (*B*) Imaging-based quantification of nanoparticle uptake and GFP knockdown. KP cells expressing GFP were incubated with 7C1-siGFP at the indicated concentration for 48 h and imaged by fluorescent microscopy. The GFP signal at 0 nM and Cy5.5 signal at 20 nM were set to 1. (*C*) Representative images from *B*. Cy5.5 is shown in red, and DAPI is shown in blue. (Magnification: 200×.)}

Fig. 52. 7C1 compound nanoparticles carrying luciferase siRNA efficiently knock down luciferase in murine lung adenocarcinoma in vivo. (*A*) Scheme of the *Kras*^{LSL-G12D/wt};*p*53^{flox/flox};R26^{LSL-Luciferase/LSL-tdTomato} mice. Whole-body bioluminescence imaging shows luciferase signal in the lung at 10 wk after Adeno-Cre inhalation. An explanted lung shows Tomato-positive lung tumors. Tumor-bearing mice were injected with a single dose of 1.5 mg/kg of 7C1-siRNA-targeting luciferase (siLuc^{Cy5.5}). Lung tumors were harvested at the indicated time points for luciferase immunostaining and determination of natural fluorescence of Tomato. (*B*) Quantification of luciferase immunofluorescence signal in Fig. 1*E*. Error bars are SEM (*n* = 18, 13, 16, and 7 tumors analyzed). n.s., not significant. ***P* < 0.01. (C) Quantification of luminescence by whole-body luciferase imaging. Error bars are SD (*n* = 3 mice). Arrowheads indicate 1.5 mg/kg of 7C1-siRNA i.v. injections.

Fig. S3. Biodistribution of 7C1 nanoparticles. KP mice harboring lung tumors were injected with a single dose of PBS or 1.5 mg/kg of 7C1 nanoparticles carrying Cy5.5-labeled siRNA (three mice per group). Cy5.5 signal in microdissected lung tumors and organs was quantified using an Xenogen imager at 3.5 h after injection. Error bars are SD (n = 3). Tumors denote autochthonous lung tumors.

Fig. S5. Comparing miR-34a delivery efficiency using three injection methods. (*A*) Sequences of miR-34a mimic and small interfering Kras (siKras; 5'–3'). mA, mG, mC, and mU are 2'O-methyl RNA; rA, rG, rC, and rU are RNA. dT*, phosphorothioated DNA. (*B*) Experiment design. (*C*) miR-34a levels in KP lung tumors or normal lung were quantified by RT-Q-PCR and normalized to U6 noncoding RNA. Error bars are SD (n = 4 tumors). The miR-34a level in control siRNA (ctrl)-treated tumors is set to 1. The highest miR-34a level in lung tumors is delivered by i.v. injection.

Fig. S6. Body weight in mice dosed with 7C1 nanoparticles carrying single siRNA/microRNA (miRNA) or combinations. (*A*) 7C1-small interfering control (siCntrol), 7C1-siKras, or 7C1–miR-34a was injected at a dose of 1.5 mg/kg every other day for four doses. Cisplatin treatment was given at a therapeutic dose (7 mg/kg). Body weight was measured 7 d after injection compared with preinjection. (*B*) 7C1 combination siRNA/miRNA was dosed at 2 mg/kg every other day for four doses. Error bars are SD (n = 3 mice).

Fig. 57. Screening effective siRNA targeting mouse Kras. (A) KP cells were transfected with indicated Kras siRNAs or a control siRNA (siCntrol) at 10 nM. Kras expression levels were measured by RT-Q-PCR at 48 h. siRNA numbers indicate positions in the Kras mRNA. Error bars are SD (n = 3). siScramble, scrambled siRNA. (B) siKras effect was rescued by a nonsilencible Kras cDNA (Kras^{G12D*}) as in Fig. 3*B*. KP cells stably expressing vector or Kras^{G12D*} were incubated with 7C1 carrying siCntrol or siKras. Cell numbers were quantified by a CellTiter-Glo assay (Promega) at 72 h. (C) Individual lung tumor volume curve from Fig. 3*D*. (*D*) Representative low-magnification view of Fig. 3*E*. (Magnification: 20×.) Twelve weeks after tumor initiations, mice were injected with two doses of 1.5 mg/kg of 7C1-siRNA every other day and harvested 72 h later. *Grade 2 tumors with low phospho-Erk (pErk) in the siCntrol group. Arrowheads denote tumors retaining high pErk in the siKras group.

Fig. S8. 7C1 nanoparticles deliver siKras.1212 in the KP model. (A) Effect of siKras.1212 on cell number was rescued by a nonsilencible Kras cDNA (KrasG12D*). KP cells stably expressing vector or Kras^{G12D*} were incubated with 7C1 carrying control siRNA or siKras. Cell numbers were quantified by a CellTiter-Glo assay at 72 h. (*B*) Quantification of pErk low- and high-grade lung tumors. $P < 10^{-12}$.

Fig. S9. Detecting *miR-34a* mimic and siKras in lung tumors dosed with 7C1 nanoparticles simultaneously complexed to siKras and miR-34a. Mice were dosed with 7C1 complexed with miR-34a/siKras (2 mg/kg) or 7C1 complexed with siCntrol. Small RNA in tumors was quantified by Q-PCR using Taqman probes specific to mature miR-34a (*A*) or siKras (*B*). Error bars are SD (*n* = 3 tumors). (C) Q-PCR cycle threshold (Ct) numbers (maximum = 40 cycles) of miR-34a, siKras, and U6. The miR-34a probe measures both endogenous miR-34a and delivered miR-34a mimic. The high Ct number of siKras in the siCntrol/siCntrol group indicates lack of endogenous siKras in control tumors. T1–T3 denote three individual lung tumors.

Fig. S10. 7C1 nanoparticles carrying miRNA/siRNA do not induce an immune response in mice. (*A*) Peripheral blood was collected from animals injected with 7C1 complexed to siCntrol or miR-34a/siKras combination at the indicated time points. These time points mimicked the therapeutic regimen (Fig. 4). (*B* and *C*) IL-6 and IFN- α concentrations were measured by ELISA (six mice per group). *P* > 0.05 (n.s.) for 7C1-siRNA vs. PBS comparison at all three time points. In the literature, siRNAs with known immunostimulatory effect induced >500 pg/mL IL-6 and >200 pg/mL IFN- α in the peripheral blood. (*D*) Representative histology in mice treated with the 7C1 miR-34a/siKras combination. (Scale bars: 100µm.)

Fig. S11. 7C1 nanoparticles deliver siRNA to human lung adenocarcinoma cells. (*A*) *KRAS* mRNA expression following treatment with 30 nM 7C1-siKRAS in four *KRAS* mutant human lung adenocarcinoma cell lines [H2009 (*KRAS*^{G12A}), H727 (*KRAS*^{G12V}), H441 (*KRAS*^{G12V}), and H23 (*KRAS*^{G12C})] was measured by RT-Q-PCR. (*B*) Normalized cell number (compared with 7C1.siCntrol, and quantified by CellTiter-Glo assay) 48 h following treatment with 7C1-siKRAS. Error bars are SD (n = 3 wells per group). (*C*) Immunoblots of H2009 protein lysates 48 h following incubation with 30 nM 7C1 siRNA. Heat shock protein 90 (HSP90) serves as a loading control. (*D*) Tumor volume, normalized to pretreatment volumes, in nude mice harboring H2009 xenograft tumors after treatment with 1 mg/kg of 7C1 siRNA (n = 3 mice per group, n = 2 tumors per mouse). Arrows indicate tail vein injections. **P < 0.01.