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	Text2: Background:Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and is associated with excessive cardiovascular morbidity and mortality. The angiotensin converting enzyme inhibitor (ACEI) benazepril has been shown to slow the progression of chronic renal disease and have beneficial effects in patients with a combination of chronic renal disease and cardiovascular disease. Transforming growth factor-1 (TGF-1) plays a central role in the pathogenesis and progression of DN. Integrin-linked kinase (ILK) can modulate TGF-1-induced glomerular mesangial cell (GMC) injury, which is a prominent characteristic of renal pathology in kidney diseases. As an integrin cytoplasmic-binding protein, ILK regulates fibronectin (FN) matrix deposition and the actin cytoskeleton. Smooth muscle α-actin (α-SMA) is involved in progressive renal dysfunction in both human and experimental renal disease. 
Methods: To explore the mechanisms of benazepril’s reno-protective effects, we examined the expression of TGF-1, ILK, and α-SMA in GMC exposed to high glucose (HG) and in the kidneys of streptozotocin (STZ)-induced diabetic rats using real-time quantitative RT-PCR and western blot analysis. To elucidate the mechanism(s) of the effect of benazepril on GMC cellular processes, we assessed the effect of benazepril on Angiotensin II (Ang II) signalling pathways using western blot analysis. 
Results: The expression of TGF-1, ILK, and α-SMA increased significantly in the diabetic group compared with the control group. Benazepril treatment inhibited the expression of these genes in DN but failed to rescue the same levels in the control group. Similar results were found in GMC treated with HG or benazepril. Ang II increased ERK and Akt phosphorylation in the HG group, and benazepril could not completely block these responses, suggesting that other molecules might be involved in the progression of DN. Our findings suggest that benazepril decreases ILK and α-SMA expression, at least in part, by affecting the interactions between Ang II and TGF-1.
Conclusions: The findings described here support the hypothesis that the HG milieu of diabetes increases TGF-1 secretion, which increases the synthesis of ILK and α-SMA that are involved in the progression of DN. This might be an important mechanism of the benazepril renal-protective function in the pathogenesis of DN.

	Text3: a. Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide and contributes to significant morbidity and mortality of diabetic patients. Approximately one-third of diabetic patients have progressive deterioration of renal function and ultimately require dialysis or transplantation [1]. This number is expected to rise dramatically as a result of the growing incidence of diabetes and the aging population [2, 3]. The pathophysiological mechanisms of DN are incompletely understood, but numerous factors contribute to the pathogenesis and progression of DN. Transforming growth factor-1 (TGF-1) can induce the accumulation of extracellular matrix (ECM) components, including collagens, fibronectin (FN) and laminin in the glomeruli and the interstitium of the kidney. TGF-1 expression regulates PINCH-1-integrin-linked kinase (ILK)-alpha-parvin complex formation and contributes to glomerular mesangial cell (GMC) proliferation and hypertrophy [4]. ILK, a cytoplasmic-binding serine/threonine protein kinase, is physically connected to the actin cytoskeleton and actin-binding protein CH-ILKBP, which is an important step in the development and progression of glomerular failure observed in several kidney diseases [5]. The GMCs, which have characteristics of a modified smooth muscle cell, occupy the central position in the renal glomerulus. The marker gene smooth muscle α-actin (α-SMA) was detected within the juxtamedullary glomeruli during foetal life. When glomerular development is completed after postnatal day 10, α-SMA expression is no longer present in the glomerulus [6]. GMCs can be activated by local injury, and activated cells are major sources of ECM synthesis, which affect the progression of renal dysfunction in human and experimental renal diseases [3, 7]. 
Angiotensin II (Ang II) is considered to be involved in the majority of pathological processes that result in DN. Increased Ang II activity causes hypertrophy of GMCs. Ang II promotes the production of TGF-1 that leads to progressive renal damage [8-10]. The death incidence due to cardiovascular disease is three times higher in patients with DN than in diabetic patients without signs of renal failure [11]. Because Ang II has an essential role in renal and cardiovascular pathophysiology, angiotensin-converting enzyme inhibitors (ACEI) have been shown to have beneficial effects on renal and cardiovascular diseases [11, 12]. 

b. For this purpose, we investigate the effect of benazepril on the renal expression of TGF-1, ILK and α-SMA in rat DN induced by streptozotocin (STZ) and the effect of benazepril on the expression of these genes associated with Ang II signalling pathway in GMCs. Our work demonstrates the renoprotective effects of benazepril in vivo and in vitro. Benazepril provides protection against the progressive deterioration of renal function in patients with renal diseases [13]
	Text5: The objectives of this study were to determine the effect of benazepril on the renal expression of TGF-b1, ILK and α-SMA in rat DN induced by streptozotocin (STZ) and the effect of benazepril on the expression of these genes associated with Ang II signalling pathway in GMCs, and to determine benazepril reno-protection against the progressive deterioration of renal function in patients with renal diseases.
	Text6: Animal care methods and treatment were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee of Hebei Medical University and the study protocol was approved by the ethical committee of Hebei Medical University, Shijiazhuang, China. 
	Text7: a. Three groups of 12 rat each were studied. Male Sprague-Dawley rats weighing 180-250 g  were randomly divided into 3 groups: normal control group (NC, n=12); diabetic nephropathy group (DN, n=12); and diabetic nephropathy treated with benazepril (ACEI, n=12).

b. Diabetes was induced by a single tail-vein injection of STZ (Sigma-Aldrich, USA) at a dose of 65 mg/kg body wt; the STZ was freshly prepared in 0.1 mol/L citrate buffer (pH 4.5)[14]. Age-matched male non-diabetic control rats were injected with an equal volume of citrate buffer. Seventy-two hours after the STZ administration, the induction of diabetes was confirmed by measurement of the blood glucose concentration with the OneTouch II blood glucose meter (Johnson & Johnson, USA). The rats with blood glucose ≥16.7 mmol/L were considered to have diabetes. 

c. In the sutdy,n refer to number of animals. For glomerular assessment, mesangial area (percentage of glomerular positive stained) was quantitated from 10 glomeruli per kidney per animal using Image J (NIH, Bethesda, MD) 

d. All of the rats were kept individually in metabolic cages to collect 24-hour urine for the measurement of the 24-hour urinary protein (TP/24) at 8 weeks. Blood pressures (BP) were obtained using the Non-Invasive BP system (Kent Scientific Corp, Torrington, CT), and blood samples were collected from the inferior vena cava. The blood glucose (Glu), serum creatinine (Scr), and blood urea nitrogen (BUN) were measured as previously described[15]. The right kidney from each rat was dissected, rinsed with cold saline, placed in the Tissue-Tek O.C.T. compound (Sakura Finetek USA, Torrance, CA), snap frozen in liquid nitrogen and stored at -80 ˚C until further analysis. The renal cortex of the left kidney from each rat was cut into small pieces, and the glomeruli were isolated by the mechanical graded sieving technique. 
	Text8: a. Diabetes was induced by a single tail-vein injection of STZ (Sigma-Aldrich, USA) at a dose of 65 mg/kg body wt; the STZ was freshly prepared in 0.1 mol/L citrate buffer (pH 4.5)[14]. 

b.  A 12 light/12 dark cycle is used in the experiment.  The researchers and technicians do not enter the mouse room during the dark cycle. All the experiments were conducted in the light phase.

c. Animal care methods and treatment were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee of Hebei Medical University.

d. Diabetes was induced by a single tail-vein injection of STZ (Sigma-Aldrich, USA) at a dose of 65 mg/kg body wt; the STZ was freshly prepared in 0.1 mol/L citrate buffer (pH 4.5)[14]. Age-matched male non-diabetic control rats were injected with an equal volume of citrate buffer. 

d. The diabetic rats were treated with benazepril (Beijing Novartis Pharmacy, China) at 10 mg/kg per day for 6 weeks by remedial perfusion of the stomach from the third day after the establishment of DN.  
	Text9: a. Male Sprague-Dawley rats weighing 180-250 g

b. Thirty-six male Sprague-Dawley rats were purchased from the Experimental Animal Academy of Chinese Medical Science Institute (Beijing, China). Vendor health report indicated that the rats were free of konwn viral, bacterial and parasitic pathogens.
	Text10: a. Animals were housed with a 12 light/12 dark cycle in a temperature and humidity controlled room.

b. All rats were allowed free access to water and normal diet in a 12-hour light/dark temperature and humidity controlled room. All cages contained wood shavings, bedding and a cardboard tube for environmental enrichment.

c. During the experiment period, any actual 
or potential pain, distress, or discomfort were monitored and minimized by the 
earliest 
endpoint that is compatible with the 
scientific objectives of the research. 
	Text11: a. Thirty-six rats were randomly divided into 3 groups: normal control group (NC, n=12); diabetic nephropathy group (DN, n=12); and diabetic nephropathy treated with benazepril (ACEI, n=12). NC group were injected with an equal volume of citrate buffer. Diabetes was induced by a single tail-vein injection of STZ (Sigma-Aldrich, USA) at a dose of 65 mg/kg body wt; the STZ was freshly prepared in 0.1 mol/L citrate buffer (pH 4.5)[14]. Seventy-two hours after the STZ administration, the induction of diabetes was confirmed by measurement of the blood glucose concentration with the OneTouch II blood glucose meter (Johnson & Johnson, USA). The rats with blood glucose ≥16.7 mmol/L were considered to have diabetes. The diabetic rats were treated with benazepril (Beijing Novartis Pharmacy, China) at 10 mg/kg per day for 6 weeks by remedial perfusion of the stomach from the third day after the establishment of DN. 

b. Sample size calculations were performed in StatMate (GraphPad Software, Inc.
La Jolla, CA USA).  To achieve alpha =0.05, and beta=0.20 (which allows for 80% power) to detect the difference would require a total of 36 animals.

c. The experiments was repeated, and data were pooled.
	Text12: a. For experiments, rats were randomly divided into different groups. 

b. For the experiment, sequences of A-B-C then C-B-A (cage labels during testing) were used to select animals. 
	Text13: Two primary outcome measures were analyzed: a serial of laboratory tests with body weight, systolic blood pressure and renal histology. In addition, TGF-1, ILK and α-SMA expression were detected. 
	Text14: a. All of the values are expressed as the mean±S.E. The significance of the results was assessed by a 2-tailed non-parametric pair t-test (Mann-Whitney-U) or a two-way ANOVA with Bonferroni post hoc test (for >2 groups). P <0.05 was considered statistically significant.

b. For each test, the experimental unit was an individual animal.

c. Test for normality was performed by Kolmogorov-Smirnov test.
	Text15: The animals' health status was monitored throughout the experiments by Animal Center of Hebei Medical University. The animals were free of all viral, bacterial, and parasitic pathogens listed in the guideline of the Institutional Animal Care and Use Committee of Hebei Medical University. 
	Text16: Twelve animals in each group were used in analysis.

b. Of those rats received STZ administration, seven rats were not included in the experiments because those blood glucose less than16.7 mmol/L, the rest twenty-four rats were included and completed.
	Text17: In accordance with the ARRIVE guidelines, we have report measures of precision, confidence, and n to provide an indication of significance.
Tables
Table 1 Body weight, blood pressure, serum and urinary tests in different groups
Group BW （g） BP （mmHg） Glu (mmol/L) TP/24 (ml) Scr (μmol/L) Bun (mmol/L)
NC 227.0±21.8 105.3±6.8 6.97±0.81 6.82±1.97 48.32±2.37 7.99±0.58
DN 158.4±9.3* 142.4±5.1* 35.63±2.13* 25.23±4.23* 72.85±4.97* 18.32±1.96*
ACEI 187.6±9.1*# 123.4±4.4*# 21.71±3.87*# 15.12±2.43*# 57.34±3.79*# 12.02±1.09*#
Values are shown as the mean±S.E. *, P<0.05 vs. control; #, P<0.05 vs. DN.

	Text18: a. We did not found any important adverse events during the experiment.

b. No modification to the experimental protocols.
	Text19: a. The aim of our study was to discuss the Benazepril beneficial effects in preventing renal and retinal complications of diabetes. DN is a common cause of end-stage kidney disease worldwide. The characteristic early abnormalities of diabetic kidneys are increased renal size and hyperfiltration. With the alteration of the glomerular filtration barrier, the glomerular structure collapses and leads to an increase in the albumin excretion rate followed by the development of GMC proliferation, ECM accumulation, and glomerular sclerosis. GMC proliferation is often considered an initial, adaptive response that eventually loses control and develops into a pathological process [23, 24]. HG induced autocrine or paracrine variety growth factors, cytokines, chemokines and vasoactive agents, including TGF-1 and Ang II, have been implicated in the stimulation of ECM accumulation following structural changes of DN. TGF-1 expression was increased in experimental diabetic animals and diabetic patients. Anti-TGF-1 antibody or TGF-1 antisense oligonucleotides attenuated renal hypertrophy or HG induced GMC FN expression by inhibition of ECM gene expression. Ang II can induce TGF-1 expression in GMCs, suggesting that TGF-1 is the final common mediator of DN [10, 25, 26]. ILK plays an important role in the interface between TGF-β1, ECM, the actin-based cytoskeleton and the cellular phenotype in kidney diseases [27]. We determined that ILK expression increased in the renal tissue of DN rats or in HG treated GMCs, indicating that HG levels induced ILK expression at least in part through increasing TGF-β1 autocrine secretion. Benazepril could attenuate the HG level induced TGF-β1 and ILK expression in vivo or in vitro, suggesting that Ang II also affects TGF-β1 and ILK expression. 

b. ACEI treatment showed lower in body weight, lower blood pressure, and a bit unexpectedly lower blood glucose levels than DN group (Table 1). ACE-I treated group was really specific to the inhibition of the renin-angiotensin-aldosterone system rather than secondary to i) lower body weight, thus less hyperfiltration and less glomerular hypertrophy, ii) less hyperglycemia and most importantly iii) lower blood pressure. All of these factors are well known driving factors behind the development of DN. For the therapeutic effect, ACEI group, the real control of DN group, showed the renoprotective function in the development of DN, but still a diabetic group treated with e.g. a thiazide diuretic to lower blood pressure level to a similar degree as seen in the treatment group should be used in the future, which it helps a great deal to illustrate that our results remain consistent across the data in vivo and in vitro.

c. Benazepril,  shows clearly beneficial effects in preventing renal and retinal complications of diabetes, which means we can considerably reducing the number of animals using samiliar drugs.
	Text20: The findings described here support the hypothesis that the high-glucose milieu of diabetes increases TGF-1 secretion, which increases the synthesis of ILK and α-SMA that are involved in the progression of DN. This might be an important mechanism of the benazepril renoprotective function in the pathogenesis of DN.
	Text21: This study was supported, in part, by the grants obtained from Hebei Natural Science Foundation (No.C20080000940) and Technology Commission Foundation (No.072761229).
	Text1: Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells


