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ANALYTICAL MODEL

The free energy of a semiflexible polymer can be expressed as -

F [~r(s)] =

∫ L

0

ds

((

boκ

2

)

∂t̂

∂s
· ∂t̂
∂s

+ g(s)t̂(s) · t̂(s)
)

(S1)

where L is the length of the polymer, bo is the thickness of the chain, κ is the bending rigidity, t̂(s) = ∂r̂
∂s is the

unit tangent vector to the chain at location s along the chain, ζ is the friction per unit length and g(s) is a Lagrange
multiplier preserving the local metric; g(s) has the interpretation of local tension, and is assumed to be independent
of time (though strictly this is not true).
The functional derivative δF/δ~r gives us the force on the chain. We perform a variation ~r(s) → ~r(s) + δ~r(s) and

obtain the forces due to bending and instretchability separately as shown below -

δFbending

δ~r(s)
≃ 2

∫ L

0

ds
∂2~r(s)

∂s2
· ∂

2δ~r(s)

∂s2

= 2

∫ L

0

ds
∂4~r(s)

∂s4
(S2)

where integration by parts was used and variations at the boundary neglected. Similarly the stretching term yields

δFstretching

δ~r(s)
= −2

∫ L

0

ds
∂

∂s

(

g(s, t)
∂~r(s, t)

∂s

)

(S3)

The overdamped equation of motion for the polymer can be written as

ζ
∂~r(s)

∂t
= −boκ

∂4~r

∂s4
+ 2

∂

∂s

(

g(s)
∂~r

∂s

)

+ ~fT (s, t) + ~F (s, t) (S4)

where ~fT (s, t) is the thermal noise and ~F (s, t) is the active noise. The equation is difficult to solve exactly. Various
methods such as gradient expansion have been used in the past to study the dynamics. We resort to a simple
approximation in which the tension g(s) along the chain is replaced by the mean tension g; the above equation then
simplifies to

ζ
∂~r(s)

∂t
= −boκ

∂4~r

∂s4
+ 2g

∂2~r

∂s2
+ ~fT (s, t) + ~F (s, t) (S5)

Following the treatment of Doi and Edwards [1] we introduce modes -

~Xp(t) =
1

L

∫ L

0

ds φp(s) ~r(s, t) (S6)

We want to choose φp(s) such that the modes evolve in time according to

ζp
∂ ~Xp

∂t
= −kp ~Xp(t) + ~fT,p(t) + ~Fp(t) (S7)
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ζp
∂ ~Xp

∂t
= ζp

∫ L

0

ds φp(s)
∂r(s, t)

∂s

=
ζp
ζ

∫ L

0

ds

(

−boκ
∂4~r

∂s4
+ 2g

∂2~r

∂s2
+ ~fT (s, t) + ~F (s, t)

)

(S8)

Consider the first integral term apart from the factor −κb0ζp/ζ -

∫ L

0

ds φp(s)
∂4~r

∂s4
=

[

φp(s)
∂3~r

∂s3

]L

0

−
[

∂φp(s)

∂s

∂2~r

∂s2

]L

0

+

[

∂2φp(s)

∂s2
∂~r

∂s

]L

0

+

[

∂3φp(s)

∂s3
~r

]L

0

+

∫ L

0

ds
∂4φp(s)

∂s4
~r(s, t) (S9)

using integration by parts.
Similarly apart from the factor 2gζp/ζ the second term -

∫ L

0

ds φp(s)
∂2~r

∂s2
=

[

φp(s)
∂~r

∂s

]L

0

−
[

∂φp(s)

∂s
~r(s)

]L

0

+

∫ L

0

ds
∂2φp(s)

∂s2
~r(s, t) (S10)

Provided we can neglect the boundary terms with appropriate boundary conditions, comparing with the desired
equation for mode evolution we get

κ b0
ζp
ζ

∂4φp(s)

∂s4
= 2g

∂2φp(s)

∂s2
+ kpφp(s) (S11)

Choosing φ = 1
L cos

(

πps
L

)

, Eq. (S11) is satisfied provided

kp = κ b0
ζp
ζ

(πp

L

)4

+ 2g
ζp
ζ

(πp

L

)2

= a p4 + b p2 (S12)

The noise terms become

~fTp(t) =
ζp
L ζ

∫ L

0

ds cos
(πps

L

)

~fT (s, t) (S13)

and

~Fp(t) =
ζp
L ζ

∫ L

0

ds cos
(πps

L

)

~F (s, t) (S14)

Since the thermal and the active noise occur as a sum, we shall treat them separately.

MSD FOR THE THERMAL NOISE

Thermal forces have zero mean and obey the fluctuation-dissipation theorem

〈fTα(s, t)fTβ(s
′, t′)〉 = 2KBTζ δαβδ(t− t′) δ(s− s′) (S15)

We choose ζp such that their Fourier counterparts also obey the same form of the fluctuation-dissipation theorem -

〈fTp,α(t)fTq,β(t
′)〉 = 2KBTζp δαβδ(t− t′) δpq (S16)
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The correlation function in the Fourier space is

〈fTp,α(t)fTq,β(t
′)〉 = ζpζq

L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

〈fTα(s, t)fTβ(s
′, t′)〉

=
ζpζq
L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

2KBTζ δαβδ(t− t′) δ(s− s′)

=
ζpζq
L2ζ2

2KBTζ δαβδ(t− t′)

∫ L

0

ds cos
(πps

L

)

cos
(πqs

L

)

=
ζpζq
L2ζ2

2KBTζ δαβδ(t− t′) δpq
(1 + δp,0)

2
(S17)

Demanding that the RHS in the last line of the above equation has the same form as the fluctuation dissipation
theorem, we have ζ0 = Lζ and ζp6=0 = 2Lζ.
First we calculate the MSD for the zero-th mode which corresponds to the centre-of-mass

~X0(t) =
1

L

∫ L

0

ds~r(s, t) (S18)

We have kp=0 = 0 and so the equation of motion of the zero-th mode is

ζ0
∂ ~X0(t)

∂t
= ~fT0(t) (S19)

The formal solution to the above equation is

~X0(t) =
1

ζ0

∫ t

−∞

dt′ ~fT0(t
′) (S20)

The MSD for the centre-of-mass is given by

( ~X0(t)− ~X0(0))
2 =

1

ζ20

∫ t

0

dt1

∫ t

0

dt2〈~fT0(t1) · ~fT0(t2)〉

=
1

ζ20

∫ t

0

dt1

∫ t

0

dt2 2 · 3 kBTζ0 δ(t− t′)

= 6kBT t/ζ0

= 6kBT t/(Lζ)

= 6kBT t/(Nγ)

= 6DCOMt (S21)

where DCOM = kBT/(Nγ) is the diffusion coefficient as expected for the centre of mass using the definition ζ = γ/b0
and L = Nbo.
Now we proceed to calculate the MSD for an arbitrary monomer of the chain. The solution to the equation of

motion (Eq.S10) is

~X0(t) =
exp(−kpt/ζp)

ζp

∫ t

−∞

dt′ exp(kpt
′/ζp) cos

(πps

L

)

~fTp(t
′) (S22)

Corresponding to the adopted choice of modes, the inverse transform is given by

~r(s, t) = ~X0(t) + 2

∞
∑

p=1

~Xp(t) (S23)

The MSD of an arbitrary monomer is given by

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM + 4

∞
∑

p=1

cos
(πps

L

)

〈( ~Xp(t)− ~Xp(0)) · ( ~X0(t)− ~X0(0))〉

+ 4

∞
∑

p=1

∞
∑

q=1

cos
(πps

L

)

cos
(πqs

L

)

〈( ~Xp(t)− ~Xp(0)) · ( ~Xq(t)− ~Xq(0))〉 (S24)
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The first term has already been evaluated and the second term is trivially seen to be zero using Eq.(S17). We
proceed to evaluate the last term which involves the evaluation of the following four terms -

〈 ~Xp(t) · ~Xq(t)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~fTp(t1) · ~fTq(t2)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 6ζpKBTδpqδ(t1 − t2)

=
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

) (S25)

The last term can be evaluated simply by setting t = 0 in the last eqation -

〈 ~Xp(0) · ~Xq(0)〉 =
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

) (S26)

The third and the fourth terms viz.〈 ~Xp(t) · ~Xq(t)〉 and 〈 ~Xq(t) · ~Xp(t)〉 have a p → q symmetry that will be exploited;
one of the terms will be calculated and the other will be obtained by interchanging p with q.

〈 ~Xp(t) · ~Xq(0)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~fTp(t1) · ~fTq(t2)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 6ζpKBTδpqδ(t1 − t2)

= exp(−kpt/ζp)
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

)

So the counterpart term is exp(−kqt/ζq)
6ζqKBTδpq

ζqζp
× 1

(

kp
ζp

+
kq
ζq

) .

Gathering all the above terms, we finally obtain

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM + 4
∞
∑

p=1

∞
∑

q=1

cos
(πqs

L

)

cos
(πps

L

) 1
(

kp

ζp
+

kq

ζq

)×

[

12ζpKBTδpq
ζpζq

− exp(−kpt/ζp)
6ζpKBTδpq

ζpζq
− exp(−kqt/ζq)

6ζqKBTδpq
ζqζp

]

= 24

∞
∑

p=1

cos2
(πps

L

) KBT (1− exp(−kpt/ζp))

kp
(S27)

RECOVERING WINKLER’S RESULT FOR THE ABOVE CHOICE OF MODES

Using Eq.(S23), we get the unit tangent vector to the polymer is given by

t̂(s, t) = −2
∞
∑

p=1

~Xp(t)
(pπ

L

)

sin
(pπs

L

)

(S28)
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The equal time tangent-tangent correlation is given by

〈t̂(s) · t̂(s′)〉 = 4

∞
∑

p,q=1

(π

L

)2

pq sin
(pπs

L

)

sin

(

qπs′

L

)

〈 ~Xp(t) · ~Xq(t)〉

= 4
∞
∑

p,q=1

(π

L

)2

pq sin
(pπs

L

)

sin

(

qπs′

L

)

6ζpKBTδpq
ζpζq

× 1
(

kp

ζp
+

kq

ζq

)

≃ 12
(π

L

)2

KBT

∫ ∞

0

dp p2/kp sin
(pπs

L

)

sin

(

pπs′

L

)

= 12
(π

L

)2

KBT

∫ ∞

0

dp p2/(a p4 + b p2) sin
(pπs

L

)

sin

(

pπs′

L

)

= 12KbT
(π

L

)2

π/(4
√

(ab) exp(−
√

(b/a)(π/L) |s− s′|) (S29)

where Eq(S25) has been used. Since the denominator in the exponent should give us the persistent length Lp and the
correlation function of two unit vectors can at most be unity in magnitude, we demand, using the definitions of a and
b (See Eq.(S12)),

√
2κb0g = 3KBT/2 and

√

(2g/κb0) = 1/Lp. This gives us 2g = 3KBT/2Lp and κb0 = 3KBTLp/2.
This is a result familiar from the work of Winkler and co-workers and this self-consistent determination establishes
the efficacy of our simple model.

DYNAMICS WITH ACTIVE NOISE

Derivation of the MSD for the centre of mass and an arbitrary monomer basically proceeds along similar lines as
above; the only additional ingredient is the correlations of the active forces. We assume, contrary to earlier studies by
Liverpool that the average of the active force is zero. This is not artificial because in the simulations that we perform,
the active forces act in the direction of the local normal to the polymer. The azimuthal symmetry about the axis of
the filament (assumed stiff) justifies the above assumption though the average in the longitudinal direction need not
be zero because of the polarity of the track. The active forces do not obey the fluctuation-dissipation theorem and
the active force correlations are given by

〈~F (s, t) · ~F (s′, t′)〉 = C exp(−|t− t′|/τ) δ(s− s′) (S30)

The prefactor is not dependent on ambient temperature and friction; it is expressed as C = F 2pon/bo where F (s, t)
is the magnitude of the active force, τ is the time period of motor activity and pon is the probability for a single motor
to remain active. The correlation function in the Fourier space is

〈~Fp(t) · ~Fq(t
′)〉 = ζpζq

L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

〈~F (s, t) · ~F (s′, t′)〉

=
ζpζq
L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

C exp(−|t− t′|/τ) δ(s− s′)

= C
ζpζq
L2ζ2

δαβ exp(−|t− t′|/τ)δpq(1 + δp,0)L/2 (S31)

First we evaluate the MSD for the centre of mass. As before the MSD for the centre-of-mass is given by

( ~X0(t)− ~X0(0))
2 =

1

ζ20

∫ t

0

dt1

∫ t

0

dt2〈~F0(t1) · ~F0(t2)〉

=
1

ζ20

∫ t

0

dt1

∫ t

0

dt2LC exp(−|t− t′|/τ)

=
2Cτ

Lζ2
(t+ τ(exp[−t/τ ]− 1)) (S32)

For t ≪ τ , the exponential can be expanded and we get

( ~X0(t)− ~X0(0))
2 =

C

Lζ2
t2

= N(
F

Nγ
)2 t2 (S33)
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which offers the scope of defining an active velocity vactiv ∼
√
N (F/(Nγ))

The general solution for the active modes can be written as

~X0(t) =
exp(−kpt/ζp)

ζp

∫ t

−∞

dt′ exp(kpt
′/ζp) ~Fp(t

′) (S34)

As before the MSD for an arbitrary monomer is evaluated using the same structure as Eq.(S24). For active noise,
evaluation of the different terms proceeds as follows. First term in the summation -

〈 ~Xp(t) · ~Xq(t)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1)/ζp exp(kqt2)/ζq 〈~Fp(t1) · ~Fq(t2)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1)/ζp exp(kqt2)/ζq C
ζpζq
L2ζ2

exp(−|t− t′|/τ)δpq
L

2

=
Cδpq
2Lζ2

× 1
(

kp

ζp
+

kq

ζq

) ×





1
(

kp

ζp
+ 1

τ

) +
1

(

kq

ζq
+ 1

τ

)



 (S35)

The last term in the summation is the same as above using similar arguements as with the thermal noise.
Let us evaluate the second term and the third term will follow from p → q symmetry.
The second term -

〈 ~Xp(t) · ~Xq(0)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~Fp(t1) · ~Fq(t2)〉

= C δpq
exp(−kpt/ζp)

2Lζ2

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) exp(−|t− t′|/τ)

= exp(−kpt

ζp
)
Cδpq
2Lζ2

×





(exp(kp/ζp − 1/τ)t− 1)
((

kp

ζp
− 1

τ

)

+
(

kq

ζq
+ 1

τ

)) +
1

(

kp

ζp
+

kq

ζq

) ×





1
(

kp

ζp
+ 1

τ

) +
1

(

kq

ζq
+ 1

τ

)









Finally we gather all the terms to get

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM

+4C/(Lζ2)

∞
∑

p=1

cos2(πps/L) (T 1 + T 2) (S36)

where

T 1 = (1− exp(−kpt/ζp))/

(

kp
ζp

(

kp
ζp

+
1

τ

))

(S37)

and

T 2 = (exp(−t/τ)− exp(−kpt/ζp))/

(

(

kp
ζp

)2

−
(

1

τ

)2
)

(S38)

ESTIMATE OF THE CROSSOVER TIME

As seen from Fig.(2) of the main text, very small times are thermal noise dominated and there is a crossover time
for the system to be adequately excited by the active noise. By comparing the MSD terms (thermal and active) for
the first mode, we make an approximate estimate of the crossover time tc as follows -
We expand the exponentials in the corresponding expressions Eqs.(S27 and S35) to get

24KBT

kp
(kpt/ζp − k2pt

2/2ζ2p) =
4C

Lζ2
1

1 + kpτ/ζp
t2/2 (S39)
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After some algebra, we get

6KBTζ

C
(1− tkp/2ζp) = t/(1 + kpτ/ζp) (S40)

This can be simplified to yield

tc =
1

C
6KBTζ(kpτ/ζp+1) +

kp

2ζp

(S41)

In the higly overdamped case where kpτ/ζp is small, the crossover time tc ∼ 6KBTζ
C . In a somewhat intuitive way,

the same result can be obtained as follows - for the thermal motion 〈r2〉 ∼ 6Dt and for the active motion for t ≪ τ ,
〈r2〉 ∼ (Ft/γ)2. Equating the two, one gets tc ∼ 6D/(F/γ)2.

VELOCITY FLUCTUATIONS OF THE CENTRE OF MASS

The overdamped equation for the centre of mass is given by

M
dv

dt
= −Nγv + f + F (S42)

Fourier transforming and conjugating, we get

〈ṽ2〉 = 1

M

〈f̃2〉+ 〈F̃ 2〉
(γ/m)2 + ω2

(S43)

where M is the total mass of the polymer and m is the mass of a segment of the polyer. For thermal noise 〈f̃2〉 =
NγKBT/π. For active noise

〈f̃2(ω)〉 =
(

NF 2

2πbo

)∫ ∞

−∞

dt exp(iωt) exp(−|t|/τ)

=

(

NF 2

2πbo

)

(

∫ 0

−∞

dt exp(−iωt) exp(t/τ) +

∫ ∞

0

dt exp(−iωt) exp(−t/τ))

=

(

NF 2

πbo

)

Re(

∫ ∞

0

dt exp(−iωt) exp(−|t|/τ))

=

(

NF 2

πbo

)

τ

(1 + (ωτ)2)

Integrating over all frequencies, we get

〈ṽ2〉 = KBT/M +
N

bo

F 2

(Nγ)2
1

1 +mγ/τ
(S44)

The first term corresponds to the equipartition theorem while the second term represents the active contribution.

AUTOCORRELATION FUNCTIONS FOR PURELY TANGENTIAL FORCES

Simulations performed with tagential active forces also show similar stabilisation of bending mode in resonance with
active forces as shown below (Fig.S1). However the effect is less pronounced as compared to purely normal active
forces and for shorter filaments.

ATUOCORRELATION FUNCTIONS FOR PURLEY NORMAL FORCES FOR L ∼ Lp

We performed simulations with a chain of length L = 100.0 and Lp = 100.0 and found the resonance effect to be
present (Fig.S2); the qualitative features look very much the same as for the case L < Lp.
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(a)
(b)

FIG. S1: Tangent-tangent autocorrelation functions for magnitudes of tangential active forces = 0.0 (black), 90.0 (red), 130.0
(green), 170.0 (blue) and 200.0 (orange) for two different chain lengths L = 25, 100 (left and right panel respectively), Lp = 250.0.
The bending resonance effect is present for tangential active forces also. For shorter filaments, the effect is less pronounced as
they effectively are more stiff and hence more difficult to bend. Tangential forces on nearby beads effectively add up to point
in the local normal direction because of curvature of the polymer.

FIG. S2: Equal time tangent autocorrelation function for Lp = 100.0 and chain length L = 100.0 for magnitudes of active
forces Fa = 0.0, 90.0, 130.0, 170.0 and 200.0 from top down. The resonance-like effect is found to be persist in this regime.

AUTOCORRELATION FUNCTION WITH CORRELATIONS MEASURED FROM THE END OF THE

CHAIN

We show below the results for measurement of the tangent-tangent autocorrelation function measured from one
end of a polymer chain of length L = 100 and κ = 250.0. The results have been discussed in the context of Fig.(3b)
of the main text.

0 20 40 60 80 100
s

0

0.2

0.4

0.6

0.8

1

<
t(

s)
.t(

0)
>

FIG. S3: The tangent-tangent autocorrelation function measured from one end of the polymer with κ = 250.0 and contour
length L = 100.0 for different values of the active forces F = 0.0, 90.0, 130.0, 170.0 and 200.0 (from top down).
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