Movie S1. Inhibition of muscarinic signaling promotes a ductal phenotype, related to Figure 2. Increased ductal development under inhibition of muscarinic signaling with 4-DAMP. Time-lapse imaging shows E13 SMG cultured without (left panel) or with (right panel) 10 μ M 4-DAMP for 24h. Images were captured every 20 minutes (Zeiss Axiovert 40c with Infinity CCD camera).

Movie S2. Microlumens are present in developing SMG, related to Figure 3 and 5. Rotation of 3D projection of presumptive ducts showing ZO1(+) microlumens that will fuse to form a single lumen. Samples were imaged using a Leica Sp5 LSM confocal microscope. Image is a 30μ m stack of 0.8μ m section.

Supplemental Materials and Methods

Materials

FGFR2b-Fc chimera was from R&D systems (Minneapolis, MN, US). The pan-caspase inhibitor Z-VAD-FMK was from Tocris (Minneapolis, MN, US). Antibodies: goat anti-VIPR1 (N17, 1:100; Santa Cruz Biotech Ltd) and anti-CFTR (M3A7, 1:50; Chemicon (Doucet et al., 2003).

Mouse lines

Strain used on this study: Fgf10^{tm1Wss} was provided by Dr. Ophir Klein, UCSF.CA (Min et al., 1998). Salivary glands of heterozygous embryos were analyzed at E17.

RNA interference

RNA interference was performed using 2 siRNAs for Vipr1 (J-065007-05-0005 and J-065007-06-0005), a non-silencing scrambled siRNA (Dharmacon, CA) and RNAiFect reagent (Qiagen, CA). Transfection and analysis of knockdown by qPCR and quantitative immunofluorescent analysis have been previously described (Rebustini et al., 2007).

Gono	Primers for Sybr Green aPCR
Vin	
VIP	selise 5 - AACAGAGCAGAACAGATAATCAGT-3,
VIpr1	sense 5'- AAGTCATTGTAGAGGCAGAT-3',
	antisense 5'-AATATGTCAAGACGGAATCAG-3'
Chat	sense 5' - GTGGAAGAATCGTCATCTCATCA
	antisense 5' - GAA CTC AAG GAA GAC TGT GCT AT
Ret	sense 5' - ACA CGG TGG TAG CCA CTG AC
	antisense 5' - GCG CCT CTT GTT TAC TGC AC
Syn2	sense 5' - TAG ACT GCT GTG GAG GTG AA
	antisense 5' - GCT CTG AAA GGT AAA GGT AAC TG
Vacht	sense 5' – GAGTGGGAGATGGGCATGGTTTGG
	antisense 5' – GCAGGC AGGTACGACGCAAGA G
Rsp29	sense 5'- GGAGTCACCCACGGAAGTTCGG-3',
	antisense 5' – GGAAGCACTGGCGGCACATG-3'
Chrm1	sense 5' - TCCCAAGGCTCACCCAGATGTC
	antisense 5'- GCTCTGTGTGCTTTATTCTGTTGTTTCC
Etv4	sense 5' - GGTCCTGTGTTCTTGGTGCTGTG
	antisense 5'- GGTCCTGTGTTCTTGGTGCTGTG
Etv5	sense 5' - AAGCCCTTCAAAGTGATAGCGGAGAC
	antisense 5'- GTGTCCACAAACTTCCTCTTTCTGTCAATC
Fgf10	sense 5' - TCTTCCTCCTCCTCGTCCTTCTCCTCCTTCC
_	antisense 5'- CCGCTGACCTTGCCGTTCTTCTCAATCG
Nrtn	sense 5' - CGCTACCACACGCTGCAAGAG
	antisense 5'- TCCCACACTTATGTGAAGTCAGTTCTC
Tubb3	sense 5' - CCAGAGCCATCTAGCTACTGACACTG
	antisense 5'- AGAGCCAAGTGGACTCACATGGAG
Cdh1	sense 5' - GACTGGAGTGCCACCACCAAAGAC
	antisense 5'- CGCCTGTGTACCCTCACCATCGG

Primer efficiencies were performed prior to use and were in the range of 90-100%

Supplemental References

Doucet, L., Mendes, F., Montier, T., Delepine, P., Penque, D., Ferec, C., and Amaral, M.D. (2003). Applicability of different antibodies for the immunohistochemical localization of CFTR in respiratory and intestinal tissues of human and murine origin. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society *51*, 1191-1199.

Min, H., Danilenko, D.M., Scully, S.A., Bolon, B., Ring, B.D., Tarpley, J.E., DeRose, M., and Simonet, W.S. (1998). Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes & development *12*, 3156-3161.

Rebustini, I.T., Patel, V.N., Stewart, J.S., Layvey, A., Georges-Labouesse, E., Miner, J.H., and Hoffman, M.P. (2007). Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Developmental biology *308*, 15-29.