Wavelength (Å)	0.979 (Peak)	0.979 (Inflection)	0.923 (Remote)
Space group	P3 ₂	P3 ₂	P3 ₂
a, b, c (Å)	a=b=86.5, c=151.5	a=b=86.5, c=151.5	a=b=86.5, c=151.5
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 90, 120
Resolution (Å)	75.4-2.28	75.4-2.28	75.4-2.28
R_{sym} (%) ^a	5.7 (18.9) ^b	4.6 (44.3)	5.0 (30.9)
Ι/σ(Ι)	15.5 (3.0)	14.2 (2.3)	13.8 (2.5)
Total reflections (#)	317916	118771	72566
Unique reflections (#)	59112	36721	9226

Table S1. Selected MAD Statistics for P3₂ BldD CTD-c-di-GMP Data, Related to Figures 4 and 5

 ${}^{a}R_{sym} = \Sigma\Sigma |I_{hkl}-I_{hkl(j)}|/ \Sigma I_{hkl}, \text{ where } I_{hkl} \text{ is observed intensity and } I_{hkl(j)}| \text{ is the final}$

average value of intensity.

^bValues in parentheses are for the highest resolution shell.

Table S2.	. Selected (Crystallogr	aphic Refin	ement Statistic	es for Bldl	D CTD-c-di-GM	P Structures,
Related to	o Figures 4	4, 5, and 7					

Complex	S. venezuelae	S. venezuelae		S. venezuelae	S. coelicolor BldD
	BldD C-domain-	BldD C-domain-		BldD C-domain-	C-domain-
	(c-di-GMP)	(c-di-GMP)		(c-di-GMP)	(c-di-GMP)
	(form 1)	(form 2)		(form 3)	
Data Collection	I				
Space group	P3 ₂	P2 ₁ 2 ₁ 2		C222 ₁	C222 ₁
a, b, c (Å)	a=b=86.5,	a=136.5,		a=36.2,	a=36.9,
	c=151.5	b=98.8,		b=95.5,	b=95.5,
		c=68.8		c=99.5	c=100.1
α, β, γ (°)	90, 90, 120	90, 90, 90		90, 90, 90	90, 90, 90
Resolution (Å)	75.8-1.95	98.8-2.33		99.6-1.75	34.6-2.25
R_{sym} (%) ^a	5.7 (57.9) ^b	4.6 (44.3)		4.1 (38.5)	5.0 (30.9)
Ι/σΙ	11.4 (1.9)	14.2 (2.3)		14.6 (2.6)	13.8 (2.5)
Total reflections (#)	322678	118771		57815	72566
Unique reflections (#)	90983	36721		17271	9226
Refinement	1	1			
R_{work}/R_{free} (%) ^c	19.8/24.4	22.6/26.9		19.8/21.9	22.6/25.6
Ramachandran	I				
analysis					
Most Favored (%/#)	91.8/752	84.3/452	92.1/117	94.4/117	
Add. Favored (%/#)	8.7/67	14.7/79	7.910	5.6/7	
Allowed (%/#)	0.0/0	0.9/5	0.0/0	0.0/0	
Outlier (%/#)	0.0/0	0.0/0	0.0/0	0.0/0	
	•				
Rmsd					
Bond lengths (Å)	0.020	0.017	0.008	0.017	1
Bond angles (Å)	1.99	2.04	1.32	2.03]

 ${}^{a}R_{sym} = \Sigma\Sigma |I_{hkl} - I_{hkl}(j)| / \Sigma I_{hkl}, \text{ where } I_{hkl} \text{ is observed intensity and } I_{hkl}(j)| \text{ is the final average value of intensity.}$

^bValues in parentheses are for the highest resolution shell.

 ${}^{c}R_{work} = \Sigma ||F_{obs}| - |F_{calc}||/\Sigma |F_{obs}|$ and $R_{free} = \Sigma ||F_{obs}| - |F_{calc}||/\Sigma |F_{obs}|$; where all reflections belong to a test set of 5% randomly selected data.

	Relevant genotype/comments	Source or reference
Strains		
S. venezuelae		
ATCC 10712	Wild type	(Bibb et al., 2012)
SV70	$attB_{\phi BTI}$::pIJ10350 (<i>ermEp*- cdgB</i>); Hyg ^R	This study
SV71	$attB_{\phi BTI}$::pIJ10659 (<i>ermEp* - yhjH</i>); Hyg ^R	This study
SV77	$\Delta bldD::apr;$ Apr ^R (Redirect)	This study
SV74	$\Delta bldD::apr; Apr^{R} (SV1-transduction)$	This study
SVNT6	$attB_{\phi BT1}$::pSVNT5 (<i>ermEp*- cdgB</i> -G472A); Hyg ^R	This study
SVNT8	$attB_{\phi BTI}$::pSVNT4 (<i>ermEp*- yhjH</i> -E48A); Hyg ^R	This study
SVNT9	$\Delta bldD::apr; Apr^{R} attB_{\phi BTI}::pIJ10350 (ermEp*- cdgB); Hyg^{R}$	This study
SVNT12	$\Delta bldD::apr; Apr^{R} attB_{\phi BTI}::pSVNT7 (pMS82-bldD R114D, p114D, p114D, p114D) black$	This study
E. coli	D116R, K125D, D128R); Hyg ^x	
ET12567/pUZ8002	<i>dam</i> , <i>dcm</i> , <i>hsd</i> , Kan ^R , Cm ^R	(Paget et al., 1999)
BW25113/pIJ790	$(\Delta(araD-araB)567, \Delta lacZ4787(::rrnB-4), lacIp-4000(lacI^Q),$	(Datsenko and Wanner,
BL21(DE3)/pLysS	Λ -, rposso9(Am), rpn-1, Δ (rnaD-rnaB)508, nsaR514; Cm F-ompT hsdS(rb-mb-) gal dcm λ (DE3), Cm ^R	2000) Promega
DH5a	F^{-} endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG	(Hanahan, 1985)
Plasmids	Φ 80d <i>lac2</i> Δ M15 Δ (<i>lac2YA-argF</i>) \cup 169, hsdR1/(r _K m _K), λ -	
pIJ773	Plasmid template for amplification of the <i>apr-oriT</i> cassette	(Gust et al., 2003)
pIJ790	for 'Redirect' PCR-targeting Modified λ RED recombination plasmid [<i>oriR101</i>]	(Gust et al., 2003)
pUZ8002	[<i>repA101</i> (ts)] <i>araBp-gam-be-exo</i> , Cm ^{**} RP4 derivative with defective oriT, Kan ^R	(Paget et al., 1999)
pET15b	T7 expression vector, Amp ^R	Novagen
pIJ10257	Plasmid integrating at the ϕ BT1 <i>attB</i> attachment site	(Hong et al., 2005)
pIJ10350	pIJ10257 carrying <i>cdgB</i> from <i>S.coelicolor</i>	(Tran et al., 2011)
pIJ10659	pIJ10257 carrying N-terminally codon optimised <i>yhjH</i> from	This study
pIJ10663	<i>E. coli</i> pET15b- <i>bldD</i> -Full	This study
pIJ10661	pET15b-bldD-NTD	This study
pIJ10660	pET15b-bldD-CTD	This study
pIJ10674	pET15b-bldD R114D, D116R, R125D, D128R	This study
pIJ10676	pET15b- <i>bldD</i> R125D, D128R	This study
pIJ10677	pET15b- <i>bldD</i> R114D, D116R	This study

Table S3. Strains and Plasmids Used in this Study, Related to Experimental Procedures

pIJ10668	pET15b-bldD-CTD L92M	This study
pIJ10678	pET15b-bldD-CTD L92M, I135M	This study
pSVNT4	pIJ10257 carrying N-terminally codon optimised <i>yhjH</i> -E48A from <i>E</i> , <i>coli</i>	This study
pSVNT5	pIJ10257 carrying <i>cdgB</i> -G472A from <i>S.coelicolor</i>	This study
pSVNT7	pMS82-bldD R114D, D116R, R125D, D128R	This study

Nucleotides in italics indicate restriction sites and nucleotides in bold represent mutations introduced Oligonucleotide Sequence Oligonucleotides used for cloning of *bldD*-full, *bldD*-NTD and *bldD*-CTD into pET15b GGTGGTCATATGTCCAGCGAATACGCAAAGCAGC bldDSVfull-NdeI-fw bldDSVfull-BamHI-rev CTCCTCGGATCCTCAGTTCTCCTCGTGGGCGACG bldDSVntd-BamHI-rev CTCCTCGGATCCTCAGGCGGCCCCGCCCGGAGTCG bldDSVctd-NdeI-fw GGTGGTCATATGGAGCCGCCGCCGAAGCTCGTCC Oligonucleotides used for mutagenesis of bldD bldD-L92M-fw CTGGAGCGCATGGCGCACGTC bldD-L92M-rev GACGTGCGCCATGCGCTCCAG bldD-I135M-fw CTGGCCGTGATGTACGACCAGTC bldD-I135M-rev GACTGGTCGTACATCACGGCCAG bldD R114D, D116R fw ATCCAGTCGCAGGACGGCCGCTACAACGGCAAG bldD R114D, D116R rev CTTGCCGTTGTAGCGGCCGTCCTGCGACTGGAT GTGCTGTCGATCGACCAGGACCGTCTGCGCACCCTG bldD R125D, D128R fw bldD R125D, D128R rev CAGGGTGCGCAGACGGTCCTGGTCGATCGACAGCAC Oligonucleotides used for cloning of *vhjH* and *cdgB* into pIJ10257 GGTGGTCATATGATCCGCCAGGTCATCCAGCGCATCTCCAACCCTGAAG yhjH-NdeI-fw CAAGCATCGAGAGC yhjH-HindIII-rev CGTAAGCTTTCATAGCGCCAGAACCGCCGTA cdgBSCO-NdeI-fw CGTGGTCATATGGAGACCGACTCGGAGCC cdgBSCO-HindIII-rev CGTAAGCTTTCATCCGGCGCGGCGGTGCTG Oligonucleotides used for generating DNA fragments for gel retardation assays CTAGCCACAGACACCGCG pbldMSV-pcr-fw pbldMSV-pcr-rev CGACGGTCACTCGAAAGAG pwhiGSV-pcr-fw GTTCGAAGATGTGGCCGAC pwhiGSV-pcr-rev GCGTTGCCTTGAGCCGTTC Oligonucleotides used for amplification of the oriT-apr cassette with bldD-specific extensions bldD sense GCGCAGCCGCATGTCGTCACAGCGTCCGGGAGCGTTATGATTCCGGGG ATCCGTCGACC TCTGCTGGGTCCCCGTAAGGGGTTCAGTTCTCCTCGTGGTGTAGGCTGG bldD disruption R2 AGCTGCTTC

Table S4. Oligonucleotides Used in this Study, Related to Experimental Procedures

Oligonucleotides used for verification of the *bldD* mutant and for cloning into pMS82

bldDSV-HindIII-pMS82-fw GGTGGT*AAGCTT*GAAGAAACGGACCTCCTTCTCC

bldDSV-KpnI-pMS82-rev AGTAGTGGTACCGTCGTAGACGTCACCGGCAGTCG

SUPPLEMENTAL REFERENCES

Adams, P.D. *et al.* (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. *66*, 213-221.

Bibb, M.J., Domonkos, Á., Chandra, G., and Buttner, M.J. (2012). Expression of the chaplin and rodlin hydrophobic sheath proteins in *Streptomyces venezuelae* is controlled by σ^{BldN} and a cognate anti-sigma factor, RsbN. Mol. Microbiol. *84*, 1033-1049.

Bush, M.J., Bibb, M.J., Chandra, G., Findlay, K.C., and Buttner, M.J. (2013). Genes required for aerial growth, cell division and chromosome segregation are targets of WhiA before sporulation in *Streptomyces venezuelae*. mBio *4*, e00684-13.

Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc. Natl. Acad. Sci. USA *97*, 6640-6645.

Germer, J., Becker, G., Metzner, M., and Hengge-Aronis, R. (2001). Role of activator site position and a distal UP-element half-site for sigma factor selectivity at a CRP/H-NS activated σ^{s} -dependent promoter in *Escherichia coli*. Mol. Microbiol. *41*, 705–716.

Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA *100*, 1541-1546.

Gust, B., Chandra, G., Jakimowicz, D., Yuqing, T., Bruton, C., and Chater K.F. (2004). Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. *54*, 107-128.

Hanahan, D. (1985). In DNA Cloning: A Practical Approach, D.M. Glover, ed. (McLean, Virginia: IRL Press), p. 109.

Hong, H.J., Hutchings, M.I., Hill, L.M., and Buttner, M.J. (2005). The role of the novel Fem protein VanK in vancomycin resistance in *Streptomyces coelicolor*. J. Biol. Chem. *280*, 13055-13061.

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. and Hopwood, D.A. (2000). *Practical Streptomyces Genetics*. The John Innes Foundation, Norwich, United Kingdom.

McCoy, A.J., Crosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. *40*, 658-674.

Molle, V., Palframan, W.J., Findlay, K.C., and Buttner, M.J. (2000). WhiD and WhiB, homologous proteins required for different stages of sporulation in *Streptomyces coelicolor* A3(2). J. Bacteriol. *182*, 1286-1295.

Nesper, J., Reinders, A., Glatter, T., Schmidt, A., and Jenal, U. (2012). A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J. Proteomics. *75*, 4874-4878.

Paget, M.S., Chamberlin, L., Atrih, A., Foster, S.J., and Buttner, M.J. (1999). Evidence that the extracytoplasmic function sigma factor σ^{E} is required for normal cell wall structure in *Streptomyces coelicolor* A3(2). J. Bacterial. *181*, 204-211.

Paul, R., Weiser, S., Amiot, N.C., Chan, C., Schirmer, T., Giese, B., and Jenal, U. (2004). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. *18*, 715-727.

Pesavento, C., Becker, G., Sommerfeldt, N., Possling, A., Tschowri, N., Mehlis, A., and Hengge, R. (2008). Inverse regulatory coordination of motility and curli-mediated adhesion in *Escherichia coli*. Genes Dev. *22*, 2434-2446.

Roelofs, K.G., Wang, J., Sintim, H.O., and Lee, V.T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc. Natl. Acad. Sci. USA *108*, 15528-33.

Stuttard, C. (1979). Transduction of auxotrophic markers in a chloramphenicol-producing strain of *Streptomyces*. J. Gen. Microbiol. *110*, 479-82.

Stuttard, C. (1982). Temperate phages of *Streptomyces venezuelae*: lysogeny and host specificity shown by phages SV1 and SV2. Microbiology 128, 115-121.

Terwilliger, T.C., and Berendzen, J. (1999). Automated MAD and MIR structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 55, 849-861.

Tran, N.T., Den Hengst, C.D., Gomez-Escribano, J.P., and Buttner, M.J. (2011). Identification and characterization of CdgB, a diguanylate cyclase involved in developmental processes in *Streptomyces coelicolor*. J. Bacteriol. *193*, 3100-3108.