CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

Dynamic, Electrostatic Model for the Generation and Control of High-Energy Radical Intermediates by a Coenzyme B₁₂-Dependent Enzyme

Zhi-Gang Chen,^[a] Monika A Ziętek,^[b] Henry J. Russell,^[b] Shirley Tait,^[b] Sam Hay,^[b] Alex R. Jones,^{*[c]} and Nigel S. Scrutton^{*[b]}

cbic_201300420_sm_miscellaneous_information.pdf

Experimental Section

Materials.

Ccoenzyme B12 (> 98 % Sigma), methylcobalalmin (Sigma), 2-aminoethanol (ethanolamine, > 99 % Sigma), yeast alcohol dehydrogenase (YADH from *Saccharomyces cerevisiae*, \geq 300 units mg⁻¹ protein, Sigma) and β-nicotinamide adenine dinucleotide (β-NADH, Sigma) were used as purchased without further purification. The plasmid, pET-SEAL, encoding the small (32.0 kDa) and large (49.1 kDa) subunits of wild-type (WT) EAL from Salmonella enterica (kindly donated by Prof. George Reed) was overexpressed in *E. coli* and purified as described previously.^[1] Site-directed mutagenesis was performed Biolabs), England using Phusion kit (New using the following primers: 5'-GCCTGTACTTTGACACCGGGCAAGGG-3' (for E287D); CAA (for E287Q); GCA (for E287A). All EAL E287 variants were overexpressed and purified as for the WT protein (SDS PAGE, Figure S2).

Coenzyme binding

An excess of each coenzyme (coenzyme B_{12} / methylcobalamin) was added to separate samples of the EAL wild-type and E287 variants and incubated on ice for 10-15 minutes. Unbound cofactor was removed by passing down a CentriPure P25 gel filtration column (emp BIOTECH). UV-visible spectra were then acquired between 200-800 nm.

Steady-state turnover.

The activity of each EAL variant was measured using a coupled assay similar to that described by Kaplan and Stadtman.^[2] Briefly, the consumption of NADH (150 μ M) was monitored by spectrophotometry at 340 nm as the product of the EAL catalysed reaction, acetaldehyde, was turned over by YADH (100 units ml⁻¹). Final EAL concentrations were: WT, 5 nM and E287D/Q/A, 1-1.5 μ M. Data were acquired using an Agilent Cary 60 UV-Vis Spectrophotometer in a final volume of 1 ml under both aerobic and anaerobic conditions in HEPES (100 mM), pH 7.5 at 25 °C. Anaerobic data were acquired in a Belle Technology glove box. Steady-state kinetic parameters were calculated by fitting the initial rate as a function of substrate (2-aminoethanol) concentration to the Michaelis-Menten equation (Figure S4a-e and Equation (1)).

Stopped-flow spectrometry.

Single wavelength measurements were made at 525 nm under aerobic and anaerobic conditions in an Applied Photophysics SX.18 MV-R stopped-flow spectrophotometer. Data were acquired in HEPES (100 mM), pH 7.5 at 25 °C after rapid mixing of EAL variants (E287D/Q, 30-40 μ M final concentration) with equal volumes of saturating concentrations of 2-aminoethanol (60 mM final concentration). Anaerobic data were acquired in a Belle Technology glove box. Data were fit to a single exponential function where possible to extract the observed pre-steady-state rate coefficient, k_{obs} .

Substrate titration into E287A.

2-aminoethanol (final concentration of 110 mM) was added to E287A (~ 10 μ M) and a spectrum acquired between 300-700 nm in an Agilent Cary 60 UV-Vis Spectrophotometer at 60 s intervals until spectral changes ceased. Data were acquired under both aerobic and anaerobic conditions in a 100 μ l cuvette, HEPES (200 mM), pH 7.5 at 25 °C. Anaerobic data were acquired in a Belle Technology glove box.

Figures

Figure S1. Proposed cycle of the coenzyme B_{12} -dependent ethanolamine ammonia lyase catalysed conversion of 2-aminoethanol to ethanal and ammonia. Refer to main article for description.

Figure S2. SDS-PAGE of WT, E287D (Asp), E287Q (GIn), and E287A (Ala) variants of EAL. The bands for the small (β , 32.0 kDa) and large (α , 49.1 kDa) subunits are indicated.

Figure S3. Normalised UV-visible spectra of **a-b**) 5'deoxyadenosylcobalamin (AdoCbl, coenzyme B_{12}) and **c-d**) methylcobalamin (MeCbl) both free in aqueous solution and bound to the EAL variants (WT, E287D, E287Q and E287D). The spectra were normalised between 700 nm (A=0) and the peak of the $\alpha\beta$ absorption band (A=1). The peak of the $\alpha\beta$ absorption band in each case is blue-shifted by varying extents (b & d, Table S1 and Figure 2). There is more general variation between the EAL variants in the protein bound spectra for B_{12} (a) than for methylcobalamin (c), especially between 300-500 nm. This, and the nature of the $\alpha\beta$ band blue shift (see Figure 2, Table S1 and discussion in main article), suggest significant interaction between E287 and the protein through direct contact with the upper axial 5'-deoxyadenosylcobalalmin.

	Peak of $\alpha\beta$ absorption band (± 2 nm)	
	AdoCbl	MeCbl
Free	525	521
E287D	522	515
WT	520	513
E287Q	522	515
E287A	510	512

Table S1. Peak values of the $\alpha\beta$ absorption band for 5'deoxyadenosylcobalamin (AdoCbl, coenzyme B₁₂) and methylcobalamin (MeCbl) both free in aqueous solution and bound to the EAL variants (WT, E287D, E287Q and E287D). See also Figures 2 and S3a-d. The EAL variants are arranged from top to bottom in order of increasing hydrophobicity of the 287 residue (Asp < Glu < Gln < Ala).

Figure S4 Initial velocity (v_0) as a function of [2-aminoethanol] measured for EAL variants: **a)** WT – aerobic, **b)** E287D – aerobic, **c)** E287Q – aerobic, **d)** E287D – anaerobic, **e)** E287Q – anaerobic. All data were fit to the Michaelis-Menten equation (1), and k_{cat} calculated from V_{max} / [E]₀, where [E]₀ = EAL variant concentration.

Figure S5. Pre-steady-state traces and single exponential fits representing the change in absorbance at 525 nm after rapid mixing of the E287D variant with 2-aminoethanol (2AE). Black (data) and red (fit) – 50 mM 2AE, $k_{obs} = 7.10 \pm 0.29$; blue (data) and green (fit) – 60 mM 2 AE, $k_{obs} = 7.29 \pm 0.18$. The rates are the same within error, suggesting saturating concentrations of substrate.

References

- [1] V. Bandarian, G. H. Reed, *Biochemistry* **1999**, *38*, 12394-12402.
- [2] B. H. Kaplan, E. R. Stadtman, J. Biol. Chem. 1968, 243, 1787-1793.