Supplemental Data

Supplemental Figures

Figure S1.

Analytical Ultracentrifugation (relates to Results section "Monomer-Trimer Equilibrium" and Figure 4).

Sedimentation equilibrium data of the HIV-1 ectodomain gp41²⁷⁻¹⁵⁴ in the absence of detergent (A) and in the presence of dodecyl phosphocholine (DPC, B) are shown. For comparison a loop deletion mutant (gp41 LD) of the gp41 ectodomain has been studied where the immunodominant loop region has been replaced by a six residue flexible linker. The monomer-trimer equilibrium has been analyzed in the absence (C) and presence of DPC (D). Panels are absorbance (bottom panel) and residuals (upper panel). Opened circles show 280nm absorbance gradients in the centrifuge cell. The solid line indicates the calculated fit for the monomer-trimer association. Residuals show the difference in the fitted and experimental values as a function of radial position. The average molecular weights were fitted using an ideal single species model (not shown) which made no assumptions about associative behavior.

Figure S2.

Profiles of mole fraction of monomer and trimer species plotted as function of total protein concentration (related to the Results "Monomer-Trimer Equilibrium" and Figure 4).

The concentration profiles were constructed using the K_a values indicated and which were derived from sedimentation equilibrium measurements (Figure 4 and Figure S1). Panels A-C, refer to K_a values derived from centrifugation performed in the presence of DPC and Panel D, in the absence of DPC. Panel A, gp41 LD (where IL in gp41²⁷⁻¹⁵⁴ was replaced with 6 residue flexible linker): 11.83 kDa (1mg/ml = 84.5µM); Panel B, gp41²⁷⁻¹⁵⁴: 14.90 kDa (1mg/ml = 67µM); Panel C, gp41²⁷⁻¹⁹⁴: 19.65 kDa (1mg/ml = 50.9µM); Panel D, same as B. In all panels, the concentration (µM) corresponding to ~ 50% monomer ~ 50% trimer is indicated.

Figure S3.

Comparison of chemical shifts for gp41^{27-194} and gp41^{1-194} (comprising FP and FPPR), related to the Results section "Comparison of $gp41^{27-194}$ and $gp41^{1-194}$ including the fusion peptide" and Figure 1.

Comparison of chemical shifts: (**A**) Overlay of 800 MHz ¹⁵N-¹H TROSY-HSQC spectra of ²H¹⁵N¹³C enriched gp41²⁷⁻¹⁹⁴ (black) and gp41¹⁻¹⁹⁴ (red) (Lakomek et al., 2013). (**B**) $\Delta\delta^{13}C^{\alpha}$ secondary chemical shifts of gp41¹⁻¹⁹⁴ (red) are compared to those of gp41²⁷⁻¹⁹⁴ (black). (**C**) Correlation graph of $\Delta\delta^{13}C^{\alpha}$ values for residues 30-110 of gp41¹⁻¹⁹⁴, comparing values measured for gp41²⁷⁻¹⁹⁴. $\Delta\delta^{13}C^{\alpha}$ correlate very well between gp41²⁷⁻¹⁹⁴ and gp41¹⁻¹⁹⁴ but are slightly reduced in magnitude for gp41²⁷⁻¹⁹⁴. (**D**) Correlation graph of ¹H chemical shifts of residues 32-110 of gp41²⁷⁻¹⁹⁴, comparing values measured for gp41²⁷⁻¹⁹⁴. (**E**) Correlation graph of ¹⁵N chemical shifts of residues 31-110 of gp41²⁷⁻¹⁹⁴, comparing values measured for gp41¹⁻¹⁹⁴.

Figure S4

Extended analysis of gp41^{1-194} relaxation data (relates to Results section "Comparison of $gp41^{27-194}$ and $gp41^{1-194}$ including the fusion peptide" and Figure 2).

¹⁵N relaxation data recorded for gp41¹⁻¹⁹⁴ in DPC micelles (Lakomek et al., 2013); additional resonances in the 2D spectra could be assigned based on comparison to gp41²⁷⁻¹⁹⁴: (**A**) ¹⁵N R₁ relaxation data at 600 MHz (black) and 800 MHz (red) are highly consistent for both fields. (**B**) R_{2,0} relaxation data (derived from R_{1ρ} with a 2 kHz RF field; R₁ contribution corrected) at 600 MHz (black) and 800 MHz (red). (**C**) ¹⁵N-{¹H} NOE values. (**D**) Transverse CSA–dipolar cross-correlated relaxation rates η_{xy}. (**E**) ¹⁵N R_{2,β}.

Figure S5

Comparison of ¹⁵N relaxation data recorded at 600 MHz for gp41¹⁻¹⁹⁴ in DPC micelles (red) (Lakomek et al., 2013) compared to rates measured for gp41²⁷⁻¹⁹⁴ (black), related to Figure 2.

Panel (**A**) shows ¹⁵N R₁, (**B**) ¹⁵N R_{2,0} relaxation data (derived from R₁ $_{\rho}$ with a 2 kHz RF field; R₁ contribution corrected), (**C**) ¹⁵N R_{2,β}. Relaxation data for gp41¹⁻¹⁹⁴ are very similar compared to gp41²⁷⁻¹⁹⁴, major differences occur only for residues V28-R45 which are N-terminal in gp41²⁷⁻¹⁹⁴, we, thus, consider them as a result of truncation.

$\Delta \delta^{13} C^{\alpha}$ secondary chemical shift

Table S1. $\Delta \delta^{13} C^{\alpha}$ secondary chemical shift for gp41²⁷⁻¹⁹⁴ (related to the Results section "Secondary structure analysis" and Figure 1).

ΔΔ	$\Delta \delta^{13} C^{\alpha}$	AA	$\Delta \delta^{13} C^{\alpha}$
ΛΛ	[nnm]		[ppm]
V28	0.25	G86	1 04
029	-0.38	Δ87	1.04
A 30	-0.50	588	2 27
R31	3.42	G89	1 31
032	2.46	K90	1.31
<u> </u>	2.93	L91	1.20
L34	2.58	I92	0.82
	3 45	T95	0.53
G36	1.77	A96	0.43
I37	3.00	V97	-2.13
V38	3.20	N100	0.06
039	2.15	A101	0.91
040	0.57	S102	0.84
041	2.16	W103	0.06
N42	2.90	S104	0.42
N43	2.53	N105	1.63
L44	3.31	K106	1.47
L45	3.34	S107	2.17
R46	3.10	L108	2.79
A47	2.98	E109	2.67
I48	3.55	Q110	2.44
H53	1.66	I111	2.83
L54	3.20	W112	1.30
L55	3.58	E119	2.02
Q56	3.46	W120	2.92
L57	3.06	D121	2.54
T58	5.67	R122	3.09
V59	4.95	E123	2.17
W60	4.36	I124	3.55
G61	2.49	N125	3.25
I62	3.87	N126	2.76
K63	3.45	Y127	3.36
Q64	1.96	T128	4.71
L65	3.06	S129	3.74
Q66	4.16	L130	3.38

A67	3.05	I131	3.74
R68	1.84	H132	3.53
L70	3.23	S133	4.03
A71	3.18	L134	3.01
V72	4.21	L152	2.93
E73	3.79	D153	2.01
R74	3.31	K154	1.92
Y75	3.11	V190	3.72
L76	2.48	L191	2.16
D78	1.27	S192	2.40
Q79	0.27	I193	0.68
Q80	1.25	V194	-0.49
L81	1.61		
L82	1.58		
G83	1.10		
I84	1.85		
W85	1.25		
G86	1.04		

Extended Model-free Analysis

Table S2. Input experimental data for the Extended Model-free analysis and back-calculated data for quality assessment of the fit (this table is related to the Results section "Inter-domain dynamics" and Table 1). Average experimental data and error-weighted standard deviation for clusters of residues with similar dynamic properties in $gp41^{27-194}$ that were used as input for the extended model-free analysis are shown (Input). Back-calculated relaxation data are shown (Back-calculated) that were calculated using the model-free parameters shown in Table 1.

Input								
	R ₁	R ₁	R ₂	R ₂	I/I ₀	I/I ₀	η_{xy}	η_{xy}
	$[s^{-1}]$	$[s^{-1}]$	$[s^{-1}]$	$[s^{-1}]$			$[s^{-1}]$	[s ⁻¹]
	600	800	600	800	600	800	600	800
Cluster	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
	0.81	0.61	39.1	49.0	0.63	0.71	27.7	35.7
55-78	±0.04	±0.03	± 2.8	± 3.8	±0.06	± 0.05	±3.1	±2.8
	1.12	0.95	20.2	24.2	0.39	0.50	13.5	17.4
83-102	±0.04	± 0.04	±3.0	±3.6	±0.07	± 0.06	±2.5	±2.7
	0.81	0.62	41.8	50.7	0.59	0.67	30.1	32.4
119-133	±0.05	±0.05	±5.3	±5.3	±0.06	±0.05	±5.1	±3.4
	0.81	0.66	44.6	47.6	0.54	0.56	28.2	40.1
190-194	±0.13	±0.09	±4.6	±2.0	±0.10	±0.11	±4.1	±3.7
Back-								
calculated								
	0.80	0.63	38.2	46.9	0.67	0.69	29.0	38.5
55-78	±0.03	±0.02	±1.5	± 1.8	±0.04	±0.04	±1.1	±1.5
	1.11	0.96	19.2	23.4	0.42	0.46	14.5	19.2
83-102	±0.03	±0.04	±1.5	±1.9	±0.05	±0.03	±1.2	±1.6
	0.80	0.64	37.3	45.7	0.62	0.65	28.3	37.6
119-133	±0.04	±0.04	±1.9	±2.3	±0.04	±0.04	±1.4	±1.9
	0.75	0.64	39.0	47.9	0.55	0.62	29.6	39.4
190-194	±0.07	±0.07	±1.4	±1.7	±0.06	±0.07	±1.1	±1.4

NMR backbone assignment data

Table S3. Chemical shift assignments for the studied gp41²⁷⁻¹⁹⁴ construct in DPC micelles (related to the Experimental Procedures section "NMR spectroscopy" and Figure 1). The table is provided as a separate Exel document.

¹⁵N Relaxation data

Table S4A. ¹⁵N R₁, ¹⁵N R_{2,0} (derived from ¹⁵N R_{1,p}), {1H}-¹⁵N NOE, transverse ¹⁵N CSA –dipolar crosscorrelated relaxation data η_{xy} and ¹⁵N R_{2,β} relaxation data for gp41²⁷⁻¹⁹⁴, measured at 600 MHz and 800 MHz. This table is related to the Results section "Inter-domain dynamics" and Figure 2) and provided as a separate Exel document.

Lipid- and solvent PRE measurements

Table S5. Lipid (5-DSA) and solvent (Omniscan) PRE data. Intensities are normalized relative to a reference sample of identical gp41 and DPC concentration (related to Figure 3).

	I/I ₀	$\Delta I/I_0$	I/I ₀	$\Delta I/I_0$
	5-DSA		Omniscan	
V28	0.46	0.01	0.3	0.01
Q29	0.55	0.01	0.34	0.01
A30	0.56	0.02	0.44	0.01
R31	0.81	0.02	0.58	0.02
Q32	0.86	0.01	0.61	0.01
L33	0.76	0.01	0.66	0.01
L34	0.69	0.01	0.74	0.01
S35	0.76	0.02	0.69	0.02
G36	0.76	0.01	0.58	0.01
I37	0.75	0.02	0.73	0.02
V38	0.76	0.02	0.72	0.02
Q39	0.70	0.02	0.69	0.02
Q40	0.86	0.02	0.6	0.02
N42	0.85	0.02	nd	nd
N43	0.93	0.03	0.51	0.02
L44	0.54	0.02	0.61	0.02
R46	0.87	0.03	0.77	0.03
A47	0.78	0.02	0.73	0.02
I48	0.82	0.02	0.76	0.02
H53	0.76	0.05	nd	nd
L54	0.73	0.02	0.67	0.02
L57	0.85	0.02	nd	nd
T58	0.76	0.05	0.65	0.05
V59	0.74	0.02	0.74	0.02
G61	0.72	0.05	0.67	0.05
I62	0.62	0.02	0.73	0.02
Q64	0.79	0.02	0.58	0.02
L65	0.70	0.02	0.54	0.01
Q66	0.55	0.03	0.7	0.03
A67	0.50	0.01	nd	nd
L70	0.70	0.02	0.67	0.02
A71	0.82	0.03	0.7	0.03
E73	0.57	0.02	0.55	0.02
R74	0.90	0.02	0.48	0.01
Y75	0.73	0.03	0.5	0.02
L76	0.87	0.02	0.77	0.02

D78	0.70	0.02	0.52	0.02
L81	0.76	0.01	0.6	0.01
L82	0.67	0.02	0.62	0.02
G83	0.44	0.02	0.54	0.02
I84	0.68	0.02	0.67	0.02
W85	0.64	0.02	0.64	0.02
G86	0.48	0.02	0.52	0.02
A87	0.66	0.01	0.5	0.01
S88	0.73	0.01	0.46	0.01
G89	0.74	0.02	0.47	0.01
K90	0.82	0.01	0.55	0.01
L91	0.62	0.01	0.7	0.01
I92	0.75	0.01	0.66	0.01
T95	0.66	0.02	0.55	0.02
A96	0.54	0.01	0.54	0.01
V97	0.59	0.02	0.58	0.02
N100	0.44	0.03	0.53	0.03
A101	0.62	0.01	0.41	0.01
W103	0.75	0.02	nd	nd
S104	0.66	0.01	0.43	0.01
N105	0.66	0.03	nd	nd
S107	0.73	0.02	0.44	0.01
L108	0.47	0.03	0.52	0.03
Q109	0.74	0.03	0.55	0.02
Q110	0.82	0.02	0.5	0.02
D121	0.69	0.04	0.51	0.04
I124	0.69	0.03	0.64	0.03
N125	0.78	0.02	0.53	0.02
N126	0.88	0.01	0.45	0.01
T128	0.81	0.05	nd	nd
S129	nd	nd	0.51	0.02
L130	0.87	0.02	0.59	0.02
I131	0.81	0.01	0.66	0.01
H132	0.75	0.02	0.7	0.02
S133	0.85	0.03	0.59	0.02
L134	0.49	0.02	0.41	0.02
D153	0.84	0.03	0.56	0.03
V190	0.66	0.04	0.77	0.04
L191	0.78	0.01	0.61	0.01
S192	0.59	0.04	0.51	0.03
I193	0.71	0.04	0.61	0.04
V194	0.58	0.04	0.37	0.04

Supplemental References

Lakomek, N.A., Kaufman, J.D., Stahl, S.J., Louis, J.M., Grishaev, A., Wingfield, P.T., and Bax, A. (2013). Internal Dynamics of the Homotrimeric HIV-1 Viral Coat Protein gp41 on Multiple Time Scales. Angew Chem Int Edit *52*, 3911-3915.