SUPPORTING INFORMATION

Cobalt-Catalyzed, Aminoquinoline-Directed Coupling of sp² C-H Bonds with Alkenes

Liene Grigorjeva and Olafs Daugulis* Department of Chemistry, University of Houston, Houston, TX 77204-5003

General considerations	2
Substrate synthesis	2
Cobalt-catalyzed sp ² C-H functionalization	7
1. Optimization of cobalt-catalyzed alkylation/cyclization	7
1.1. Catalyst	7
1.2. Oxidant	8
1.3. Temperature	9
2. Cobalt-catalyzed sp ² C-H alkylation/cyclization and characterization of products	9
Removal of directing group	20
NMR spectra	22

General considerations

Reactions were performed using standard glassware or were run in 2-dram vials with PTFE/Liner screw caps and 8-dram vials using w/polyseal screw caps. Column chromatography was performed on 60Å silica gel (Dynamic Adsorbents Inc.). ¹H, ¹³C, ¹⁹F-NMR and 2D-NMR spectra were recorded on JEOL EC-400 and JEOL EC-500 spectrometers using residual solvent peak as a reference. HRMS analysis was performed by chemical ionization (CI) using Micromass Autospec Ultima spectrometer at the Mass Spectrometry Facility of the Department of Chemistry and Biochemistry of University of Texas-Austin. IR- spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Analytical thin layer chromatography was performed on silica gel IB-F (Baker-flex) by J. T. Baker. All procedures were performed under ambient air unless otherwise noted. Reagents and starting materials were obtained from commercial sources and used without further purification unless otherwise noted. Room temperature is

Substrate synthesis

Amides were synthesized according to literature procedures from 8-aminoquinoline and corresponding acyl chlorides (Procedure **A**, amides: *N*-(quinolin-8-yl)benzamide, 4-trifluoromethyl-*N*-(quinolin-8-yl)benzamide, 4-bromo-*N*-(quinolin-8-yl)benzamide, 4-nitro-*N*-(quinolin-8-yl)benzamide, 3-iodo-*N*-(quinolin-8-yl)benzamide, 4-methyl-*N*-(quinolin-8-yl)benzamide, *N*-(quinolin-8-yl)furan-2-carboxamide), *N*-(quinolin-8-yl)thiophene-2-carboxamide¹ or carboxylic acids (Procedure **B**, amides: 2-methoxy-*N*-(quinolin-8-yl)benzamide and *N*-(quinolin-8-yl)cinnamamide), *N*-(quinolin-8-yl)methacrylamide². *N*-(5-Methoxyquinolin-8-yl)benzamide was prepared from 8-amino-5-methoxyquinoline hydrochloride and benzoyl chloride using Procedure **A**.

Procedure A:

Synthesis of N-(quinolin-8-yl)benzamide is representative.

To a solution of 8-aminoquinoline (3.00 g, 21 mmol) and *N*,*N*-dimethyl-4-aminopyridine (80 mg, 0.65 mmol) in anhydrous CH_2Cl_2 (30 mL) under nitrogen Et_3N (3.3 mL, 24 mmol, 1.2 equiv) was added and resulting solution was cooled to 0 °C. Benzoyl chloride (2.3 mL, 20 mmol) was added dropwise and reaction mixture was stirred at room temperature overnight. The mixture was quenched with water (30 mL) and extracted with CH_2Cl_2 (3 x 20 mL). Combined organic phase was

¹ Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457.

² Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.

dried over MgSO₄ and filtered. Concentration in vacuum followed by recrystallization from toluene afforded 4.6 g (94%) of N-(quinolin-8-yl)benzamide as a white solid.

N-(Quinolin-8-yl)benzamide

This compound is known.¹

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.76 (s, 1H), 8.95 (dd, J = 7.6, 1.3 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.19 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.14-8.04 (m, 2H), 7.68 - 7.52 (m, 5H) and 7.48 (dd, J = 8.2, 4.2 Hz, 1H).

4-Trifluoromethyl-N-(quinolin-8-yl)benzamide

8-Aminoquinoline (3.00 g, 21 mmol), N,N-dimethyl-4-aminopyridine (80 mg, 0.65 mmol), Et₃N (3.3 mL, 24 mmol, 1.2 equiv), 4trifluoromethylbenzoyl chloride (3.0 mL, 20 mmol), CH₂Cl₂ (30 mL). F₂C Recrystallization from hexanes/EtOAc 4:1 afforded 5.50 g (88%) of 4-trifluoromethyl-N-(quinolin-8-yl)benzamide as a white solid. This compound is known.¹

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.80 (s, 1H), 8.92 (dd, J = 7.2, 1.7 Hz, 1H), 8.86 (dd, J = 4.2, 1.21.7 Hz, 1H), 8.25 - 8.16 (m, 3H), 7.82 (d, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 2H), 7.65 - 7.56 (m, 2H) and 7.51 (dd, J = 8.1 Hz, 7.51 (dd, J = 8.18.3, 4.2 Hz, 1H).

4-Bromo-N-(quinolin-8-yl)benzamide

8-Aminoquinoline (3.00 g, 21 mmol), N,N-dimethyl-4-aminopyridine (80 mg, 0.65 mmol), Et₃N (3.3 mL, 24 mmol, 1.2 equiv), 4bromobenzoyl chloride (4.39 g, 20 mmol), CH₂Cl₂ (30 mL). R Recrystallization from toluene afforded 5.84 g (89%) of 4-bromo-N-(quinolin-8-yl)benzamide as a white solid. This compound is known.²

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.71 (s, 1H), 8.90 (dd, J = 7.4, 1.5 Hz, 1H), 8.85 (dd, J = 4.2, 1.7 Hz, 1H), 8.19 (dd, J = 8.3, 1.6 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.71 – 7.65 (m, 2H), 7.62 – 7.53 (m, 2H) and 7.48 (dd, J = 8.3, 4.2 Hz, 1H).

4-Nitro-N-(quinolin-8-yl)benzamide

8-Aminoquinoline (3.00 g, 21 mmol), N,N-dimethyl-4-aminopyridine (80 mg, 0.65 mmol), Et₃N (3.3 mL, 24 mmol, 1.2 equiv), 4nitrobenzoyl chloride (3.71 g, 20 mmol), CH₂Cl₂ (30 mL). Recrystallization from hexanes/EtOAc 4:1 afforded 5.67 g (97%) of 4-nitro-N-(quinolin-8-yl)benzamide as a yellow solid. This compound is known.³

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.83 (s, 1H), 8.91 (dd, J = 6.4, 2.5 Hz, 1H), 8.87 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 – 8.36 (m, 2H), 8.26-8.22 (m, 3H), 7.64-7.60 (m, 2H) and 7.52 (dd, J = 8.3, 4.2 Hz, 1H).

3-Iodo-N-(quinolin-8-yl)benzamide

8-Aminoquinoline (1.50 g, 10.5 mmol), N,N-dimethyl-4-aminopyridine (40 mg, 0.33 mmol), Et₃N (1.65 mL, 12 mmol, 1.2 equiv), 3-iodobenzoyl chloride (2.67 g, 10 mmol), CH₂Cl₂ (15 mL). Recrystallization from

hexanes/EtOAc 2:1 afforded 3.46 g (93%) of 3-iodo-*N*-(quinolin-8-yl)benzamide as a white solid. This compound is known.⁴

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.67 (s, 1H), 8.90 (dd, *J* = 7.4, 1.6 Hz, 1H), 8.86 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.41 (t, *J* = 1.7 Hz, 1H), 8.20 (dd, *J* = 8.3, 1.6 Hz, 1H), 8.02 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.91 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.49 (dd, *J* = 8.2, 4.2 Hz, 1H) and 7.29 (t, *J* = 7.8 Hz, 1H).

4-Methyl-N-(quinolin-8-yl)benzamide

e 8-Aminoquinoline (6.00 g, 42 mmol), *N*,*N*-dimethyl-4-aminopyridine (160 mg, 1.3 mmol), Et₃N (6.6 mL, 48 mmol, 1.2 equiv), 4-toluoyl chloride (5.3 mL, 40 mmol), CH₂Cl₂ (60 mL). Recrystallization from

toluene afforded 9.0 g (86%) of a mide 4-methyl-N-(quinolin-8-yl)benzamide as a white solid. This compound is known.⁵

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.73 (s, 1H), 8.94 (dd, *J* = 7.6, 1.3 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.02 – 7.96 (m, 2H), 7.59 (t, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.47 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 2H), 2.45 (s, 3H).

N-(Quinolin-8-yl)furan-2-carboxamide

8-Aminoquinoline (1.50 g, 10.5 mmol), *N*,*N*-dimethyl-4-aminopyridine (40 mg, 0.33 mmol), Et₃N (1.65 mL, 12 mmol, 1.2 equiv), 2-furoyl chloride (1.0 mL, 10 mmol), CH₂Cl₂ (15 mL). Recrystallization from hexanes/EtOAc 4:1

³ Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342.

⁴ Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.

⁵ Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. **2013**, 135, 9797.

afforded 1.93 g (81%) of N-(quinolin-8-yl)furan-2-carboxamide as a white solid. This compound is known.¹

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.77 (s, 1H), 8.96 – 8.80 (m, 2H), 8.16 (dd, J = 8.2, 1.6 Hz, 1H), 7.62 (dd, J = 1.7, 0.7 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.46 (dd, J = 8.3, 4.2 Hz, 1H), 7.31 (dd, J = 3.5, 0.7 Hz, 1H) and 6.58 (dd, J = 3.5, 1.7 Hz, 1H).

N-(Quinolin-8-yl)thiophene-2-carboxamide

8-Aminoquinoline (1.50 g, 10.5 mmol), *N*,*N*-dimethyl-4-aminopyridine (40 mg, 0.33 mmol), Et₃N (1.65 mL, 12 mmol, 1.2 equiv), 2-thiophenecarbonyl chloride (1.1 mL, 10 mmol), CH_2Cl_2 (30 mL). Recrystallization from hexanes/EtOAc 4:1 afforded 2.33 g (92%) of *N*-(quinolin-8-yl)thiophene-2-carboxamide as a white solid. This compound is known.⁶

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.61 (s, 1H), 8.90 – 8.80 (m, 2H), 8.18 (dd, J = 8.3, 1.6 Hz, 1H), 7.84 (dd, J = 3.7, 1.1 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.54 (dd, J = 8.3, 1.4 Hz, 1H), 7.48 (dd, J = 8.2, 4.2 Hz, 1H), 7.19 (dd, J = 5.0, 3.7 Hz, 1H).

Procedure B:

Synthesis of 2-methoxy-N-(quinolin-8-yl)benzamide is representative.

o-Anisic acid (2.28 g, 15 mmol, 1.5 equiv) and Et₃N (4.8 mL, 35 mmol, 3.5 equiv) were dissolved in CH₂Cl₂ (30 mL), flask was flushed with nitrogen and the resulting mixture was cooled to 0 °C. Ethyl chloroformate (1.4 mL, 15 mmol, 1.5 equiv) was added dropwise and solution was stirred at 0 °C for 30 minutes followed by dropwise addition of 8-aminoquinoline (1.44 g, 10 mmol) solution in CH₂Cl₂ (10 mL). The resulting suspension was warmed up to room temperature and stirred overnight. After completion, water (30 mL) was added to the reaction mixture and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL). The combined organic phase was dried over MgSO₄ and filtered, followed by evaporation of solvent. Purification by column chromatography on silica gel (hexanes/EtOAc from 4:1 to 2:1) afforded 1.97 g (71%) of 2-methoxy-*N*-(quinolin-8-yl)benzamide as a white solid.

2-Methoxy-N-(quinolin-8-yl)benzamide

This compound is known.⁵

¹H-NMR (500 MHz, CDCl₃, ppm) δ 12.35 (s, 1H), 9.04 (dd, *J* = 7.7, 1.1 Hz, 1H), 8.85 (dd, *J* = 4.1, 1.6 Hz, 1H), 8.36 (dd, *J* = 7.8, 1.8 Hz, 1H), 8.15 (dd,

J = 8.2, 1.6 Hz, 1H), 7.57 (t, *J* = 7.9 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.43 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H) and 4.18 (s, 3H).

N-(Quinolin-8-yl)cinnamamide

Cinnamic acid (2.22 g, 15 mmol, 1.5 equiv), Et_3N (4.8 mL, 35 mmol, 3.5 equiv), ethyl chloroformate (1.4 mL, 15 mmol, 1.5 equiv), 8-aminoquinoline (1.44 g, 10 mmol), CH_2Cl_2 (40 mL). Purification by column chromatography on silica gel (hexanes/EtOAc from 4:1 to 2:1)

afforded 1.85 g (67%) of N-(quinolin-8-yl)cinnamamide as a white solid. This compound is known.⁶

¹H-NMR (400 MHz, CDCl₃, ppm) δ 10.02 (s, 1H), 8.92 (dd, *J* = 7.5, 1.5 Hz, 1H), 8.85 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.19 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.83 (d, *J* = 15.6 Hz, 1H), 7.65 – 7.51 (m, 4H), 7.48 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.46 – 7.38 (m, 3H) and 6.82 (d, *J* = 15.5 Hz, 1H).

N-(Quinolin-8-yl)methacrylamide

Methacrylic acid (0.85 mL, 10 mmol), Et₃N (1.7 mL, 12 mmol, 1.2 equiv), Me N ethyl chloroformate (0.96 mL, 10 mmol, 1 equiv), 8-aminoquinoline (1.44 g, 10 mmol), CH₂Cl₂ (30 mL). Purification by column chromatography on silica gel (hexanes/EtOAc 4:1) afforded 1.51 g (71%) of *N*-(quinolin-8-yl)methacrylamide as a colorless oil. R_f = 0.67 (hexanes/EtOAc 4:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.36 (s, 1H), 8.94 – 8.65 (m, 2H), 8.14 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.44 (dd, *J* = 8.2, 4.2 Hz, 1H), 6.05 (s, 1H), 5.55 (s, *J* = 0.5 Hz, 1H), 2.19 (s, *J* = 0.8 Hz, 3H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 166.4, 148.2, 140.7, 138.6, 136.3, 134.4, 127.9, 127.4, 121.6, 121.5, 120.6, 116.4, 18.7.

HRMS calcd. for C₁₃H₁₂N₂O [M]⁺: 212.0950; found: 212.0946.

FT-IR (neat, cm⁻¹) v 3358, 1717, 1669, 1525, 1485, 1378, 1323.

N-(5-Methoxyquinolin-8-yl)benzamide

Compound was prepared according to Procedure A from 8-amino-5methoxyquinoline hydrochloride (200 mg, 0.95 mmol), N,N-dimethyl-4-aminopyridine (4.2 mg, 0.035 mmol), Et₃N (0.28 mL, 2 mmol, 2.1

⁶ Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354.

equiv), benzoyl chloride (0.1 mL, 0.9 mmol), and CH₂Cl₂ (10 mL). Purification by column chromatography on silica gel (hexanes/EtOAc from 4:1 to 1:1) afforded 210 mg (80%) of *N*-(5-methoxyquinolin-8-yl)benzamide as a white solid. This compound is known.⁷ ¹H-NMR (500 MHz, CDCl₃, ppm) δ 10.48 (s, 1H), 8.98 – 8.70 (m, 2H), 8.55 (d, *J* = 8.1 Hz, 1H), 8.06 (d, *J* = 6.4 Hz, 2H), 7.63 – 7.36 (m, 4H), 6.85 (d, *J* = 8.5 Hz, 1H), 3.97 (s, 3H).

Cobalt-catalyzed sp² C-H functionalization

1. Optimization of cobalt-catalyzed alkylation/cyclization

1.1. Catalyst

General procedure for catalyst optimization experiments.

2-Dram vial with a screw cap (PTFE/Liner) was charged with 4-methyl-*N*-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), AgNO₃ (34 mg, 0.2 mmol, 2 equiv), NaOPiv (24.8 mg, 0.2 mmol, 2 equiv), catalyst (0.02 mmol, 20 mol%), styrene (14 μ L, 0.12 mmol, 1.2 equiv), and CF₃CH₂OH (1 mL). Resulting mixture was heated at 80 °C for 12 h, then cooled to room temperature and analyzed by TLC (hexanes/EtOAc 4:1, hexanes/EtOAc 1:1) and ¹H-NMR spectroscopy.

Table S1. Catalyst Screening

Entry	Catalyst	Substrate : Product ratio ^a
1 ^b	Co(OAc) ₂	1:2 (16%) ^c
2	CoCl ₂	1:2
3 ^b	Co(acac) ₂	1:20 (66%) ^c
4	_	1:0

^a Determined by ¹H-NMR spectroscopy as H^a/H^b integration ratio. ^b 16 h. ^c NMR yield using 1,1,2-trichloroethane as internal standard in parentheses.

⁷ Allu, S.; Swamy, K. C. K. J. Org. Chem. **2014**, 79, 3963.

1.2. Oxidant

General procedure for oxidant optimization experiments.

2-Dram vial with a screw cap (PTFE/Liner) was charged with 4-methyl-*N*-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), oxidant (0.05 - 0.2 mmol, 0.5 - 2 equiv), NaOPiv (24.8 mg, 0.2 mmol, 2 equiv), Co(acac)₂ (5.2 mg, 0.02 mmol, 20 mol%), styrene (14 μ L, 0.12 mmol, 1.2 equiv), and CF₃CH₂OH (1 mL). Resulting mixture was heated at 80 °C for 5 – 16 h, cooled to room temperature and analyzed by TLC (hexanes/EtOAc 4:1, hexanes/EtOAc 1:1) and ¹H-NMR spectroscopy.

T 11 CA	0 1 1	a .
Table N2	()yidant	Screening
	. Onluant	bereening

Entry	Oxidant	Time, h	Substrate : Product ratio ^a
1	PhI(OAc) ₂ (2 equiv)	12	5:1
2	Mn(acac) ₃ (2 equiv)	12	1:2
3	O ₂	16	5:1
4	Mn(OAc) ₂ (1 equiv)	16	1:9
5	Mn(OAc) ₂ (1 equiv)/O ₂	12	1:9
6	Mn(OAc) ₂ (0.5 equiv)	16	1:2 (41%) ^b
7	Mn(OAc) ₃ *2H ₂ O (2 equiv)	12	1:>99 (93%) ^b
8	Mn(OAc) ₃ *2H ₂ O (2 equiv)	5	1:20
9	Mn(OAc) ₃ *2H ₂ O (1.5 equiv)	5	1:20
10	Mn(OAc) ₃ *2H ₂ O (1 equiv)	5	1:20
11	Mn(OAc) ₃ *2H ₂ O (0.5 equiv)	16	1:20 (90%) ^b
12	-	16	5:1 (15%) ^b
13°	Mn(OAc) ₃ *2H ₂ O (0.5 equiv)	16	1:0 (<1%) ^b
14 ^d	Mn(OAc) ₃ *2H ₂ O (0.5 equiv)/ inert atmosphere	12	4:1

^a Determined by ¹H-NMR spectroscopy as H^a/H^b integration ratio. ^b NMR yield using 1,1,2-trichloroethane as internal standard in parentheses. ^c Reaction was performed without Co(acac)₂. ^d Deoxygenated CF₃CH₂OH was used under inert atmosphere.

1.3. Temperature

General procedure for temperature optimization experiments.

2-Dram vial with a screw cap (PTFE/Liner) was charged with 4-methyl-*N*-(quinolin-8-yl)benzamide (26.2 mg, 0.1 mmol), $Mn(OAc)_3*2H_2O$ (0.05 mmol, 0.5 equiv), NaOPiv (24.8 mg, 0.2 mmol, 2 equiv), Co(acac)_2 (5.2 mg, 0.02 mmol, 20 mol%), styrene (14 µL, 0.12 mmol, 1.2 equiv), and CF₃CH₂OH (1 mL). Resulting mixture was stirred at indicated temperature for 16 h, cooled to room temperature and analyzed by TLC (hexanes/EtOAc 4:1, hexanes/EtOAc 1:1) and ¹H-NMR spectroscopy.

Table S	3. Tei	nperature	Screening
I able D	\mathbf{v} . \mathbf{v}	inperature	bereening

Entry	Temperature, °C	Substrate : Product ratio ^a
1	60	1:99
2	40	1:99
3	rt	1:99 (93%) ^b

^a Determined by ¹H-NMR spectroscopy as H^a/H^b integration ratio. ^b NMR yield using 1,1,2-trichloroethane as internal standard in parentheses.

2. Cobalt-catalyzed sp² C-H alkylation/cyclization and characterization of products

General procedure for cobalt-catalyzed sp² C-H alkylation/cyclization.

A 8 dram vial (septum with needle) equipped with a magnetic stir bar was charged with amide (0.5 mmol), alkyne (0.6 mmol, 1.2 equiv), $Co(acac)_2$ (0.1 – 0.25 mmol, 20 - 50 mol%), NaOPiv (1 mmol, 2 equiv), $Mn(OAc)_3*2H_2O$ (0.25 - 0.5 mmol, 0.5 – 1 equiv), and CF_3CH_2OH (5 mL). Reaction mixture was stirred at room temperature (or heated at 80 °C) for indicated time, monitored by TLC (after 2 h, 6 h, 12 h, 16 h, and 20 h to determine the completion time). Reaction solvent was evaporated, product was purified using column chromatography on silica gel using appropriate eluent. After purification product was dried under reduced pressure.

3-Phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 1)

N-(Quinolin-8-yl)benzamide (124 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 12 h, RT. After column chromatography (gradient hexanes/EtOAc from

4:1 to 2:1) 132 mg (75%) of a white solid was obtained. $R_f = 0.43$ (hexanes/EtOAc 1:1), mp 166 – 168 °C (Et₂O).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.96 (d, J = 2.8 Hz, 1H), 8.23 (dd, J = 7.6, 0.9 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.54 (dd, J = 7.3, 1.2 Hz, 1H), 7.49 – 7.33 (m, 4H), 7.25 – 7.05 (m, 6H), 5.46 (d, J = 5.9 Hz, 1H), 4.25 (bs, 1H), 3.23 (bs, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 165.1, 150.4, 144.2, 140.8, 139.1, 136.4, 136.3, 132.1, 130.1, 129.8, 129.5, 128.4, 128.2, 127.7, 127.5, 127.4, 127.0, 126.9, 126.0, 121.3, 63.1, 36.3.

HRMS calcd. for C₂₄H₁₈N₂O [M]⁺: 350.1419; found: 350.1415.

FT-IR (neat, cm⁻¹) v 1644, 1424.

3-Phenyl-2-(quinolin-8-yl)-6-(trifluoromethyl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 2)

4-Trifluoromethyl-*N*-(quinolin-8-yl)benzamide (158 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 12 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 146 mg (70%)

of a white solid was obtained. $R_f = 0.65$ (hexanes/EtOAc 1:1), mp 160 - 162 °C (Et₂O).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.98 (d, *J* = 2.8 Hz, 1H), 8.36 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.54 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.47 – 7.35 (m, 3H), 7.24 – 7.09 (m, 5H), 5.48 (d, *J* = 6.1 Hz, 1H), 4.29 (bs, 1H), 3.29 (bs, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 163.9, 150.6, 144.0, 140.1 (m), 138.6, 137.4, 136.4, 133.6 (q, $J_{C-F} = 32.2$ Hz), 132.9, 129.9, 129.5, 129.0, 128.5, 128.0, 127.7, 126.8, 126.0, 124.6, 123.9, 123.7 (q, $J_{C-F} = 272.3$ Hz), 121.5, 62.8, 36.1.

¹⁹F-NMR (470 MHz, CDCl₃, ppm) δ -62.69.

HRMS calcd. for C₂₅H₁₇N₂OF₃ [M]⁺: 418.1293; found: 418.1288.

FT-IR (neat, cm⁻¹) v 1643, 1423, 1326.

6-Bromo-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 3)

4-Bromo-*N*-(quinolin-8-yl)benzamide (158 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 12 h, RT. After column

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 (s, 1H), 8.17-8.08 (m, 2H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.54-7.50 (m, 2H), 7.44-7.40 (m, 2H), 7.35 – 7.28 (m, 1H), 7.26 – 7.09 (m, 5H), 5.44 (bs, 1H), 4.24 (bs, 1H), 3.18 (bs, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 164.4, 150.5, 140.3, 139.6, 138.8, 138.6, 136.4, 130.5, 130.4, 130.2, 130.0, 129.5, 128.8, 128.4, 127.9, 127.6, 126.8, 126.0, 121.4, 119.9, 63.0, 36.0.

HRMS calcd. for C₂₄H₁₇N₂O⁸¹Br [M]⁺: 430.0504; found: 430.0505.

FT-IR (neat, cm⁻¹) v 1651, 1593, 1471, 1422.

6-Nitro-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 4)

4-Nitro-*N*-(quinolin-8-yl)benzamide (147 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 20 h, RT. After column

chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 140 mg (71%) of a yellow solid was obtained. $R_f = 0.45$ (hexanes/EtOAc 1:1), mp 177 – 179 °C (Hexanes/Et₂O 1:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 9.11 – 8.86 (m, 1H), 8.37 (d, *J* = 7.2 Hz, 1H), 8.31 – 8.14 (m, 2H), 8.07 – 7.93 (m, 1H), 7.80 (d, *J* = 6.7 Hz, 1H), 7.56 (d, *J* = 6.2 Hz, 1H), 7.51 – 7.40 (m, 2H), 7.26 – 7.09 (m, 5H), 5.54 (bs, 1H), 4.36 (bs, 1H), 3.32 (d, *J* = 10.5 Hz, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 163.2, 150.6, 149.8, 143.8, 139.6, 138.3, 136.4, 135.1, 129.8, 129.5, 128.5, 128.2, 127.8, 126.6, 126.0, 122.7, 122.0, 121.6, 62.9, 36.2.

HRMS calcd. for C₂₄H₁₇N₃O₃ [M]⁺: 395.1270; found: 395.1271.

FT-IR (neat, cm⁻¹) v 1661, 1526, 1494, 1349.

7-Iodo-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 5)

3-Iodo-*N*-(quinolin-8-yl)benzamide (187 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 16 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 144 mg (61%) of a white solid

was obtained. $R_f = 0.63$ (hexanes/EtOAc 1:1), mp 214 – 216 °C (Et₂O).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 (d, J = 2.7 Hz, 1H), 8.54 (d, J = 1.7 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.80 – 7.71 (m, 2H), 7.52 (dd, J = 7.3, 1.1 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.23 – 7.11 (m, 5H), 6.89 (d, J = 8.0 Hz, 1H), 5.43 (dd, J = 6.1, 4.1 Hz, 1H), 4.17 (bs, 1H), 3.17 (d, J = 14.0 Hz, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 163.6, 150.5, 140.9, 140.3, 138.7, 137.2, 136.4, 136.1, 131.6, 130.0, 129.5, 128.4, 127.9, 127.5, 126.8, 126.0, 121.4, 91.8, 63.0, 36.0.

HRMS calcd. for C₂₄H₁₇N₂OI [M]⁺: 476.0386; found: 476.0379.

FT-IR (neat, cm⁻¹) υ 1644, 1494, 1425.

6-Methyl-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 6)

4-Methyl-*N*-(quinolin-8-yl)benzamide (131 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (67 mg, 0.25 mmol, 0.5 equiv), and CF₃CH₂OH (5 mL), 12 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 146 mg

(80%) of a white solid was obtained. $R_f = 0.43$ (hexanes/EtOAc 1:1), mp 203 – 205 °C (Et₂O). ¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 (d, J = 2.9 Hz, 1H), 8.19 – 8.07 (m, 2H), 7.72 (d, J = 8.1Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.25 – 7.08 (m, 6H), 6.95 (s, 1H), 5.44 (dd, J = 5.8, 4.4 Hz, 1H), 4.21 (bs, 1H), 3.17 (d, J = 12.5 Hz, 1H), 2.36 (s, J = 15.4 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃, ppm) δ 165.2, 150.3, 144.2, 142.6, 141.0, 139.2, 136.6, 136.4, 130.2, 129.5, 128.4, 128.2, 128.1, 127.8, 127.6, 127.3, 127.2, 126.9, 126.0, 121.3, 63.1, 36.2, 21.6. HRMS calcd. for C₂₅H₂₀N₂O [M]⁺: 364.1576; found: 364.1571. ET IB (next emrs¹) v 1644, 1502, 1422

FT-IR (neat, cm⁻¹) υ 1644, 1593, 1423.

8-Methoxy-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 2, Entry 7)

2-Methoxy-*N*-(quinolin-8-yl)benzamide (139 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 24 h, RT. After column chromatography (gradient

hexanes/EtOAc from 4:1 to 2:1, then EtOAc) 162 mg (85%) of a white solid was obtained. $R_f = 0.13$ (hexanes/EtOAc 1:1), mp 200 – 202 °C (Et₂O).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 9.01 – 8.87 (m, 1H), 8.16 (d, *J* = 6.8 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 6.6 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.33 – 7.25 (m, 3H), 7.21 – 7.12 (m, 3H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.69 (d, *J* = 6.9 Hz, 1H), 5.29 (bs, 1H), 4.40 (bs, 1H), 3.92 (s, 3H), 3.14 (bs, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 163.4, 160.1, 150.2, 144.4, 140.6, 139.8, 139.6, 136.1, 132.7, 130.1, 129.4, 128.1, 127.5, 127.0, 126.8, 125.9, 121.1, 119.9, 118.4, 111.3, 62.5, 56.2, 37.3.

HRMS calcd. for C₂₅H₂₀N₂O₂ [M]⁺: 380.1525; found: 380.1524.

FT-IR (neat, cm⁻¹) v 1644, 1593, 1433, 1238.

5-Phenyl-6-(quinolin-8-yl)-5,6-dihydrofuro[2,3-c]pyridin-7(4H)-one (Table 2, Entry 8)

N-(Quinolin-8-yl)furan-2-carboxamide (119 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 20 h, RT. After column chromatography (gradient hexanes/EtOAc from 2:1 to 1:1, then EtOAc) 154 mg (81%) of a white solid

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.94 (d, *J* = 2.3 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.43 – 7.34 (m, 2H), 7.26 – 7.10 (m, 5H), 6.37 (s, 1H), 5.61 (t, *J* = 5.6 Hz, 1H), 3.83 (d, *J* = 9.9 Hz, 1H), 3.15 (d, *J* = 15.8 Hz, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 158.3, 150.2, 146.3, 144.3, 143.4, 140.8, 137.6, 136.3, 130.8, 129.3, 128.2, 127.6, 127.5, 127.4, 127.0, 125.9, 121.2, 110.6, 64.8, 30.1.

HRMS calcd. for $C_{22}H_{16}N_2O_2$ [M]⁺: 340.1212; found: 340.1210.

was obtained. $R_f = 0.18$ (hexanes/EtOAc 1:1), mp 232 – 234 °C (Et₂O).

FT-IR (neat, cm⁻¹) v 1643, 1593, 1433.

5-Phenyl-6-(quinolin-8-yl)-5,6-dihydrothieno[2,3-c]pyridin-7(4H)-one (Table 2, Entry 9)

N-(Quinolin-8-yl)thiophene-2-carboxamide (127 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 24 h, RT. After column chromatography (gradient hexanes/EtOAc from 2:1 to 1:1, then EtOAc) 134 mg (75%) of a white solid

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 (d, J = 2.7 Hz, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.62 – 7.46 (m, 2H), 7.45 – 7.34 (m, 2H), 7.26 – 7.11 (m, 5H), 6.90 (d, J = 4.8 Hz, 1H), 5.60 (t, J = 5.5 Hz, 1H), 3.96 (bs, 1H), 3.28 (d, J = 13.1 Hz, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 161.6, 150.3, 144.3, 142.3, 140.9, 138.1, 136.3, 132.0, 131.5, 130.7, 129.4, 128.2, 127.6, 127.4, 127.0, 126.9, 125.9, 121.2, 64.6, 33.1.

HRMS calcd. for C₂₂H₁₆N₂OS [M]⁺: 356.0983; found: 356.0986.

was obtained. $R_f = 0.35$ (hexanes/EtOAc 1:1), mp 217 – 219 °C (Et₂O).

FT-IR (neat, cm⁻¹) v 1664, 1414, 1259, 1141, 1030.

4,6-Diphenyl-1-(quinolin-8-yl)-5,6-dihydropyridin-2(1H)-one (4, Scheme 1)

N-(Quinolin-8-yl)cinnamamide (137 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 24 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 1:1, then EtOAc) 116 mg (62%) of a yellow oil was

obtained. $R_f = 0.71$ (EtOAc).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.99 (s, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.43 – 7.35 (m, 5H), 7.34 – 7.30 (m, 2H), 7.23 – 7.19 (m, 2H), 7.18 – 7.14 (m, 1H), 6.62 (s, 1H), 5.61 (bs, 1H), 3.81 (bs, 1H), 3.17 (d, *J* = 13.9 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃, ppm) δ 159.2, 149.8, 148.2, 144.0, 141.0, 138.1, 137.7, 136.5, 130.6, 129.5, 129.4, 128.6, 128.3, 127.6, 127.5, 127.2, 126.0, 125.9, 121.3, 120.3, 62.6, 35.1. HRMS calcd. for C₂₆H₂₀N₂O [M]⁺: 376.1576; found: 376.1569. FT-IR (neat, cm⁻¹) υ 1651, 1428, 1244.

3-Methyl-6-phenyl-1-(quinolin-8-yl)-5,6-dihydropyridin-2(1H)-one (6, Scheme 1)

N-(Quinolin-8-yl)methacrylamide (106 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 30 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 1:1, then EtOAc) 115 mg (73%) of a white solid

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.97 (dd, J = 4.1, 1.6 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 7.2 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.31 – 7.17 (m, 5H), 6.34 (s, 1H), 5.34 (dd, J = 6.4, 5.3 Hz, 1H), 3.44 (bs, 1H), 2.64 (d, J = 16.6 Hz, 1H), 2.04 (s, 3H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 166.2, 150.3, 144.3, 141.4, 138.9, 136.2, 132.5, 131.9, 130.4, 129.4, 128.1, 127.4, 127.3, 125.9, 121.2, 62.7, 32.4, 17.3.

HRMS calcd. for C₂₁H₁₈N₂O [M]⁺: 314.1419; found: 314.1418.

FT-IR (neat, cm⁻¹) v 3062, 1668, 1626, 1556, 1370, 1264, 1137, 1030.

was obtained. $R_f = 0.23$ (hexanes/EtOAc 1:1), mp 170 – 172 °C (Et₂O).

2-(Quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 3, Entry 1)

N-(Quinolin-8-yl)benzamide (124 mg, 0.5 mmol), $Co(acac)_2$ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), $Mn(OAc)_3*2H_2O$ (134 mg, 0.5 mmol, 1 equiv), and CF_3CH_2OH (5 mL) were mixed at room temperature. The solution was purged with ethylene gas for 5 minutes. The vial was equipped with ethylene balloon and stirred for 22 h at RT. The

reaction was checked by TLC 3-4 times during the reaction. This is important as oxygen required for the reaction is introduced when the vial is opened to air. After each opening, the reaction mixture was purged with ethylene for 1 minute and the vial was equipped with ethylene balloon. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 98 mg (72%) of a colorless oil was obtained. $R_f = 0.30$ (hexanes/EtOAc 1:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.93 – 8.84 (m, 1H), 8.26 – 8.12 (m, 2H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 7.1 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.45 – 7.33 (m, 2H), 7.28 (d, *J* = 7.4 Hz, 1H), 4.28 (bs, 2H), 3.29 (bs, 2H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 165.0, 150.2, 144.0, 140.5, 139.0, 136.3, 131.8, 129.9, 129.6, 128.9, 128.7, 127.7, 127.0, 126.9, 126.4, 121.5, 50.2, 28.7.

HRMS calcd. for $C_{18}H_{15}N_2O$ [MH]⁺: 275.1184; found: 375.1178.

FT-IR (neat, cm⁻¹) v 1650, 1593, 1472, 1419.

3-Butyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 3, Entry 2)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), 1-hexene (75 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 16 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 146 mg (89%, 10:1 mixture of isomers

inseparable by flash column chromatography, structure of major isomer shown) of a colorless oil was obtained. $R_f = 0.53$ (hexanes/EtOAc 1:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.90 (d, *J* = 1.9 Hz, 1H), 8.22 – 8.11 (m, 2H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.43 – 7.34 (m, 2H), 7.28 (d, *J* = 7.4 Hz, 1H), 4.15 (d, *J* = 3.7 Hz, 1H), 3.99 (bs, 1H), 2.97 (d, *J* = 14.1 Hz, 1H), 1.73 – 1.53 (m, 2H), 1.42 – 1.00 (m, 4H), 0.73 (t, *J* = 6.5 Hz, 3H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 164.2, 150.3, 144.3, 138.7, 137.5, 136.2, 131.8, 130.4, 129.8, 129.6, 128.3, 127.7, 127.6, 126.7, 126.0, 121.3, 59.2, 32.0, 31.6, 28.4, 22.4, 13.8.

HRMS calcd. for C₂₂H₂₂N₂O [M]⁺: 330.1732; found: 330.1737.

FT-IR (neat, cm⁻¹) v 2954, 2926, 1647, 1461, 1420, 1244.

3-(Hydroxymethyl)-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 3, Entry 3)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), allyl alcohol (41 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 30 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 1:1, then EtOAc) 84 mg (55%) of a yellow oil

was obtained. $R_f = 0.53$ (EtOAc).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 – 8.86 (m, 1H), 8.29 (d, *J* = 7.1 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 7.1 Hz, 1H), 7.75 (d, *J* = 7.1 Hz, 1H), 7.65 (t, *J* = 7.1 Hz, 1H), 7.55 – 7.43 (m, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 4.19 (bs, 1H), 3.91 – 3.63 (m, 2H), 3.57 (d, *J* = 7.3 Hz, 1H), 3.17 (d, *J* = 16.1 Hz, 1H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 165.0, 150.3, 140.3, 137.7, 137.2, 132.2, 129.9, 129.2, 129.1, 128.6, 128.4, 127.3, 127.0, 126.9, 121.9, 121.7, 64.5, 62.3, 32.3.

HRMS calcd. for C₁₉H₁₇N₂O₂ [MH]⁺: 305.1290; found: 305.1287.

FT-IR (neat, cm⁻¹) v 3365, 1636, 1417, 1038.

3-Ethoxy-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one (Table 3, Entry 4)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), ethyl vinyl ether (58 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 16 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 143 mg (90%) of a colorless oil was obtained.

$R_f = 0.43$ (hexanes/EtOAc 1:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.90 (dd, J = 4.1, 1.7 Hz, 1H), 8.27 – 8.11 (m, 2H), 7.95 (d, J = 6.8 Hz, 1H), 7.85 (dd, J = 8.2, 1.3 Hz, 1H), 7.63 (dd, J = 8.1, 7.4 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.42 (dd, J = 8.3, 4.1 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 5.36 (dd, J = 4.1, 2.2 Hz, 1H), 4.07 (d, J = 15.0 Hz, 1H), 3.57 – 3.48 (m, 1H), 3.42 – 3.34 (m, 1H), 3.23 (dd, J = 16.1, 1.9 Hz, 1H), 0.99 (t, J = 7.0 Hz, 3H).

¹³C-NMR (125 MHz, CDCl₃, ppm) 164.3, 150.4, 144.1, 136.5, 136.3, 132.1, 130.3, 129.5, 129.0, 128.5, 127.8, 127.7, 126.8, 126.2, 121.4, 119.9, 88.6, 66.1, 33.8, 15.3.

HRMS calcd. for C₂₀H₁₈N₂O₂ [M]⁺: 318.1368; found: 318.1356.

FT-IR (neat, cm⁻¹) v 1644, 1471, 1430, 1062.

(3a*R**,9b*R**)-4-(Quinolin-8-yl)-2,3,3a,4-tetrahydro-1H-cyclopenta[c]isoquinolin-5(9bH)-one (Table 3, Entry 5)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), cyclopentene (66 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 20 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 138 mg (88%) of a white solid was obtained.

 $R_{\rm f}$ = 0.38 (hexanes/EtOAc 1:1), mp 157 – 159 °C (Hexanes/Et₂O 4:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.92 – 8.82 (m, 1H), 8.26 – 8.13 (m, 2H), 7.84 (d, *J* = 7.4 Hz, 1H), 7.73 – 7.65 (m, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.28 (m, 3H), 5.00 (bs, 1H), 3.49 (bs, 1H), 2.37 – 2.18 (m, 1H), 2.19 – 2.02 (m, 1H), 1.97 – 1.81 (m, 1H), 1.81 – 1.56 (m, 3H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 164.9, 150.3, 144.4, 141.3, 138.0, 136.3, 132.0, 130.6, 129.6, 129.0, 127.9, 127.5, 126.9, 126.6, 126.1, 121.3, 63.0, 42.4, 32.8, 32.2, 22.1.

HRMS calcd. for $C_{21}H_{18}N_2O$ [M]⁺: 314.1419; found: 314.1412.

FT-IR (neat, cm⁻¹) v 1645, 1593, 1426.

(6a*R**,12a*R**)-6-(Quinolin-8-yl)-6a,7,8,9,10,11,12,12a-octahydrocycloocta[c]isoquinolin-5(6H)one (Table 3, Entry 6)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), *cis*-cyclooctene (78 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (26 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 20 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 2:1) 130 mg (73%) of a colorless oil was obtained. R_f = 0.48 (hexanes/EtOAc 1:1).

¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.92 (d, J = 2.1 Hz, 1H), 8.24 – 8.11 (m, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 6.7 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.46 – 7.29 (m, 3H), 4.52 (bs, 1H), 4.05 (bs, 1H), 2.27 – 2.02 (m, 2H), 1.98 – 1.86 (m, 1H), 1.81 – 1.57 (m, 4H), 1.53 – 1.08 (m, 5H).

¹³C-NMR (125 MHz, CDCl₃, ppm) δ 164.9, 150.4, 144.6, 142.6, 138.6, 136.2, 131.9, 130.1, 129.5, 129.4, 128.3, 127.7, 126.4, 126.0, 125.0, 121.3, 60.1, 39.7, 28.7, 28.5, 27.6, 26.1, 24.7, 24.6. HRMS calcd. for C₂₄H₂₅N₂O [MH]⁺: 357.1967; found: 357.1968. FT-IR (neat, cm⁻¹) υ 2919, 2851, 1648, 1600, 1472.

(3S*,4S*)-4-(Hydroxymethyl)-3-phenyl-2-(quinolin-8-yl)-3,4-dihydroisoquinolin-1(2H)-one

(Table 3, Entry 7)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), *trans*-cinnamyl alcohol (77 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (64.3 mg, 0.25 mmol, 50 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 20 h, 80 °C. After column chromatography

(gradient hexanes/EtOAc from 2:1 to 1:1, then EtOAc) 100 mg (53%) of a white solid was obtained. $R_f = 0.58$ (EtOAc), mp 212 – 214 °C (Et₂O).

(Table 3, Entry 8)

N-(quinolin-8-yl)benzamide (124 mg, 0.5 mmol), *cis*-cinnamyl alcohol (81 mg, 0.6 mmol, 1.2 equiv), Co(acac)₂ (64.3 mg, 0.25 mmol, 50 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), $Mn(OAc)_3*2H_2O$ (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 24 h, 80 °C. After column chromatography (gradient hexanes/EtOAc from 2:1 to 1:1, then EtOAc) 98 mg (52%) of a white solid was obtained.

Cis-cinnamyl alcohol was partially converted to trans-isomer as observed by ¹*H-NMR spectra of crude reaction mixture.*

¹H-NMR (500 MHz, CDCl₃, ppm) δ 9.02 – 8.88 (m, 1H), 8.32 – 8.24 (m, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.55 – 7.42 (m, 5H), 7.21 – 7.10 (m, 6H), 5.39 (bs, 1H), 4.28 (d, J = 10.3 Hz, 1H), 4.13 (bs, 1H), 3.27 (bs, 1H). ¹³C-NMR (125 MHz, CDCl₃, ppm) δ 164.9, 149.9, 143.1, 140.6, 138.3, 137.3, 136.9, 132.5, 131.8, 129.9, 129.8, 128.4, 128.1, 128.0, 127.9, 127.5, 127.4, 126.7, 126.5, 121.5, 67.7, 65.6, 49.3. HRMS calcd. for C₂₅H₂₁N₂O₂ [MH]⁺: 381.1603; found: 381.1610. FT-IR (neat, cm⁻¹) υ 1643, 1593, 1424.

Determination of (3*S**,4*S**)-4-(hydroxymethyl)-3-phenyl-2-(quinolin-8-yl)-3,4dihydroisoquinolin-1(2H)-one relative configuration

Configuration of 4-nitrobenzoyl derivative was determined by ¹H-NMR spectroscopy based on scalar coupling constant between protons H-3 and H-4 (typically, for *cis*-configuration $J_{3,4} = 4.2$ – 6.0 Hz, for *trans*-configuration $J_{3,4} = 0.2$ Hz).⁸

((3*S**,4*S**)-1-Oxo-3-phenyl-2-(quinolin-8-yl)-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl 4nitrobenzoate

To a solution of $(3S^*, 4S^*)$ -4-(hydroxymethyl)-3-phenyl-2-(quinolin-8-yl)-3,4dihydroisoquinolin-1(2H)-one (50 mg, 0.13 mmol) and *N*,*N*-dimethyl-4aminopyridine (1.6 mg, 0.013 mmol, 10 mol%) in anhydrous CH₂Cl₂ (5 mL) under nitrogen Et₃N (22 µL, 0.16 mmol, 1.2 equiv) was added. The resulting solution was cooled to 0 °C. 4-Nitrobenzoyl chloride (24 mg, 0.13 mmol) was added as a solid and reaction mixture was stirred at room temperature for 5 h. The mixture was quenched with water (10 mL) and extracted with CH₂Cl₂ (3 x

⁸ a) Wang, L.; Liu, J.; Tian, H.; Qian, C.; Sun, J. *Adv. Synth. Catal.* **2005**, *347*, 689. b) Chen, W.; Cui, J.; Zhu, Y.; Hu, X.; Mo, W. *J. Org. Chem.*, **2012**, *77*, 1585.

10 mL). Combined organic phase was dried over MgSO₄ and filtered. Concentration in vacuum followed by purification by flash column chromatography (eluent hexanes/EtOAc 2:1) afforded 46 mg (68%) of (($3S^*, 4S^*$)-1-oxo-3-phenyl-2-(quinolin-8-yl)-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl 4-nitrobenzoate as a white solid. R_f = 0.79 (Hexanes/EtOAc 1:1)), mp 280 – 282 °C (Et₂O).

¹H-NMR (400 MHz, CDCl₃, ppm) δ 8.82 (dd, J = 4.2, 1.7 Hz, 1H), 8.35 – 8.31 (m, 1H), 8.28 – 8.21 (m, 2H), 8.20 – 8.09 (m, 3H), 7.78 (dd, J = 7.6, 2.0 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.47 – 7.39 (m, 2H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H), 7.30 – 7.15 (m, 6H), 5.68 (t, J = 10.1 Hz, 1H), 5.40 (s, 1H), 4.95 (dd, J = 10.9, 5.5 Hz, 1H), 3.64 (dd, J = 9.1, 5.5 Hz, 1H). Since coupling between H³ and H⁴ is not observed (<0.5 Hz), we assign trans configuration to the substance.

¹³C-NMR (100 MHz, CDCl₃, ppm) δ 164.6, 164.0, 150.5, 150.2, 144.3, 140.4, 138.5, 136.3, 135.6, 135.2, 132.6, 130.5, 129.6, 129.5, 129.4, 128.8, 128.7, 128.6, 128.4, 128.2, 127.8, 126.6, 126.2, 123.6, 121.5, 68.6, 64.3, 46.5.

Removal of directing group

2-(5-Methoxyquinolin-8-yl)-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (8, Scheme 2)

N-(5-Methoxyquinolin-8-yl)benzamide (139 mg, 0.5 mmol), styrene (69 μ L, 0.6 mmol, 1.2 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 20 mol%), NaOPiv (124 mg, 1 mmol, 2 equiv), Mn(OAc)₃*2H₂O (134 mg, 0.5 mmol, 1 equiv), and CF₃CH₂OH (5 mL), 16 h, RT. After column chromatography (gradient hexanes/EtOAc from 4:1 to 1:1) 166

mg (87%) of a white solid was obtained. $R_f = 0.40$ (hexanes/EtOAc 1:1), mp 229 – 231 °C (Et₂O). ¹H-NMR (500 MHz, CDCl₃, ppm) δ 8.95 (dd, J = 4.0, 1.4 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.24 (dd, J = 7.4, 0.8 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.23 – 7.09 (m, 6H), 6.71 (d, J = 8.3 Hz, 1H), 5.40 (dd, J = 6.1, 4.0 Hz, 1H), 4.25 (d, J = 10.7 Hz, 1H), 3.93 (s, 3H), 3.19 (d, J = 14.9 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃, ppm) δ 165.3, 154.5, 150.6, 144.6, 141.0, 136.6, 132.0, 131.5, 131.1, 130.0, 129.9, 128.3, 128.2, 127.5, 127.3, 126.9, 121.7, 120.4, 103.4, 63.1, 55.7, 36.2. HRMS calcd. for C₂₅H₂₀N₂O₂ [M]⁺: 380.1525; found: 380.1523. FT-IR (neat, cm⁻¹) υ 1644, 1592, 1433.

3-Phenyl-3,4-dihydroisoquinolin-1(2H)-one (9, Scheme 2)

To a solution of 2-(5-methoxyquinolin-8-yl)-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (100 mg, 0.26 mmol) in MeCN (2.6 mL) at RT was added solution of CAN (570 mg, 1.04 mmol, 4 equiv) in H₂O (2.6 mL). Resulting solution was stirred at RT for 4 h, H₂O (15 mL) was added and the reaction mixture was extracted with EtOAc (3 x 15 mL). Combined organic phase was washed with 10% Na₂SO₃ solution (2 x 15 mL) and brine (15 mL), dried over MgSO₄, filtered, solvent was evaporated. After column chromatography (hexanes/EtOAc from 2:1) 38 mg (66%) of a colorless oil was obtained. This compound is known.⁹ ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.47 (td, *J* = 7.5, 1.5 Hz, 1H), 7.42 – 7.37 (m, 6H), 7.19 (d, *J* = 7.5 Hz, 1H), 6.24 (s, 1H), 4.87 (ddd, *J* = 11.1, 4.7, 1.1 Hz, 1H), 3.21 (dd, *J* = 15.7, 11.1 Hz, 1H), 3.13 (dd, *J* = 15.7, 4.5 Hz, 1H).

⁹ Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.

NMR spectra

— -62.69

Table 2, Entry 2

														
-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160

