## **Supplementary Information**

# Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins

Bum-Ho Bin, Shintaro Hojyo, Toshiaki Hosaka, Jinhyuk Bhin, Hiroki Kano, Tomohiro Miyai, Mariko Ikeda, Tomomi Kimura-Someya, Mikako Shirouzu, Eun-Gyung Cho, Kazuhisa Fukue, Taiho Kambe, Wakana Ohashi, Kyu-Han Kim, Juyeon Seo, Dong-Hwa Choi, Yeon-Ju Nam, Daehee Hwang, Ayako Fukunaka, Yoshio Fujitani, Shigeyuki Yokoyama, Andrea Superti-Furga, Shiro Ikegawa, Tae Ryong Lee and Toshiyuki Fukada

### Table of contents:

### TABLE:

| Supplementary Table 1.                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primers used for the construction of G64 mutants2                                                                                                                                |
| FIGURES:                                                                                                                                                                         |
| Supplementary Figure 1.<br>Intracellular Zn level in wild-type or mutant ZIP13 expressing cell lines                                                                             |
| Supplementary Figure 2.<br>Decreased protein levels of the SCD-EDS pathogenic mutants of ZIP13 in stably expressing HeLa cells4                                                  |
| Supplementary Figure 3.<br>Increased dimers of G64D mutant protein in the presence of proteosome inhibitor MG1325                                                                |
| <b>Supplementary Figure 4.</b><br>Equivalent <i>ZIP13</i> mRNA expression levels in cells transiently expressing wild-type ZIP13 (WT-V5), G64 mutants, and ΔFLA mutant (ΔFLA-V5) |
| Supplementary Figure 5.<br>The 20S proteasome is not significantly involved in the degradation of SCD-EDS pathogenic ZIP13 mutants7                                              |
| Supplementary Figure 6.<br>Degradation of the SCD-EDS pathogenic ZIP13 mutants involves ubiquitination                                                                           |
| Supplementary Figure 7.<br>Intracellular flow cytometric analysis for exogenous ZIP13 expression                                                                                 |
| Supplementary Figure 8.<br>Bortezomib restored the mutant ZIP13 proteins and the intracellular Zn homeostasis                                                                    |
| Supplementary Figure 9.<br>MG132 restored the intracellular Zn homeostasis11                                                                                                     |
| Supplementary Figure 10.<br>HSP90 inhibitor treatment restores the G64D mutant ZIP13 protein level                                                                               |
| Supplementary Figure 11.<br>Expression levels of ER stress responsive genes and proteins                                                                                         |
| REFERENCE14                                                                                                                                                                      |

# TABLE:

### Supplementary Table 1. Primers used for the construction of G64 mutants

| Mutant                            | Sense primer                           | Anti-sense primer           |  |
|-----------------------------------|----------------------------------------|-----------------------------|--|
| G64A                              | 5'- <u>GCT</u> TCCCTCATGGTGGGGCTCAGTG  | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64C                              | 5'- <u>TGT</u> TCCCTCATGGTGGGGCTCAGTG  | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64S                              | 5'- <u>TCT</u> TCCCTCATGGTGGGGCTCAGTG  | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64I                              | 5'- <u>ATT</u> TCCCTCATGGTGGGGCTCAGTG  | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64L                              | 5'- <u>CTT</u> TCCCTCATGGTGGGGCTCAGTG  | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64E                              | 5'- <u>GAG</u> TCCCTCATGGTGGGGCTCAG    | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64R                              | 5'- <u>AGA</u> TCCCTCATGGTGGGGCTCAG    | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64N                              | 5'- <u>AAC</u> TCCCTCATGGTGGGGCTCAGTGG | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| G64Q                              | 5'- <u>CAG</u> TCCCTCATGGTGGGGCTCAGTGG | 5'-CAGGAGGGAGCAGATCCAGGTGTC |  |
| *Mutated sequences are underlined |                                        |                             |  |

### **FIGURES:**

# **Supplementary Figure 1**



#### Fig S1. Intracellular Zn level in wild-type or mutant ZIP13 expressing cell lines.

Cellular Zn level was measured by ICP-AES in representative (A) 293T (Fig 5) and (B) HeLa clones (Fig E2) stably expressing Mock, wild-type (WT-V5), G64D mutant (G64D-V5), or  $\Delta$ FLA mutant ( $\Delta$ FLA-V5) vector.



# Fig S2. Decreased protein levels of the SCD-EDS pathogenic mutants of ZIP13 in stably expressing HeLa cells.

**A**. Protein levels of the G64D mutant ZIP13. Cell lysates of three representative HeLa clones stably expressing C-terminally V5 epitope-tagged WT-V5 or G64D-V5 ZIP13, were analyzed by western blotting using an anti-V5 antibody.

B. Protein levels of the ΔFLA mutant ZIP13. Cell lysates of three representative HeLa clones stably expressing WT-V5 or ΔFLA-V5 were analyzed by western blotting using an anti-V5 antibody.
C. The hCD8 expression level as an indicator of the amount of transfected plasmid DNA (pMX-WT-IRES-hCD8, pMX-G64D-IRES-hCD8, or pMX-ΔFLA-IRES-hCD8). Three representative HeLa clones stably expressing WT-V5, G64D-V5, or ΔFLA-V5, were analyzed by flow cytometry using an APC-conjugated anti-hCD8 antibody. Histograms were gated on hCD8-positive cells.



**Fig S3.** Increased dimers of G64D mutant protein in the presence of proteosome inhibitor MG132. The dimer formation of ZIP13 was analyzed by western blotting under non-reducing conditions using the lysates of HT1080 cells expressing N-terminally 3xFLAG-tagged wild-type (F-WT) and G64D mutant (F-G64D) ZIP13 (Bin et al, 2011).



# Fig S4. Equivalent ZIP13 mRNA expression levels in cells transiently expressing wild-type ZIP13 (WT-V5), G64 mutants, and $\triangle$ FLA mutant ( $\triangle$ FLA-V5).

**A.** The transcript levels of mutant constructs encoding ZIP13-V5 with various amino acids at position 64 were comparable to that of wild type.

**B.** The transcript levels of the mutant constructs encoding G64N-V5 and G64Q-V5 were comparable to that of wild type.

**C.** The transcript level of the mutant construct encoding  $\Delta$ FLA-V5 was comparable to that of wild type.



# Fig S5. The 20S proteasome is not significantly involved in the degradation of SCD-EDS pathogenic ZIP13 mutants.

The siRNA targeting PA28, which induces the 20S proteasome, did not affect the protein expression of C-terminally V5 epitope-tagged WT-V5, G64D-V5, or  $\Delta$ FLA-V5 ZIP13 in 293T cells. The siRNAs were transfected into 293T cells stably expressing each type of ZIP13 protein. Seventy-two hours post-transfection, the cells were harvested and subjected to western blotting using an anti-PA28 or anti-V5 antibody.



#### Fig S6. Degradation of the SCD-EDS pathogenic ZIP13 mutants involves ubiquitination.

**A.** Detection of ubiquitinated ZIP13 proteins. 293T cells co-expressing 6x histidine-tagged ubiquitin and WT-V5, G64D-V5, or  $\Delta$ FLA-V5 were treated with 10  $\mu$ M MG132 for 6 h, lysed with denaturing buffer, and purified by Ni-NTA agarose. The ZIP13 proteins in the purified samples were then subjected to western blotting. Ubiquitinated ZIP13 proteins were detected using an anti-V5 antibody.

**B.** The ubiquitinated/normal protein ratio for the wild-type and mutant ZIP13 proteins were shown.





#### Fig S7. Intracellular flow cytometric analysis for exogenous ZIP13 expression.

HeLa stable clones expressing WT-V5 or G64D-V5 were treated with DMSO or 10  $\mu$ M MG132. After fixation and permeabilization, the cells were stained with the monoclonal antibody 35B11, followed by goat-antimouse-Alexa 488.



Fig S8. Bortezomib restored the mutant ZIP13 proteins and the intracellular Zn homeostasis.

**A.** 293T cells stably expressing G64D-V5 were treated with Bortezomib at the indicated concentrations, followed by western blotting using an anti-V5 antibody.

**B.** 293T cells stably expressing  $\Delta$ FLA-V5 were treated with Bortezomib at the indicated concentrations, followed by western blotting using an anti-V5 antibody.

**C.** HeLa cells stably expressing WT-V5, G64D-V5, or  $\Delta$ FLA-V5, were treated with 10 nM Bortezomib for 6 h. The intracellular Zn level was monitored by Fluozin-3 in combination with Zn pyrithione treatment. Bars, 200  $\mu$ m.



### Fig S9. MG132 restored the intracellular Zn homeostasis.

**A.** HeLa cells stably expressing indicated expression plasmids were treated with DMSO (blue line) or 10  $\mu$ M MG132 (red line) for 6 h, followed by incubation with 0.1  $\mu$ M of FluoZin-3 and 7AAD. 7AAD-negative populations were subjected to flow cytometric analysis.

**B.** HeLa cells stably expressing indicated expression plasmids were transiently transfected with *MT1* promoter reporter and phRL-TK plasmids, followed by incubation of 10  $\mu$ M MG132 for 6 h and analyzed the luciferase activity. Data are shown as mean ± s.e.m. (Student's t-test).



#### Fig S10. HSP90 inhibitor treatment restores the G64D mutant ZIP13 protein level.

Treatment with an HSP90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17AAG), restored the protein level of G64D-V5 in the presence of CHX. 293T cells stably expressing G64D-V5 were treated with 10  $\mu$ M 17AAG, 10  $\mu$ M DBeQ, or 10  $\mu$ M MG132 in the presence of CHX for 6 h. Total cell lysates were subjected to western blotting using an anti-V5 antibody.



### Fig S11. Expression levels of ER stress responsive genes and proteins.

**A.** The mRNA expression levels of *CHOP* and *BIP* in 293T cells expressing WT-V5 or G64D-V5. Cells were transfected with expression plasmids, and then treated with 0.5  $\mu$ M MG132 for 6 h. The mRNA expression levels of *CHOP* and *BIP* were analyzed by RT-qPCR. Data are representative of three experiments, and shown as mean  $\pm$  s.e.m. (Student's t-test). N.S.: not significant, MG: MG-132

**B.** The mRNA expression levels of *CHOP* and *BIP* in 293T cells expressing WT-V5 or  $\Delta$ FLA-V5. RT-qPCR analysis for *CHOP* and *BIP* was performed as described in **A**. Data are representative of three experiments, and shown as mean  $\pm$  s.e.m. (Student's t-test). N.S.: not significant; MG: MG-132

**C.** Protein expression levels of CHOP, BIP, IRE1 $\alpha$ , PDI, PERK, Ero1-L $\alpha$ , and calnexin in 293T cells expressing WT-V5, G64D-V5, or  $\Delta$ FLA-V5. The cells were treated with 0.5  $\mu$ M MG132 for 6 h. The cell lysate was subjected to SDS-PAGE and analyzed by western blotting using antibodies to the indicated proteins.

# **REFERENCE:**

Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S, Miyai T, Nishida K, Yokoyama S, Hirano T (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the Spondylocheiro dysplastic Ehlers-Danlos syndrome. *J Biol Chem.* 286: 40255-40265.