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I. Derivation of the average transition path time 
 
In this section we consider the transition path time for a two-state system. The dynamics of a 
molecule are modeled by one-dimensional (1D) diffusion in a double-well potential G(q), which 
depends on the reaction coordinate q (see Fig. S1). The potential has two minima corresponding 
to the folded and unfolded states and a barrier. We are interested in the time required to cross this 
barrier. 
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Figure S1. One-dimensional free energy profile along a reaction coordinate q. (A) A transition 
path from qL to qR is defined as a trajectory that crosses qL and reaches qR without re-crossing qL. 
(B) A parabolic free energy barrier that is used to derive Eq. (18). 
 
 

The probability density p(q,t|q0) that a molecule is at q at time t given it was at q0 initially 
obeys the diffusion equation: 
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For simplicity, we assume that the diffusion coefficient, D, does not depend on the coordinate. 
Consider a molecule, which is initially in the left well. When the barrier is high enough, the 
diffusing molecule spends long time in this well, and eventually passes the barrier when it 
reaches qR in the right well. A transition path is defined as a trajectory that crosses a point qL in 
the left well and reaches qR without going back to qL.  The time required to reach a certain point 
(the first passage time) is usually studied by imposing the absorbing boundary at that point, and 
therefore we set p(qR,t) = 0. To forbid the return to the left well, we set another absorbing 
boundary at q = qL. Thus a molecule diffuses between qL and qR (see Fig. S1A) and disappears 
when it reaches the boundary at qL or qR. Initially, the molecule is assumed to be at q = q0 
between the two boundaries. We are looking for the mean time that the molecule spends in this 
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region on condition that it exits through the right boundary, qR, TR(q0). The average transition 
path time is the limit of TR(q0) at q0 → qL. 

The quantity that describes the exit through the right boundary is the flux through qR, 
JR(q0, t), which depends on the starting point q0. This flux is related to the gradient of the 
probability density p(qR,t|q0): 
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Since the probability to exit through qR at a time later than t when the particle was initially at q0 

is 0( , )Rt
J q t dt

∞
′ ′∫ ,1 the distribution of the time required to reach the right boundary is 
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Another quantity which will be used in this derivation is the splitting probability, πR(q0), i.e., the 
probability to exit through qR (rather than through qL) starting at q0: 
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The straightforward way to find the time TR(q0) would be to solve the diffusion equation, 
Eq. (1), and to use the solution in Eq. (3). In general, the diffusion equation can be solved only 
numerically. However, it is possible to find the time for arbitrary profile G(q) without actually 
solving the diffusion equation. To do so, we use the backward diffusion equation,2 which 
involves the initial coordinate q0: 
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The backward equation allows one to get closed equations for TR(q0) and πR(q0). First, we get the 

diffusion equation for the flux by multiplying Eq. (5) by ( ) ( )R RG q G q

R
De e

q
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Eq. (2): 
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The equation for πR (Eq. (7a)) is obtained by integrating both sides of Eq. (6) with respect to 

time t from 0 to ∞ according to Eq. (4) and using 0 00
( , ) ( ,0) 0R R RJ t dt J q J q

∞
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because the flux is zero both initially and at long times. The equation for TR is obtained by 
multiplying both sides of Eq. (6) by t and integrating with respect to t according to Eq. (3) using 
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∂ ∂ = − =∫ ∫  0( )R qπ− . Thus the equations for πR and TR are:1 
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The boundary conditions for these equations are straightforward. When the molecule is initially 
at the boundary, it immediately exits through the same boundary. Therefore, πR(qR) = 1, πR(qL) = 
0, πR(qL)TR(qL) = πR(qR)TR(qR) = 0. 

The above equations for TR(q0) and πR(q0) can be solved by integrating twice with 
respect to q0. The integration constants are found using the boundary conditions. Solving the first 
equation, Eq. (7a), we get the splitting probability: 
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Integrating the second equation, Eq. (7b), we find 
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where constant C is found later. This expression is further simplified by integrating by parts 

using exp(βG(q)) = αdπR(q)/dq, where exp( ( ))R

L

q

q
G q dqα β ′ ′= ∫  is the normalization factor (see 

Eq. (8)): 
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Here πL(q0) = 1 – πR(q0). The constant C can be found at this stage using the boundary condition 
at q0 = qL, πR(qL)TR(qL) = 0. After some manipulations we arrive at 
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When q0 → qL, the second term in the above equation vanishes, and we get the transition path 
time tTP ≡ TR(qL) 
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This expression for the average transition path time3 is a special case of the more general 
expression derived by Berezhkovskii et al.4 for the radiation (instead of absorbing) boundary 
condition at qL and qR.  One of the remarkable consequences of Eq. (12) is that the transition 
path time from the left to the right boundary is the same as that from the right to the left, even if 
the right well, for instance, has a lower energy (as in Fig. S1A).  In this case the transitions from 
the right to the left well occur less frequently, but the transition path time is the same.4 
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To proceed further, we assume that the free energy profile at the barrier top near q = qb is 
quadratic (see Fig. S1B), 
 G(q) = G(qb) – (ω∗)2(q – qb)2/2, (13) 
where (ω∗)2 is the curvature at the top. By using this in Eq. (12) and replacing variables as 
β(ω∗)2(z – qb)2/2 = z1

2, β(ω∗)2(x – qb)2/2 = x1
2, β(ω∗)2(qR – qb)2/2 = β(ω∗)2(qL – qb)2/2 = q1

2 = 
β∆G* (see Fig. S1B), we have 
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where star at D* indicates the diffusion coefficient at the barrier top. In the next step we evaluate 

the integrals in the brackets in the numerator using 2exp( ) [erf ( ) erf ( )] / 2
b

a
z dz b a π

±
− =∫ m , 

where erf(x) is the error function, and simplify the expression using the fact that the integrated 
functions are even: 
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The integral in the above expression can be further simplified by integrating by parts: 
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where 2 2
0

( ) exp( ) exp( )
z

F z z x dx= − ∫  is the Dawson integral. 

To obtain the transition path time in the limit of large q1 (or large ∆G*), we present the 
error function in the above expression in terms of the complementary error function, erf(x1) = 1 – 

erfc(x1), and evaluate the integral 2 23
2 2 20

( ) (1,1; , 2; ) / 2
q

F x dx q F q= −∫ , where 2F2(a1,a2;b1,b2; c) 

is the generalized hypergeometric function: 
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In the limit q1 >> 1, erf(q1) → 1, the integral in the above expression is evaluated using 

Mathematica (Wolfram Research, Inc.) as 1 1 10
erfc( ) ( ) (ln 2) / 4x F x dx

∞
=∫ , and the generalized 

hypergeometric function is approximated using the asymptotic expansion, z2
2F2(1,1;3/2,2;–z2) → 

ln(2z) + γ/2, where γ ≈ 0.577 is the Euler constant. Collecting all terms and replacing q1
2 by 

β∆G*, we get the average transition path time in the high barrier limit: 
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The above transition path time was first derived by A. Szabo.  The derivation is based on the 
assumption of high barrier, β∆G* >> 1, and quadratic potential at the barrier top. Since the 
dependence on the barrier height is weak, ~ lnβ∆G*, this time is not sensitive to the choice of the 
boundaries qL and qR that define the transition path. 
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II. Comparison of the transition path times calculated using Szabo’s equation (Eq. (18)) 
and numerical integration (Eq. (12)). 

 
In this section, we discuss the effect of the shape of a free-energy barrier and the curvature at the 
barrier top on the transition path time. The average transition path times are calculated by the 
numerical integration of Eq. (12) (tTP,num) and compared with those obtained from Szabo’s 
equation, Eq. (18) (tTP,Szabo).  
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Figure S2. (A) Three free energy barriers with parabolic (blue) and two asymmetric shapes (red, 
green). The equations for the blue, red, and green barriers are –A(q2 – 1), –B(q2 – 1)(q + 2), and –
C(q2 –1)(q + 2)(q2 + 1.2q + 2), respectively. The boundaries of the transition path are q = -1 and 
1 (purple dashed lines). The constants A, B, and C are determined according to the barrier height, 
∆G* (5 kT in this figure). The black dotted lines show the parabolas with the curvatures at the 
maxima of the two asymmetric barriers, which are 1.25 (red) and 1.98 (green) times larger than 
that of the parabolic barrier (blue). (B) The numerically calculated transition path times, tTP,num, 
of three barriers relative to tTP,Szabo of a parabolic barrier as a function of ∆G*. Note that the 
barrier height is changed without changing the boundaries for the transition path, and therefore, 
the curvature of the barrier top increases linearly with the increasing barrier height. 
 
 

Fig. S2A shows three barriers (∆G* = 5 kT) with different shapes. The barrier in blue is a 
parabolic barrier and those in red and green are asymmetric. Fig. S2B shows the ratio of tTP,num 
calculated for these three barriers to tTP,Szabo of a parabolic barrier (blue curve in Fig. S2A). As 
derived in the previous section, tTP,num is the exact average transition path time regardless of the 
shape of the barrier while tTP,Szabo is an approximate value on the assumption that the barrier is 
sufficiently high and its shape is parabolic. As expected from this assumption for tTP,Szabo, in the 
case of the parabolic barrier (blue curve in Fig. S2A), tTP,Szabo is slightly longer than tTP,num for a 
low barrier but they converge as the barrier height increases (blue curve in Fig. S2B).  

For the other two asymmetric barriers, the curvatures at the top are larger than that of the 
parabolic barrier (blue), as indicated by the black dotted lines in Fig. S2A. Therefore, as follows 
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from Eq. (18), the transition path times of these asymmetric barriers are expected to be shorter 
than that of the parabolic barrier.  Interestingly, however, tTP,num for these two barriers are not so 
short but similar to that of the parabolic barrier (Fig. S2B). (Note that the numerically calculated 
values for the three barriers are divided by a constant, tTP,Szabo of a parabolic barrier, for a given 
∆G*.) The underestimation of the transition path time in Eq. (18) results from the shape of the 
barrier. As mentioned above, tTP,Szabo is the transition path time for a parabolic barrier with the 
curvature at the barrier top, black dotted lines in Fig. S2A. Due to their large curvatures, these 
parabolas do not cover the tail parts on the left side of the original barriers (red and green curves) 
while the differences on the right side of the barriers are relatively small. Therefore, the narrower 
transition path range of tTP,Szabo compared to that of tTP,num results in the underestimation of the 
transition path time. Another interesting result in this comparison is that the transition path time 
is not affected by the detailed shape of the barrier so much if the barrier height and the range of 
the transition path are the same. 

In general, it is not easy to extract the shape of the free energy surface from the 
experimental data. However, there have been several studies to reconstruct a 1-D free energy 
profile either using statistical analyses of fluorescence photon trajectories5,6 or by deconvolution 
of single molecule trajectories obtained from optical force experiments.7-9 In these cases, the 
average transition path time can be obtained by both Eq. (12) and Eq. (18). If the shape of a 
barrier is parabolic, the two values will be similar. However, as discussed above, if the shape of a 
barrier significantly deviates from the parabolic shape, Eq. (18) will not give an accurate value. 
In addition, the transition path time calculated numerically using Eq. (12) will be more sensitive 
to the choice of the boundaries compared to that of the parabolic barrier. 
 

 
 
References 
 
1 C. W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural 

sciences, Springer, Berlin, 1985. 
2 A. Szabo, K. Schulten and Z. Schulten, J. Chem. Phys., 1980, 72, 4350-4357. 
3 G. Hummer, J. Chem. Phys., 2004, 120, 516-523. 
4 A. M. Berezhkovskii, M. A. Pustovoit and S. M. Bezrukov, J. Chem. Phys., 2003, 119, 

3943-3951. 
5 G. F. Schröder and H. Grubmüller, J. Chem. Phys., 2003, 119, 9920-9924. 
6 K. R. Haas, H. Yang and J.-W. Chu, J. Phys. Chem. B, 2013, 117, 15591-15605. 
7 M. T. Woodside, P. C. Anthony, W. M. Behnke-Parks, K. Larizadeh, D. Herschlag and 

S. M. Block, Science, 2006, 314, 1001-1004. 
8 K. Neupane, D. B. Ritchie, H. Yu, D. A. N. Foster, F. Wang and M. T. Woodside, Phys. 

Rev. Lett., 2012, 109, 068102. 
9 J. C. M. Gebhardt, T. Bornschlögl and M. Rief, Proc. Natl. Acad. Sci. USA, 2010, 107, 

2013-2018. 
 
 


