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1 Domain coverage of the available tools:

MoDPepInt currently offers the largest number of modeled domains and a high coverage SH2, SH3 and
PDZ domain-peptide prediction system in a single platform. Here, we discuss the domain coverage of
other available tools in Table S1.

Table S1: Domain coverage of the available tools. The table clearly shows that the MoDPepInt has higher
domain coverage than other tools.

Tools Domains Total Pubmed Ref.
SH2 SH3 PDZ

ScanSite 14 13 - 27 12824383

SMALI 76 - - 76 18424801

DomPep 97 - 189 286 22003397

SH3Hunter - 16 - 16 16870929

MoDPepInt 51 69 226 346 23690949, 23813002, 24564547

2 Performance comparison:

In our studies, we employed a support vector machines (SVMs) using different kernel functions (e.g.
Gaussian, polynomial and sophisticated graph kernels) to build predictive single-domain models for 51
SH2 domains and 69 SH3 domains and multi-domain models for 226 PDZ domains across the species that
include human, mouse, fly and worm. We compared our results with several state- of-the-approaches.
In the following sections we describe the performances of our three different tools (i.e. SH2PepInt,
SH3PepInt and PDZPepInt). Results are derived from the following publications:

• Kousik Kundu, Fabrizio Costa, Michael Huber, Michael Reth, and Rolf Backofen Semi-Supervised
Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data PLoS One, 8(5),
pp. e62732, 2013.

• Kousik Kundu, Fabrizio Costa, and Rolf Backofen A graph kernel approach for alignment-free
domain-peptide interaction prediction with an application to human SH3 domains Bioinformatics,
29(13), pp. i335-i343, 2013.

• Kousik Kundu and Rolf Backofen Cluster based prediction of PDZ-peptide interactions BMC Ge-
nomics, 15 Suppl 1 pp. S5, 2014.
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2.1 SH2PepInt performance:

All the models were built on support vector machine (SVM) with polynomial kernel. A stratified 5 fold
cross-validation technique has been used to evaluate the predictive performance of each SH2 domain. We
compute the area under the ROC curve (AUC ROC) and the area under the precision and recall curve
(AUC PR) (see Figure S1). The following results are derived from the [8].

We compare our results with two state-of-the-art tools: SMALI [9], and an energy model approach [15].
SMALI could be applied to 45 test sets as it does not have model for the other 6 SH2 domains. Our
model achieves an average AUC ROC of 0.83 and average AUC PR of 0.93 (see Figure S1), outperforming
the other two approaches: SMALI achieves AUC ROC of 0.71 and AUC PR of 0.87; the energy model
achieves AUC ROC of 0.62 and AUC PR of 0.81. We note that SMALI achieves a very high specificity
(0.95 on average) in all 45 SH2 domains when the proposed threshold is used (i.e. relative SMALI score
1), however this comes at the expenses of a very poor sensitivity (0.26 on average).

We also tested our approach with SMALI on a manually curated and reliable database of SH2- peptide
interactions called PhosphoELM [3]. We could not test energy model, since there is no specific threshold
that can determine the class. On this dataset the performance of SMALI is 112 correct interactions
predicted over a total of 335 interactions (26 domains, SMALI does not have models for LCP2 and
SOCS2 domains), while our approach identifies 213 true interactions (see Figure S2). In particular,
we correctly predicted all the interactions predicted by the SMALI except two interactions for NCK1
and SRC SH2 domain each. Note that we have taken care to exclude all the interaction data in the
PhosphoELM database from our training sets (unfortunately this cannot be done for the SMALI tool
since we could use only the pre-trained version).
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Figure S1: Comparison of AUC ROC and precision-recall curve of three different approaches. (A) Showing
the comparison of the AUC ROC for the SVM performance (solid red line), the SMALI performance
(dashed green line) and the performance of energy model (dotted blue line). This figure clearly indicates
the SVM performance with 0.83 AUC ROC is significantly higher than the SMALI and energy model
approaches with 0.71 and 0.62 AUC ROC respectively. (B) Showing the comparison of the precision-
recall curve for the SVM performance (solid red line), the SMALI performance (dashed green line) and the
performance of energy model (dotted blue line). In this case the SVM performance with 0.93 precision-
recall curve is higher than the SMALI and energy model approaches with 0.87 and 0.81 precision-recall
curve respectively. The figure is taken from [8].
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Figure S2: Performance evaluation on manually curated database, PhosphoELM [3]. (A,B) Performance
of SMALI and our program on the experimentally validated data. In both (A and B) case the brown
bars indicate the actual experimentally validated interactions for individual SH2 domains where the red
and green bars indicate the predicted interactions by SVM models and SMALI respectively. (A) Showing
those SH2 domains having at least 10 interactions in PhosphoELM 9.0 and (B) Showing the SH2 domains
having less than 10 interactions in PhosphoELM 9.0 database. The figure is taken from [8].

2.2 SH3PepInt performance:

All the models are based on support vector machine (SVM) with an efficient graph kernel. A stratified 10
fold cross-validation technique has been used to evaluate the predictive performance of each SH3 domain.
We compute the area under the ROC curve (AUC ROC) and the area under the precision and recall
curve (AUC PR) (see Figure S3). The following results are derived from the [7].

We compare our results with a recently developed tools, called MUSI [5]. Our models achieve an
average AUC ROC of 0.94 and AUC PR of 0.73 while using filtered negatives and an average AUC ROC
of 0.9 and AUC PR of 0.35 while using non-filtered negatives, completely outperform MUSI that achieves
an average AUC ROC of 0.69 and AUC PR of 0.27 while using filtered negatives and an average AUC
ROC of 0.58 and AUC PR of 0.04 while using non-filtered negatives (see Figure S3).

To test how important the precise information on true negatives is, we built the one-class model for
each SH3 domains. The key idea here is to make use of information based primarily on the positive
interactions to characterize the binding peptides; instances that are not well recognized by the model are
then assumed to be negative. Once again, we operate in the same setup as for the non-filtered negatives
experiment. In Figure S3, we report the comparative results with respect to AUC PR and AUC ROC
performance measures for all studied SH3 domains. The one-class approach achieves an average AUC
PR 0.063 and 0.61 AUC ROC. Although this result is statistically significant (according to a Wilcoxon
Matched-Pairs Signed- Ranks Test, with ρ=0.0003), the magnitude of the result let us conclude that
using a generative approach to model protein peptide interactions is noncompetitive with respect to
discriminative approaches.

In other experiment we combined the 6 similar SH3 domains and built a single model for all 6 SH3
domains. We evaluated the predictive performance of this multi-domain model using a 10-fold cross-
validation over the six domain set using the filtered negatives. we report the AUC PR and the AUC
ROC for each SH3 domain and MUSI performance. The experimental result confirms our intuitions:
sharing information across related domains increases the predictive performance, mainly owing to an
increase in sensitivity.

In addition, we took 478 real interactions reported in the manually curated MINT database [11],
discarded them from our training set and could recover 397 (i.e. a recall 0.83) interactions.
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Figure S3: A 10-fold cross-validation performance. (A) and (B) comparison when using filtered negative
interactions for Graph Kernel (GK) and MUSI. (C) and (D) comparison with nonfiltered negative inter-
actions for binary class Graph Kernel (GK), one-class Graph Kernel and MUSI. The error bars represent
respective standard deviation. The domains are sorted by increasing average performance for the Graph
Kernel method. The figure is taken from [7].
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Figure S4: Precision-recall curves and AUC ROC curves for the Multi-Domain Gaussian Graph Kernel
(MD-G-GK), the Single Domain Gaussian Graph Kernel (SD-G-GK), the Single Domain Linear Graph
kernel (GK) and the MUSI tool for 6 related SH3 domains. The error bars represent respective standard
deviation. The figure is taken from [7].
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2.3 PDZPepInt performance:

All the models are based on support vector machine (SVM) with a Gaussian kernel. A stratified 5 fold
cross-validation technique has been employed to evaluate the predictive performance of PDZ domains.
Our models achieve an average AUC ROC of 0.92 and AUC PR of 0.94. The following results are derived
from [6].

We compare our results with two state-of-the-art tools, namely MDSM (multi-domain selectivity
model) [14] and DomPep [10], on an independent test set. The independent test set contained 493 positive
interactions and 3059 negative interactions that involved 74 mouse PDZ domains and 48 peptides [14].
Among them, we used interactions for 50 PDZ domains that were common in all three methods (MDSM,
DomPep and our method). We make sure the peptides were not included in our training sets. Our
models achieved a true positive rate (TPR) of 0.67, false positive rate (FPR) of 0.14 and AUC ROC of
0.85 with a true-positive/false-positive (TP/FP) ratio of 0.87 outperforming the other two approaches:
MDSM achieved TPR of 0.55, FPR of 0.17 and AUC ROC of 0.74 with TP/FP ratio of 0.55; the DomPep
achieved TPR of 0.66, FPR of 0.15 and AUC ROC of 0.84 with TP/FP ratio of 0.79 (see Figure S5).

In another experiment, we tested our method with MDSM on a validated dataset. We could not
test DomPep since many of the test instances were present in the DomPep training set and hence a fair
comparison was not possible. The test data was retrieved from an experimentally validated database,
called PDZBase [2]. We compared 20 mouse PDZ-peptide interactions derived from PDZBase that were
neither included in MDSM nor in our training set. Out of 20 interactions, we successfully predicted 14
interactions with a true positive rate (TPR) of 0.70, compared to only 4 interactions predicted by MDSM
with a true positive rate (TPR) of 0.20. Table S2 lists the scores for all 20 validated interactions as
calculated by MDSM and by our method. See [6] for more details.
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Figure S5: Performance evaluation on an independent test set. Performance comparison of tree different
tools. Red, green and blue bars indicate the predicted performances by our tool (SVM), DomPep and
MDSM, respectively. The figure clearly shows that our tool (SVM) achieved better performance. This
figure is taken from [6]
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Table S2: SVM and MDSM scores for experimentally validated interactions derived from PDZBase [2].
A peptide is predicted to bind to a PDZ domain if the score is more than 0 for SVM and more than 1
for MDSM. Bold numbers indicate true positive interactions. This table is taken from [6]

PDZ domain Peptide SVM score MDSM score Pubmed Ref.
Cipp-(3/10) IESDV 0.44 -0.7 9647694
Cipp-(3/10) LESEV 0.30 -0.62 9647694
Cipp-(3/10) QQSNV 0.29 -0.78 9647694
Cipp-(3/10) KEYYV 0.51 -0.34 9647694
Dvl1-(1/1) SETSV -1.27 -0.74 12490194
Pdlim5-(1/1) DITSL -0.24 -0.15 10359609
Erbin-(1/1) LDVPV 0.99 0.61 10878805
Magi-2-(5/6) KESSL 1.76 0.19 10681527
MUPP1-(10/13) IATLV 1.00 0.46 11000240
MUPP1-(10/13) GKDYV 1.00 1.68 11689568
NHERF-1-(1/2) FDTPL 1.06 0.01 10980202
LIN-7A-(1/1) IESDV 0.33 0.29 10341223
Lin7c-(1/1) IESDV 0.33 1.00 10341223
ZO-3-(1/3) GKDYV 0.99 0.09 10601346
a1-syntrophin-(1/1) VLSSV -1.47 0.16 11571312
PSD95-(1/3) LQTEV 0.38 1.41 11937501
PSD95-(1/3) NETVV -1.35 1.19 12067714
PSD95-(1/3) GETAV -1.32 1.23 12067714
PSD95-(1/3) EESSV -2.23 0.77 11134026
PSD95-(1/3) RTTPV 1.00 0.61 12359873

3 Reasons for performance improvement:

3.1 Non-linear modeling:

Among the shortcomings for current predictive approaches [5, 9, 13] we list:

• limited coverage

• restrictive modeling assumptions as they are mainly based on position specific scoring matrices
(PSSM) and do not take into consideration complex amino acids inter-dependencies

• high computational complexity

Previous research has shown that the binding specificity of modular domains [4, 12] is dependent on
the correlations between different ligand positions. For this reason we propose domain specific non-linear
models where different kernel functions allow higher order correlation between amino acids positions.

3.2 Balanced discriminative training:

Datasets derived from high-throughput experiments usually suffer from a lack of reliable negative inter-
action data. In our study, we were only able to obtain the negative interaction data from microarray
experiments. However the resulting datasets were imbalanced. Other data sources provide only positive
interaction data. It is known [1] that machine learning methods work poorly when the dataset is highly
imbalanced. In order to ameliorate the problem we have employed a semi-supervised learning approach
(SSL). The general strategy of SSL is to learn from a small amount of labeled data and a large amount
of unlabeled data. Here, differently from the general problem formulation for SSL, we were interested
in using the unsupervised material to have a better characterization only of the minority class (in our
case, the negative class). Albeit, there are several approaches for the SSL setting, we have chosen the
self-training strategy that relies on the good discriminative properties of a base classifier and thus fits
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well with our datasets. The initial labeled data is used to train a classifier which then assigns a label to
the unlabeled material. The most confident predictions are then iteratively added to the training set and
the classifier is retrained. Note that we were only able to apply this semi-supervised technique on SH2
and PDZ peptide interactions as they had at least a few reliable negative interactions [6, 8].

For SH3 domains instead, since there were no reliable negative interactions available, we employed a
false negative refinement strategy [7]. The key idea here is to use a generative approach to model each
peptide/motif class and select as negative representatives a subset of instances that are not recognized
by any specialized model. To better represent the binding specificity of each domain, instead of using
a single model, we resort to multiple PWMs, namely, one for each motif class for each SH3 domain.
Afterward, we generate a PWM for each motif group and use a sequence homology search algorithm to
identify the peptides matching the various PWMs. Finally, for each domain, we selected those peptides
that were not recognized by any of the class specific PWMs. See [7] for more details.

3.3 Datasets pooling:

In recent years, an enormous amount of interaction data has been generated by various high-throughput
experiments for PDZ interactions thus computational methods have become increasingly more important
to analyze these data. One of the major problems here is the different coverage of various domains; for
example, in literature only two positive interactions for PDZ 1 and PDZ 2 domains of human DLG2 and
DLG4 are known. To overcome this limitation we combined PDZ domains that are similar in substrate
specificity. This strategy allowed us to model the binding specificity for related domains as a whole.

4 Meta-webserver:

In addition to the three specialized servers for SH2, SH3 and PDZ, we implemented the meta-webserver
MoDPepInt. MoDPepInt is to be used in non-expert mode: a) no parameters need to be set, b) the output
comprises predictions for all available domains for SH2, SH3 and PDZ and c) only the 5 most confident
predictions for each domain are reported. However, the user can easily select one of the dedicated tools
for the same input to access the full prediction results and have a finer control over its parametric setting.
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