Supplemental Material to:

Isabel Cruz-Gallardo, Ángeles Aroca, Menachem J Gunzburg, Andrew Sivakumaran, Je-Hyun Yoon, Jesús Angulo, Cecilia Persson, Myriam Gorospe, B Göran Karlsson, Jacqueline A Wilce, and Irene Díaz-Moreno

The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain

> 2014; 11(6) http://dx.doi.org/10.4161/rna.28801

www.landesbioscience.com/journals/rnabiology/article/28801/

The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain

Supplementary material

Isabel Cruz-Gallardo¹, Ángeles Aroca¹, Menachem J. Gunzburg²,

Andrew Sivakumaran², Je-Hyun Yoon⁶, Jesús Angulo^{3, 4}, Cecilia Persson⁵, Myriam

Gorospe⁶, B. Göran Karlsson⁵, Jacqueline A. Wilce² and Irene Díaz-Moreno¹*

¹Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Sevilla, Spain.

²Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.

³Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Sevilla, Spain.

⁴School of Pharmacy, University of East Anglia. Norwich Research Park, Norwich NR4 7TJ, UK.

⁵Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden.

⁶Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore MD, USA

*Corresponding author. Email: idiazmoreno@us.es

Figure S1. Binding of TIA-1 RRM3 to one of the "good RNA targets". *Left.*-Averaged chemical-shifts changes of RRM3 upon addition of GCUCC to a protein:RNA ratio of 1:1.5. *Middle.*- Ribbon mapping of $\Delta \delta_{avg}$. Residues with 0.013 $\leq \Delta \delta_{avg} \leq 0.02$ ppm are yellow and those with $\Delta \delta_{avg} > 0.02$ are in orange. Prolines and not assigned residues are in grey whereas those non perturbed residues are colored in blue. *Right.*- TIA-1 RRM3 surface with the same orientation and color code as *Middle*. Note that G273 and T276 residues are colored in red because of their NH amide signals are broadening beyond the detection limit. The white asterisk (*) indicates that W272 corresponds to the N^{ε} nucleus in the indole ring. The structure representations were created with Chimera software¹ using the file generated from chemical shifts assignments of RRM3 domain (BMRB accession number 18829) at the CS23D2.0 web server.²

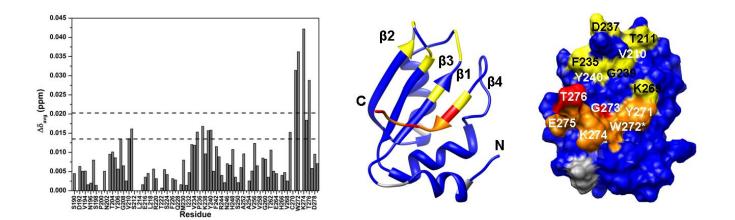


Figure S2. Binding isotherms from STD-AF values during the titration of RRM3 with the ACCCC and GCUCC oligos

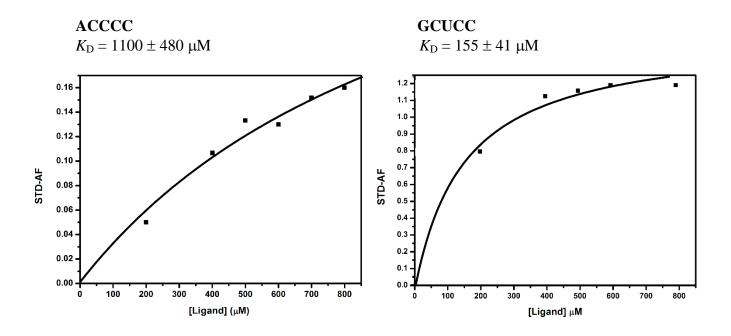
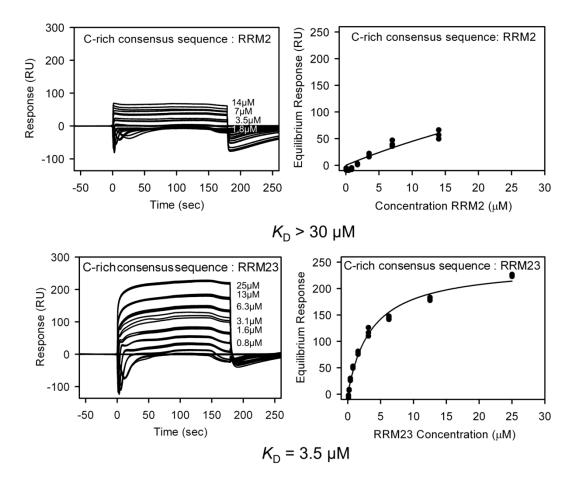



Figure S3. SPR Analysis of the interactions of different TIA-1 constructs with 5' UUGCCACCUCCUGCUCCUGCCCAGA 3' RNA. The binding of TIA-1 RRM2 (top) and TIA-1 RRM23 (bottom) to the RNA sequence is shown. RNA, biotinylated at the 5'-end, were captured on SA coated sensor chips in parallel. Each protein was injected across the four flow cells (blank cell and a cell for the RNA sequence) at a range of concentrations and in triplicate. Injections were performed for 180 seconds (association phase), followed by a 360-second flow of running buffer to assess dissociation. The data were used to construct binding curves for K_D determination or approximation (where steady state binding was not achieved).

References

- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605–1612.
- Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G. CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 2008; 36: W496–W502.