Identification of Gene Expression Biomarkers for Predicting Radiation Exposure

Tzu-Pin Lu,^{1,2} Yi-Yao Hsu,³ Liang-Chuan Lai,^{4,5} Mong-Hsun Tsai,^{4,6,*} and Eric Y. Chuang,^{3,4,*}

¹Department of Public Health, National Taiwan University, Taipei, Taiwan

²Institute of Epidemiology and Preventative Medicine, National Taiwan University, Taiwan

³Graduate Institute of Biomedical Electronics and Bioinformatics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

⁴Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan

⁵Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan

⁶Institute of Biotechnology, National Taiwan University, Taipei, Taiwan

Supplementary Tables

Table S1. Characteristics of testing samples.

Accession*	Sample number	Cell type	Dose (Gy)	Time (h)
GSE762	1	LNCap C4-2	10	6
GSE7505	63	NCI60, ML-1, TK6, NH32	8	4
GSE20549	6	H1299, H460	2	4
GSE6978	24	Lymphocyte	0.05, 0.5	3
GSE8917	15	Peripheral blood	0.5, 2, 8	24
GSE25772	4	Fibroblast	2	24
GSE6971	4	Fibroblast	1.5	24
GSE20549	6	H1299, H460	2	24
GSE6978	42	Lymphocyte	0.05 & 0.5	24

^{*}GEO accession number

Table S2. Biomarkers for predicting radiation doses.

Source (Gene No.)	Gene symbol
	AEN, ANKRA2, ANXA4, ARHGEF3, ASCC3, BAX, BBC3, BTG3,
	C11orf24, CCNG1, CD70, CDKN1A, DDB2, DRAM1, EI24, FBXO22,
Paul <i>et al</i> . [1]	FDXR, GADD45A, GLS2, GNG7, IER5, IL21R, LIG1, LY9, MDM2,
(47)	METTL7A, MGAT3, MYC, PCNA, PLK2, PLK3, POLH, PPM1D,
	PTP4A1, RPS27L, SESN1, TCF3, TM7SF3, TMEM30A, TNFRSF10B,
	TNFSF4, TRIAP1, TRIM22, UROD, XPC, ZMAT3, ZNF337
Dressman <i>et al.</i> [2] (8)	BAX, BBC3, CDKN1A, DDB2, PRKCH, TMEM30A, TP53I3, XPC

Table S3. Canonical pathways enriched by the three sets of biomarkers associated with distinct radiation doses.

Source	Pathway name	-log (P)*	Gene No.
20 hiomorkova in	Mitotic Roles of Polo-Like Kinase	5.54	4
29 biomarkers in	Cell Cycle: G2/M DNA Damage Checkpoint Regulation	2.66	2
higher and lower doses	Pyridoxal 5'-phosphate Salvage Pathway	2.33	2
uoses	Salvage Pathways of Pyrimidine Ribonucleotides	2.33 2.02 3.81 3.70 3.66 3.07	2
	Role of CHK Proteins in Cell Cycle Checkpoint Control	3.81	3
35 biomarkers in	Role of BRCA1 in DNA Damage Response	3.70	3
	Mitotic Roles of Polo-Like Kinase	3.66	3
higher dose	p53 Signaling	3.07	3
	Cell Cycle: G2/M DNA Damage Checkpoint Regulation	3.66	2
_	p53 Signaling	6.60	6
6 4.1.	Hereditary Breast Cancer Signaling	4.89	5
51 biomarkers in	Role of BRCA1 in DNA Damage Response	ckpoint Control 3.81 Response 3.70 nase 3.66 3.07 oint Regulation 2.52 6.60 aling 4.89 Response 4.68 oint Regulation 3.67	4
lower dose	Cell Cycle: G2/M DNA Damage Checkpoint Regulation	3.67	3
	ATM Signaling	3.26	3

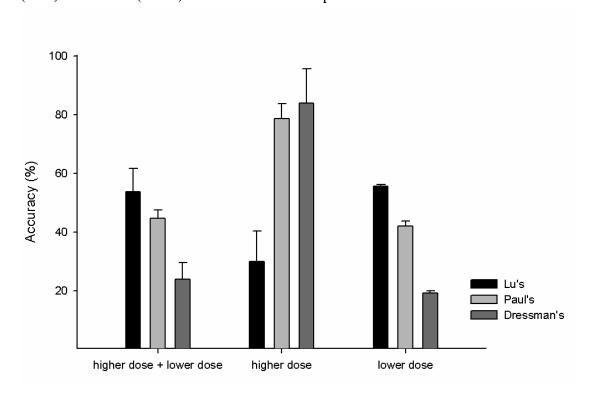

^{*} Only pathways with $-\log(P) > 2$ were shown here

Table S4. Upstream regulators enriched by the three sets of biomarkers associated with distinct radiation doses.

Source	Regulator	$-\log(P)^*$	Gene No.
29 biomarkers in higher and lower doses	FOXM1	20.65	10
	ERBB2	13.97	10
	<i>TP53</i>	13.23	13
	TGFB1	11.28	10
35 biomarkers in	FOXM1	19.69	10
	ERBB2	13.02	10
	CDK4	11.99	9
higher dose	<i>TP53</i>	11.95	13
	CCND1	11.62	9
511' 1 '	TP53	16.05	18
51 biomarkers in	SLC29A1	14.15	7
lower dose	ANXA2	12.91	7

^{*}Only regulators with $-\log(P) > 10$ were shown here

Figure S1. Prediction performances of the three sets of biomarkers in external datasets collected at 24 hours after irradiation. A 10-fold cross-validation was repeated 10,000 times and the prediction accuracies in the samples treated with high (N=5) and/or low (N=66) radiation doses were plotted.

References

- 1. Paul S, Amundson SA. Development of gene expression signatures for practical radiation biodosimetry. *Int J Radiat Oncol Biol Phys* 2008;71:1236-1244.
- 2. Dressman HK, Muramoto GG, Chao NJ, et al. Gene expression signatures that predict radiation exposure in mice and humans. *PLoS Med* 2007;4:e106.