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Supplementary Information 1 

 2 

Supplementary Discussion 3 

In the present study, we conducted a simulation based on a permutation test to extract genes 4 

that are both diagnostic markers (for discrimination of histological subtypes) and prognostic 5 

markers (for overall survival in STS).  As shown in Table 2, 25 genes were extracted, and 6 

their adjusted p values were statistically significant (adjusted p < 0.05).  We analyzed studies 7 

related to these 25 genes and found many reports suggesting that these 25 genes are effective 8 

prognostic/predictive factors or therapeutic targets, as shown in Supplementary Table S7.  9 

Among the 25 genes, 8 genes were extracted using Welch’s t test to compare UPS and MFS 10 

(q < 0.05).  Four of these genes, MIF, SCD1, ENO1/MBP1, and P4HA1, were also extracted 11 

in our previous study [1].  Among the 4 genes, MIF and SCD1 are potential 12 

prognostic/predictive markers and/or therapeutic targets not only for UPS but also for other 13 

cancers [2-26].  14 

MIF expression is induced by HIF-1 under hypoxia [27,28].  Secreted MIF interacts 15 

with the cell surface molecule CD74 [29].  CD74 lacks a signal-transducing intracellular 16 

domain but interacts with the proteoglycan CD44 and mediates signaling via CD44 to activate 17 

Src-family kinase and mitogen-activated protein kinase (MAPK)/extracellular 18 

signal-regulated kinase (ERK), either to stimulate the phosphatidylinositol 3-kinase 19 

(PI3K)/Akt pathway or to initiate the p53-dependent inhibition of apoptosis [30].  MIF can 20 

also promote invasion and metastasis via G-protein-coupled chemokine receptors (CXCR2, 21 

CXCR4, and CXCR7) [22,31,32].  Furthermore, MIF activates HIF-1α expression in a 22 

p53-dependent manner [33].  MIF promotes not only tumor metastasis [1,12,19,21,22] but 23 

also apoptosis [34,35], cell growth [10,18], and angiogenesis [2,3,36].  SCD1 expression is 24 

also induced by hypoxia [37].  SCD1 and HIF-2α are overexpressed in clear cell renal cell 25 
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carcinoma under hypoxia; they synergistically inhibit apoptosis and promote cell migration 1 

[38].  Hypoxia-induced SCD1 activates the Akt pathway via regulation of the ∆9 2 

monounsaturated fatty acid (MUFA)/saturated fatty acid (SFA) balance in mammalian cells 3 

[37,39,40].   4 

The 2 remaining genes, ENO1/MBP1 and P4HA1, also showed statistical 5 

significance, not only for UPS vs. MFS but also for UPS vs. SS and for UPS vs. MLS, as 6 

shown in Table 4 and Fig. 6.  Recent studies have revealed that ENO1/MBP1 and P4HA1 are 7 

target genes of hypoxia-inducible factor 1 (HIF-1) [41,42].  Furthermore, ENO1/MBP1 is a 8 

repressor of MYC [43], a prognostic marker for many cancers [44-49] and a therapeutic target 9 

in breast cancer (in combination with radiation therapy) [50].  Knockdown of ENO1/MBP1 10 

inhibits hypoxic cell growth in clear cell ovarian cancer [51].  Hypoxia-induced P4HA1, 11 

P4HA2, and procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) promote 12 

invasiveness and metastasis by altering the composition, alignment, and mechanical 13 

properties of the extracellular matrix (ECM) [41].  P4HA1 and P4HA2 encode collagen 14 

prolyl hydroxylases that are essential for cancer invasion and metastasis [52].  Among our 15 

25 genes, P4HA1 showed the strongest association with the histological grade (ρ = 0.449, p = 16 

1.12 × 10
-5

) and with metastasis (ρ = 0.424, p = 3.89 × 10
-5

), as shown in Table 3.  These 17 

results suggest that the malignancy of UPS depends on the activation of genes downstream of 18 

HIFs under hypoxic conditions.  A study of the relationship between a hypoxia-induced 19 

transcription profile and the metastatic potential of STS has been published [53].  In the 20 

present study, we enriched the set of potential disease-associated genes by combining 21 

knowledge-based filtering with a simulation based on the integration of multiple statistics. 22 

Among the 8 genes selected by Welch’s t test (comparison of UPS with MFS), 4 genes, 23 

that is, MIF, SCD1, ENO1, and P4HA1, had been extracted in our previous study [1].  The 4 24 

remaining genes, that is, PRDX1, CD34, FAM162A/HGTD-P, and PTK7, have not been 25 
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extracted by comparison of UPS with MFS in any previous study.  CD34 has been used 1 

successfully for the differential diagnosis (immunohistochemical analysis) of STS [54].  2 

CD34 is also a marker for progenitor and stem cells [55,56] and vascular endothelial cells 3 

[57].  Therefore, CD34 will likely be a useful prognostic marker in some cancers [58-62].  4 

PRDX1 encodes a member of the peroxiredoxin family of antioxidant enzymes.  PRDX1 5 

interacts with the cellular oncogene products c-Abl and c-Myc and inhibits c-Abl kinase 6 

activity [63] and Myc-mediated transformation [64], independent of its antioxidant activity.  7 

Thus, PRDX1 acts as a tumor suppressor.  In addition, PRDX1 promotes nuclear factor 8 

kappa B (NF-κB) activity, which induces the expression of HIF-1α via toll-like receptor 4 9 

(TLR4) in prostate cancer [65].  NF-κB directly binds to the HIF-1α promoter [66].  Many 10 

studies suggest that PRDX1 is a useful prognostic marker in various cancers [67-71], but there 11 

are no data for STS in this regard.  In the present study, PRDX1 showed statistical 12 

significance not only for UPS vs. MFS but also for UPS vs. SS and UPS vs. MLS, as shown 13 

in Table 4 and Fig. 6. 14 

FAM162A/HGTD-P is a HIF-1 target gene and is an indispensable mediator of the 15 

mitochondrial apoptotic pathway [72,73].  PTK7 is a regulator of noncanonical WNT/planar 16 

cell polarity (PCP) signaling [74].  PTK7 also inhibits canonical Wnt/β-catenin signaling 17 

[75,76].  PTK7 is upregulated in many cancers, and knockdown of PTK7 in colon carcinoma 18 

cells inhibits cell proliferation and induces caspase 10-dependent apoptosis via the 19 

mitochondrial pathway [77].  Many studies suggest that PTK7 is a useful 20 

prognostic/predictive marker and/or therapeutic target in various cancers [77-84]. 21 

When CINSARC was compared with our 25 genes, 4 common genes, PTTG1, ASPM, 22 

CDC20, and KIF20A/MKlp2, were extracted, as shown in Fig. 4.  PTTG1, ASPM, and 23 

CDC20 are downstream of breast cancer susceptibility gene 1 (BRCA1) [85].  Knockdown of 24 

BRCA1 with small interfering RNA (siRNA) downregulates multiple genes implicated in 25 
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chromosome segregation (e.g., PTTG1), centrosome function (e.g., ASPM), and progression 1 

into and through mitosis (e.g., CDC20) in human prostate (DU-145) and breast (MCF-7) 2 

cancer cells [85].  PTTG1 is a proto-oncogene originally cloned from a rat pituitary tumor 3 

[86].  PTTG1 encodes a protein that interacts with p53, modulates p53-mediated 4 

transcriptional activity and apoptosis [87], and prevents the activation of separin, which 5 

induces sister chromatid separation in the transition from metaphase to anaphase [88].  Many 6 

studies suggest that PTTG1 is a useful prognostic/predictive marker and/or therapeutic target 7 

in various cancers [89-98]. 8 

ASPM is the putative human ortholog of the Drosophila melanogaster abnormal 9 

spindle gene (Asp), which is involved in mitosis [99] and DNA repair [100].  Many studies 10 

suggest that ASPM is a useful prognostic/predictive marker and/or therapeutic target in 11 

various cancers [101-106].  CDC20 is an essential regulator of cell division in humans 12 

[107,108].  CDC20 is downregulated by p53 [109], and many studies have suggested that 13 

CDC20 is a useful prognostic/predictive marker and/or therapeutic target in various cancers 14 

[110-116]. 15 

KIF20A/MKlp2, encodes a member of the kinesin superfamily of motor proteins 16 

[117].  KIF20A/MKlp2 is a mitotic inhibitory target of mitotic arrest deficient 2 (MAD2) 17 

and is necessary for proper mitotic progression and cytokinesis [118].  Direct interaction 18 

between MAD2 and CDC20 is a key event during the checkpoint activation of spindle 19 

assembly [119].  Inhibition of KIF20A/MKlp2 induces lysosomal cell death and cell cycle 20 

arrest in the G1 phase in breast cancer cells [120] and G2/M arrest in gastric cancer cells 21 

[121].  Many studies suggest that KIF20A/MKlp2 is a useful prognostic/predictive marker 22 

and/or therapeutic target in different types of cancer [120-123].  23 

These results indicate that the 4 genes common to CINSARC and our analysis are 24 

linked to cell cycle checkpoints.  This is logical because CINSARC genes were selected for 25 
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the prediction of metastasis in STS, and our 25 genes were selected as both diagnostic 1 

markers (for histological subtypes) and prognostic markers of overall survival in STS.  2 

Among the 25 genes, 13 genes remained after using Welch’s t test to compare UPS and SS or 3 

UPS and MLS (q < 0.05): solute carrier family 16, member 1 (SLC16A1)/monocarboxylate 4 

transporter 1 (MCT1); cell adhesion molecule 1 (CADM1)/tumor suppressor in non-small cell 5 

lung cancer 1 (TSLC1); trichorhinophalangeal syndrome 1 (TRPS1); protein kinase, 6 

DNA-activated, catalytic polypeptide (PRKDC)/DNA-dependent protein kinase catalytic 7 

subunit (DNA-PKcs); cyclin-dependent kinase 1 (CDK1)/cell division cycle protein 2 8 

(CDC2); transforming, acidic coiled-coil containing protein 3 (TACC3); lysosomal protein 9 

transmembrane 4 β (LAPTM4B); fibronectin 1 (FN1); H2A histone family, member Y 10 

(H2AFY)/histone H2A variant (H2AX); STAT1; caveolin 1 (CAV1); caveolin 2 (CAV2); and 11 

insulin-like growth factor-binding protein 4 (IGFBP4).   12 

SLC16A1/MCT1 encodes a monocarboxylate transporter that drives the movement of 13 

lactate and pyruvate across cell membranes [124].  SLC16A1/MCT1 counteracts p53 14 

activity at the transcriptional level, and the loss of p53 along with SLC16A1/MCT1 15 

overexpression synergistically promotes chromosomal instability and tumorigenicity [125].  16 

Lactate taken up by SLC16A1/MCT1 activates HIF-1 and triggers tumor angiogenesis and 17 

tumor growth [126,127].  SLC16A1/MCT1 inhibition has antitumor effects that are 18 

associated with the NF-κB pathway [128].  Many studies suggest that SLC16A1/MCT1 is a 19 

promising prognostic/predictive marker and/or therapeutic target in various types of cancer 20 

[126,128-135].   21 

CADM1/TSLC1 encodes an immunoglobulin-like cell adhesion molecule with 3 22 

immunoglobulin loops [136].  The ectodomain of CADM1/TSLC1 mediates intercellular 23 

adhesion through homophilic or heterophilic trans-interactions between neighboring cells 24 

[137].  CADM1/TSLC1 is implicated in cell proliferation, invasion, and apoptosis via 25 
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regulation of the Akt signaling pathway [138].  Promoter methylation of the CADM1/TSLC1 1 

gene is frequently observed in many cancers [139].  CADM1/TSLC1 is a useful 2 

prognostic/predictive marker and/or therapeutic target because it acts as a tumor suppressor in 3 

various cancers [138,140-143].  In addition, T-cell lymphoma invasion and metastasis 1 4 

(TIAM1) integrates signals from CADM1/TSLC1 to regulate the actin cytoskeleton through 5 

Rac activation, which leads to tissue infiltration by leukemic cells in adult T-cell 6 

leukemia/lymphoma (ATL) [136].   7 

TRPS1 encodes a GATA-type zinc-finger protein [144].  TRPS1 is a nuclear protein 8 

that binds GATA sequences, and TRPS1 potently and specifically prevents transcriptional 9 

activation mediated by other GATA factors [144].  TRPS1 is a crucial regulator of the 10 

mesenchymal-to-epithelial cell transition [145,146]; accordingly, TRPS1 is a prognostic 11 

marker in breast cancer [145,146] and colon cancer [147]. 12 

PRKDC/DNA-PKcs encodes a member of the phosphatidylinositol 3-kinase-like 13 

kinase (PIKK) family of protein kinases [148].  Ataxia telangiectasia mutated (ATM) and 14 

ataxia telangiectasia and Rad3-related (ATR) protein also belong to the PIKK family, and 15 

PRKDC/DNA-PKcs cooperates with these genes to phosphorylate proteins involved in the 16 

DNA damage checkpoint [149].  Inhibition of PRKDC/DNA-PKcs activity prevents binding 17 

of PRKDC/DNA-PKcs to p53 on the p21 promoter [150].  Several studies suggest that 18 

PRKDC/DNA-PKcs is a good prognostic/predictive marker and/or therapeutic target in 19 

various cancers [151-153].   20 

CDK1/CDC2 is a serine/threonine kinase that interacts with cyclin B1 (CCNB1) to 21 

form a complex known as the maturation-promoting factor (MPF), which is essential for cell 22 

cycle progression through mitosis [154].  Inhibition of CDK1/CDC2 induces G2/M arrest 23 

[155].  Many studies suggest that CDK1/CDC2 is a useful prognostic/predictive marker 24 

and/or therapeutic target in various types of cancer [156-160].   25 
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TACC3 is necessary for the regulation of mitotic spindle assembly and chromosome 1 

segregation [161].  This protein regulates the transcriptional activation of HIF-1 through 2 

interaction with aryl hydrocarbon receptor nuclear translocator (ARNT) (also known as 3 

HIF-1β) [162].  TACC3 deficiency is associated with a high rate of apoptosis and expression 4 

of the p53 target gene p21 [163].  Several studies suggest that TACC3 is a useful 5 

prognostic/predictive marker and/or therapeutic target in various cancers [164-166].   6 

LAPTM4B, which encodes a protein containing a lysosome localization motif that 7 

localizes to the late endosomes and lysosomes [167], was originally identified as a 8 

hepatocellular carcinoma-associated gene [167].  LAPTM4B promotes autophagy and 9 

tolerance to metabolic stress [168], enhances the multidrug resistance of cancer cells by 10 

promoting drug efflux through colocalization and interaction with P glycoprotein (P-gp), and 11 

inhibits apoptosis by activating PI3K/AKT signaling [169].  Many studies suggest that 12 

LAPTM4B is a useful prognostic/predictive marker and/or therapeutic target in various 13 

cancers [170-174]. 14 

FN1, a HIF-1 target gene in colon carcinoma [175] and a SRY-related HMG-box 15 

gene 2 (SOX2) target gene in ovarian cancer [176], promotes cell migration and invasion in 16 

various cancers [177,178].   17 

H2AFY/H2AX encodes a histone protein that consists of a histone H2A-like histone 18 

domain and a large, globular C-terminal macrodomain that is not present in other histone 19 

proteins [179].  H2AFY/H2AX is required for the repair of DNA double-strand breaks in the 20 

ATM signaling pathway [180], and active expression of H2AFY/H2AX (γH2AX) is an 21 

indicator of DNA double-strand breaks [181].  H2AFY/H2AX was found to interact with 22 

human epidermal growth factor receptor 2 (HER2) in cancer cells that overexpress HER2 23 

[182].  H2AFY/H2AX has also been shown to interact with tumor suppressor p53-binding 24 

protein 1 (TP53BP1) [183-185], BRCA1 [186-188], and BRCA1-associated RING domain 25 
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protein 1 (BARD1) [186,188].  The absence of H2AFY/H2AX causes 1 

proteasome-dependent degradation of p21 under conditions of DNA damage [189].  Many 2 

studies have suggested that H2AFY/H2AX is a promising prognostic marker in various cancers 3 

[190-193].   4 

The protein encoded by STAT1 was the first identified member of a multigene family 5 

targeted by both the type I and type II interferon (IFN) pathways [194-197].  STAT1 6 

maintains cellular homeostasis by controlling cell growth, proliferation, apoptosis, and 7 

immune reactions.  Expression and posttranslational aberrations of STAT1 have been 8 

identified in a variety of human pathological conditions, including cancer [198].  STAT1 9 

acetylation depends on the balance between the activity of histone deacetylases (HDACs) and 10 

histone acetyltransferases (HATs).  STAT1 acetylation is involved in the regulation of NF-κB 11 

activity and thus of apoptosis [199].  STAT1 also directly interacts with p53 to enhance DNA 12 

damage-induced apoptosis [200].  In addition, STAT1 is downstream of HIF-1; the latter 13 

downregulates the expression of STAT1 through differentiated embryo-chondrocyte expressed 14 

gene 1 (DEC1)/stimulated by retinoic acid 13 (STRA13) in an HDAC1-dependent manner 15 

[201].  Many studies have suggested that STAT1 would be an effective prognostic/predictive 16 

marker and/or therapeutic target in various types of cancer [202-207]. 17 

CAV1 and CAV2 are integral membrane proteins that are essential components of 18 

caveolar membranes.  They contribute to the negative regulation of tyrosine and 19 

serine/threonine kinase activities by binding to epidermal growth factor receptor (EGFR) 20 

[208].  CAV1 and CAV2 modulate downstream signaling, such as RAS/ERK signaling, via a 21 

nonreceptor tyrosine kinase (Src/Fyn/Abl) [209-211].  CAV2 interacts with CAV1 [210], and 22 

CAV1 expression induces the downregulation of MAPK, PI3K/AKT, and mTOR signaling as 23 

well as the activation of apoptotic pathways [212].  Many studies have suggested that CAV1 24 

and CAV2 are useful prognostic markers in various cancers [211-215].  However, these 25 
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genes might behave either as tumor suppressors or as oncogenes depending on the cell type 1 

and tumor stage/grade [216,217].  In the present study, CAV1 and CAV2 expression levels 2 

were negatively associated with the histological grade in STS, as shown in Table 3. 3 

IGFBP4 encodes a protein that is a potent inhibitor of IGF activity [218-220].  4 

IGFBP4 inhibits IGF-dependent growth and angiogenic effects in glioblastoma [221] and 5 

colorectal cancer [222].  In addition, IGFBP4 expression activates cell growth, metastasis, 6 

and Wnt/β-catenin signaling in renal cell carcinoma [223].  The expression of IGFBP4 in 7 

lung adenocarcinomas is downregulated by epigenetic silencing in association with tumor 8 

differentiation, resulting in the disruption of IGFBP4-mediated growth inhibition [224].  A 9 

negative correlation between the Ki-67 labeling index and IGFBP4 expression was reported in 10 

lung adenocarcinoma [224].  This result is consistent with our study results, as shown in 11 

Table 3. 12 

13 
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