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Dynamics of Active Semiflexible Polymers
A. Ghosh1 and N. S. Gov1,*
1Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel
ABSTRACT Active fluctuations, driven by processes that consume ATP, are prevalent in living cells and are mostly driven by
different forms of molecular motors. Such motors often move and transmit forces along biopolymers, which in general can be
treated as semiflexible chains. We present a theoretical analysis of the active (out of thermal equilibrium) fluctuation of semiflex-
ible polymers, using both analytical and simulation methods. We find that enhanced diffusion, even superdiffusive, occurs in a
well-defined temporal regime, defined by the thermal modes of the chain and the typical timescale of the activity. In addition, we
find a dynamic resonance-like condition between the elastic modes of the chain and the duration of the active force, which leads
to enhanced spatial correlation of local displacements. These results are in qualitative agreement with observations of cytoskel-
etal biopolymers, and were recently observed for the dynamics of chromatin in interphase cells. We therefore propose that the
interplay between elasticity and activity is driving long-range correlations in our model system, and may also be manifest inside
living cells.
INTRODUCTION
In recent years, active systems have spawned a lot of interest
among researchers in different fields. Active systems have
components that utilize chemical energy to perform work
and are away from equilibrium, although they may exhibit
nonequilibrium steady states. Active processes in cell
biology have been a field of vigorous research activity.
One of the most striking examples of active cellular process
is the utilization of chemical energy by motor proteins that
interact with filamentous biopolymers (1,2). Examples
include the contractile forces produced by myosin-II motors
within the actin cytoskeleton, both in actin myosin gels and
inside living cells (3–5). Another biopolymer is the DNA,
and there is growing interest in its dynamics inside the nu-
cleus of both eukaryotes (6–8) and in bacteria (9,10), which
seem to be actively driven by processes that consume ATP
and affect the overall organization and expression of the
genome (11–13). However, the exact process of energy
transduction on the DNA remains unclear (14). A detailed
recent study (15) has found evidence for long-range coher-
ence in the active motion of the chromatin, which seems to
be driven by the activity.

Motivated by these experimental studies of active motion,
we study the active dynamics of a single semiflexible poly-
mer in solution. We model the activity by stochastic forces
that are exerted in the direction of the local normal, and with
random orientation (we also investigate the effects of
applying tangential active forces; see the Supporting Mate-
rial). The active force is characterized by a fixed magnitude
(Fa) and a temporal duration (t), such that it is a colored-
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noise, violating the fluctuation-dissipation theorem (16).
We implement a minimal model for the active shot-noise
(16,17), which has only two free parameters: its amplitude,
and its burst timescale. We show below that the critical
component distinguishing this noise from thermal, is the
finite timescale. These properties give a coarse-grained
description of the activity, for example of the myosin-
induced contractility in the actin-myosin network. In the
case of DNA transcription this description of the activity
represents, in a coarse-grained manner, the complex pro-
cesses of histone remodeling, DNA unwrapping, supercoil-
ing, and RNA production that accompany the activity of
transcription compartments (or transcription factories)
(18,19). We do not include hydrodynamic interactions in
this study; without these interactions, we already find appar-
ently novel behavior that is easier to investigate in a simpler
description. In addition, the densely packed polymer inside
the chromatin, or in actin-myosin gels, may diminish long-
range hydrodynamic interactions.

From the theoretical side, our study is somewhat comple-
mentary to an earlier work (17) in that here the active effects
are primarily transverse- and fluctuation-dominated. Several
theoretical works that are related to ours include Loi et al.
(20,21), who had studied the effective temperature of active
polymers, and Jiang and Hou (22), who had studied the ef-
fects of hydrodynamic interactions. In Liverpool et al. (23),
Laskar et al. (24), and Jayaraman et al. (25), the directional
drift of a polymer driven by directed active forces was stud-
ied, whereas we are interested here in the effects of active
noise with zero mean. The motion of a filament embedded
in an active gel was studied in Kukuchi et al. (26), whereas
we examine the motion of an active polymer embedded in a
passive background. In the active-gel case, there are
http://dx.doi.org/10.1016/j.bpj.2014.07.034
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additional length-scales arising from the range of coherent
flows generated spontaneously, and these do not apply to
our system. Most recently, a continuum description for the
activity in the chromatin was suggested (27), which is
very different and somewhat complimentary to our micro-
scopic study.

We find several apparently new properties of the active
polymer, such as a temporal regime where the motion of
the segments follow a superdiffusive behavior. More strik-
ingly, we find that the interplay between activity and the
elasticity of the polymer leads to a resonance-like condition,
whereby the activity stabilizes bending modes that have
relaxation times of the order of the duration of the active
bursts. We compare our results to experimental observations
and in particular, we find that our work suggests a possible
mechanism that can account for the puzzling correlations
found in interphase chromatin motion (15).
THEORETICAL MODEL AND ANALYTICAL
CALCULATIONS

Most biopolymers are semiflexible in nature (2), and we
therefore model them as wormlike chains, which are un-
stretchable (i.e., the local metric is preserved) and resist
bending. We treat a single, free semiflexible chain
embedded in a viscous medium. We use the approximation
of local friction, thereby neglecting long-range hydrody-
namic interactions. This should be a good description in
the regime of a highly dense environment, such as exists
in the cytoskeletal network and for chromatin inside the
nucleus (or inside bacteria). In addition, we neglect elastic
forces that may trap the chain, by treating it as freely
moving in space. For the case of chromatin, therefore, we
do not describe the very short timescales (t % 1 s) where
it is found to be elastically localized (28).

In the continuum model, the free energy of the chain can
be written as (29)

F½~rðsÞ� ¼
Z L

0

ds

�
1

2
bok

vbt
vs

,
vbt
vs

þ gðsÞbtðsÞ ,btðsÞ�; (1)

where L is the length of the polymer, b0 is the thickness of
the chain, k is the bending rigidity,

btðsÞ ¼ vbr
vs

is the unit tangent vector to the chain at location s along the
chain, and g(s) is a Lagrange multiplier preserving the local
metric; g(s) has the interpretation of tension, and is assumed
to be independent of time (although this is not strictly true).
Defining z to be the friction g per unit length (also b0) and
~f sðtÞ to be the noise, the equation of motion for the segment
at location s may be written as
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z
v~rðsÞ
vt

¼ �bok
v4~r

vs4
þ 2

v

vs

�
gðsÞ v~r

vs

�
þ~f ðs; tÞ: (2)

Equation 2 is difficult to solve exactly. Various methods
such as gradient expansion have been used in the past to
study the dynamics (17). We resort to a simple approxima-
tion in which the tension g(s) along the chain is replaced by
the mean tension g; Eq. 2 then simplifies to

z
v~rðsÞ
vt

¼ �bok
v4~r

vs4
þ 2g

v2~r

vs2
þ~f ðs; tÞ: (3)

This equation, being linear, is amenable to Fourier mode
analysis (30) as

~rðs; tÞ ¼ ~X0ðtÞ þ 2
XN
p¼ 1

~XpðtÞcosðpps=LÞ: (4)

The inverse transform is given by

~XpðtÞ ¼ ð1=LÞ
Z L

0

ds cosðpps=LÞ~rðs; tÞ: (5)

Note that the trigonometric basis functions give errors near

the chain ends, of order 1/L (31), and therefore are
commonly used (17). In terms of modes, the equation of mo-
tion, Eq. 2, takes the form

zp
v~Xp

vt
¼ �kp~XpðtÞ þ~f pðtÞ; (6)

where
~f pðtÞ ¼ �
zp
�
Lz
� Z L

0

ds cosðpps=LÞ~f ðs; tÞ: (7)

The factor is

kp ¼ ap4 þ bp2;

where

a ¼ kb0
�
zp=z

�ðp=LÞ4;
b ¼ 2g

�
zp=z

�ðp=LÞ2;

and

zp¼ 0 ¼ Lz; zps0 ¼ 2Lz:

The motion of the polymer due to purely thermal fluctua-
tions is calculated in the Supporting Material (Fig. 1 a),
where we recover the well-known result that the mean-
square displacement (MSD) exponent a, hr2i h Defft

a, at
short times is a ¼ 3/4 (32) (Fig. 2 a).
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FIGURE 1 (a) MSD-s of the COM (black, simulations; red, theory) and

the middle bead (green, simulations; blue, theory) in the absence of active

forces. (Inset) MSD-s for the COM (same color code) when an active force

of magnitude F ¼ 200 is applied in the direction of the local normal to the

polymer; L ¼ 25 and t ¼ 1 were used. (b) Exponents for the MSD-s of the

middle bead obtained from the analytical theory for active forces of magni-

tude 0.0 (black), 50.0 (red), 90.0 (green), 130.0 (blue), 170.0 (dark green),

200.0 (cyan) and 1000.0 (brown); using t¼ 1.0, L¼ 25. The crossover time

tc (Eq. 15) for Fa ¼ 1000.0 is denoted by the red dashed vertical line, while

the burst time t is denoted by the vertical dashed black line. To see this

figure in color, go online.
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b

FIGURE 2 (a) Time evolution of the exponent a from the analytical the-

ory for the middle bead of the polymer for purely thermal excitation (black),

and in the presence of applied active forces Fa ¼ 50, 90, 130, 170, and 200

(red, green, blue, dark green, and cyan, respectively); forFa¼ 1000 (brown);

and the corresponding tc (vertical dashed brown line; see Eq. 15). The

active peak is seen to shift to smaller times with increasing magnitude of

the active forces, in accordancewith Eq. 15. (Horizontal black, dashed lines)

Values 3/4 and 1. (b) Plot of the time evolution of the MSD exponents

obtained from simulations (solid lines) for different values of active forces

Fa ¼ 0, 50, 90, 130, 170, and 200 (black, red, green, blue, dark green,

and cyan, respectively). Horizontal dashed lines denote the values of 3/4

and 1. Vertical dashed lines denote: (Black) t and (red) tc for Fa ¼ 50. The

values L ¼ 25, t ¼ 1 were used. To see this figure in color, go online.
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We now consider the effect of active noise, which we
model as an exponentially correlated colored noise (33).
This describes the force exerted on the biopolymer by the
active motors (16)

hFaðs; tÞFbðs0; t0Þi ¼ Cdðs� s0Þexp½ � jt � t0j=t�dab; (8)
where t is the average timescale for the burst of motor activ-

ity. The prefactor C is the noise-strength measurement,
which involves the strength of the kicks imparted by the mo-
tors walking on the polymer and the probability for a single
motor to be active (16). By dimensional analysis, it can be
seen that C can be expressed as a product of z and a factor
that has the dimensions of power. It can be interpreted as the
rate of consumption of chemical energy by the motor, and is
proportional to the square of the amplitude of the active
forces C f Fa

2. We express C ¼ ponFa
2/b0, where pon is

the probability for a motor to be active. In terms of modes,
we have
�
FpaðtÞFq;bðt0Þ

� ¼ LCzpzq
�ðLzÞ2exp½ � jt � t0j=t�

� dab
�
1þ dp;0

�
dpq:

(9)

The active diffusion of the center of mass (COM) is given
by (inset of Fig. 1 a)D�

~X0ðtÞ �~X0ð0Þ
�2E ¼ 2Ct

Lz2
ðt þ tðexp½�t=t � 1�ÞÞ: (10)

For t << t, by expanding the exponential we get
D�
~X0ðtÞ �~X0ð0Þ

�2E ¼ N

�
Fa

Ng

�2

t2; (11)

where N ¼ L/b0 is the number of beads along the chain. The

right-hand side of Eq. 11 can be interpreted as the active ve-
locity of the COM, i.e.,

va;COM ¼
ffiffiffiffi
N

p
Fa=ðNgÞ:
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The evaluation of the MSD for an arbitrary segment of the
polymer diffusing under active noise is considerably
involved (see the Supporting Material). The result is

�ð~rðs; tÞ �~rðs; 0ÞÞ2� ¼ Tcm þ 4C

Lz2

XN
p¼ 1

cos2ðpps=LÞ

� ðT1� T2Þ;
(12)

where Tcm is the COM term for active diffusion,

T1 ¼ �
1� exp


�kpt
�
zp
����

kp
�
zp
�
kp
�
zp þ 1

�
t
��

(13)

and
T2 ¼ �
exp½�t=t� � exp


�kpt
�
zp
��.��

kp
�
zp
�2

� ð1=tÞ2

: (14)

We use Eqs. 12–14 to evaluate numerically the MSD of the

middle bead of the chain and the corresponding exponent a
as a function of the time (Fig. 2). From the model, we can
identify two different crossover times:

1. At times longer than the burst duration t, the MSD ap-
proaches the behavior of random diffusion a / 1.

2. The MSD is dominated by thermal fluctuations for very
short times.

We can then estimate the crossover timescale above which
the active fluctuations begin to dominate, by equating the
contributions of the thermal and active components to the
MSD of the first mode as

tcx
6kBTz

C
� Dseg

v2a
; (15)

where Dseg ¼ kBT/g is the thermal diffusion coefficient of a
polymer segment and va ¼ ponFa/z is the active transverse
velocity scale of a single polymer segment. This approxi-
mate form is valid in the limit of large damping and tkp/
zp << 1 (see the Supporting Material). The crossover
time is indicated by a dashed vertical line in Fig. 2 a, and
it agrees quite well with the calculated behavior.
SIMULATION RESULTS

Simulation method

We carried out extensive simulations to test the predictions
of our simple analytical model and to go beyond it. We have
simulated the dynamics of a semiflexible polymer in solu-
tion, where the polymer is modeled as a chain of connected
beads that are subjected to the following interactions: The
potential between neighboring beads

Vbonded ¼ ðj~riþ1 �~rij � boÞ2
�
2K (16)
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accounts for the nearest neighbor or bonded interactions.
The spring constant K was set to a very high value to ensure
the condition of inextensibility (a standard method em-
ployed extensively in the literature (34,35)). Bond-length
fluctuations were monitored during the simulation of the dy-
namics, and were always found to be a negligible (<1%)
fraction of the equilibrium separation bo at the temperatures
and active forces involved. Here

Vself-avoidance ¼ 4e

 �
s

r

�12

�
�
s

r

�6
!

þ e (17)

if the separation distance r between any two beads is<21/6s;

which takes care of self-avoidance and prevents distant parts
of the chain from crossing each other if they come too close,
although such a situation almost never arises in our simula-
tions because of the strictly semiflexible regime (L < Lp)
that we explore.

Finally, the bending rigidity between adjacent bonds is
implemented through the potential,

Vbonded ¼ 1

2
kq2j ; (18)

where qj is the angle between the bond vectors j and j þ 1.

Calculation of the bending forces involves relatively
involved calculations that can be found in Allison (34).

The simulation procedure involved a two-step process:

Step 1: Initialization of polymer conformations, and
Step 2: Obtaining bead velocities using Monte Carlo

methods (and, subsequently, an implementation of
the dynamics).
Monte Carlo initialization

The Monte Carlo conformation initialization procedure was
carried out as follows:

The first bead was positioned at some arbitrarily fixed
origin, and the subsequent beads were placed at a mean sep-
aration of bo from each other, with fluctuations in bond
lengths given by the equipartition theorem for the bonded
harmonic potential described in Eq. 16; the angles between
the subsequent bonds were chosen using the equipartition
theorem for the bending potential described in Eq. 18.
Because semiflexible polymers of contour length less than
the persistence length are anisotropic, the longitudinal di-
rection was set along the x axis without loss of generality.
Several tests were performed to test that the equilibrium
properties of semiflexible polymers (end-to-end distance
for different chain lengths, estimation of the persistence
length from the tangent-tangent correlations, etc.) could
be obtained with high degree of accuracy from the confor-
mations thus generated. The velocities of the beads
were initialized according to the Maxwell-Boltzmann distri-
bution at the chosen temperature. We have neglected
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hydrodynamic interaction in our simulations; implementa-
tion of hydrodynamic interactions would be a natural exten-
sion of this work.
Simulation of dynamics

The active forces were generated as a time series of pulses
for each of the beads. For the purely thermal simulations,
the magnitude of the pulses were set to zero. These active
pulses act on the beads along the direction of the local
normal to the polymer turning on and off, stochastically.
The pulses are treated as an external force while integrating
the equations of motion; this is justified because the duration
of the on- and off-periods are set as considerably larger than
the integration time step, thus minimizing numerical errors.
The integration scheme used is a standard procedure for
simulating Brownian dynamics and can be found in Ermak
and Buckholz (36). The results obtained from simulations
were checked for zero active forces in the existing literature,
and the agreement was excellent in all the cases, thus estab-
lishing the credibility of the simulation procedure beyond
doubt. Unless otherwise mentioned, the parameters used
in the simulations were set at the following values: ambient
temperature T¼ 1, ambient friction x¼ 100, pon ~ 1, bo¼ 1,
and k ¼ 375 / Lp ¼ 250.
MSD

In Fig. 1 a, we show the MSD-s with purely thermal fluctu-
ations (COM and middle bead) and with active noise (COM,
inset). In the thermal case, the MSD for the COM shows per-
fect agreement with theoretical result, whereas that of the
middle bead shows a small deviation. This deviation is
most probably due to nonlinearity of the tension, which
our simple analytical model does not incorporate.

The discrepancy in the MSD of the COM for the case of
active noise (inset of Fig. 1 a) results from a small overesti-
mation of the mean-square velocity hv2c.o.m.i for the active
polymer, as shown in Fig. 1 b (as a function of Fa). The sim-
ulations give a quadratic dependence on Fa, in agreement
with the analytic expression of the COM mean-square
velocity (details in the Supporting Material),

�
v2COM

� ¼ kBT

M
þ v2a;COM

pon
1þ m=ðgtÞ; (19)

where va,COM ¼ Fa/(Ng), M ¼ Nm, and m is the mass of a
polymer segment. Note that for our choice of parameters
(m ¼ 1, g ¼ 100), the t-dependent term in Eq. 19 is
negligible.

The velocity distribution of a segment is found to be
Gaussian (Fig. 1 b, inset), wider than the thermal distribu-
tion due to the active forces. Because the activity is distrib-
uted along the chain, we have the effect of N >> 1 active
centers, thereby resulting in a Gaussian distribution (16).
MSD exponent a

In Fig. 2 b, we show the simulated time evolution of the
MSD exponent for the middle bead of the chain (solid lines)
and theory (dashed lines). Several distinct regimes can be
clearly identified: for very short times, there is a subdiffu-
sive regime, exponent a ~ 3/4, as is well known for semiflex-
ible polymers (32). At longer times, we find a superdiffusive
regime due to active excitation, followed by a gradual evo-
lution to the diffusive regime for very long times. The over-
all agreement between the simulations and the analytic
calculation (Fig. 2, a and b) is very good. For example,
we note that the crossover to the superdiffusive regime hap-
pens at earlier times (indicated by the position of the
activity-induced peak) for higher values of the active forces,
as expected from our estimate of the crossover time, derived
in Eq. 15. In the simulations, we were limited to smaller
values of the active forces to avoid numerical instabilities.
The analytical calculation seems to overestimate the expo-
nent systematically; the overall qualitative agreement, how-
ever, is good.
Directional correlations

Semiflexible polymers are characterized by a persistence
length that is the length along the polymer over which the
tangent-tangent correlations decay. In Fig. 3 a, we plot the
tangent-tangent correlations obtained from simulations,
measured from the middle of the polymer. For purely ther-
mal noise, we find that the simulations agree with the theo-
retical calculation of an exponential decay

Ct ¼ hbtðsÞ ,btðs0Þi ¼ exp

� ��s� s0

���Lp

�
; (20)

where Lp ¼ 2kb0/(3kBT) is the persistence length of the
polymer (37) (see details in the Supporting Material).

When the active forces are present, we find that the cor-
relations decay faster (Fig. 3 a), but level off beyond a
length-scale denoted by Lc, until the decay resumes at
longer lengths. We fit the initial (and final) fast decay by
an exponential form (Eq. 20), and find the corresponding
effective persistence length Lp,eff from which we extract
an effective temperature:

kBTeff ¼ 2kb0
��

3Lp;eff

�
:

Because we find that Lp > Lp,eff, we also get that Teff > T.
In Fig. 3 b, we plot the values of Teff from the simulation,
as a function of the active force, and compare to the mean
kinetic and bending energy of the polymer segments. Both
increase quadratically with Fa, as is expected from the
contribution of the active noise to the energy (Eq. 19, and
Ben-Isaac et al. (16)). However, there is a huge difference
in magnitude between the mean kinetic and bending en-
ergies. We therefore conclude that the main contribution
Biophysical Journal 107(5) 1065–1073
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FIGURE 3 (a) Decay of tangent-tangent auto-

correlation function, measured from the middle

of the chain, for different magnitudes of active

forces Fa ¼ 0, 90, 130, 170, and 200 (black, red,

green, blue, and orange, respectively), chain length

L¼ 100, Lp¼ 250, and t¼ 1. (Brown) Exponential

fit, according to Eq. 20, yields excellent agreement

for the value of the persistence length (Lp) for the

purely thermal case (Fa ¼ 0). (Pink lines) Fit of

the decay, for both short- and long ranges, to the

same exponential form, for the correlations in the

presence of active forces, thereby yielding Lp,eff.

(Vertical dashed line) Length-scale of the onset

of the plateau in the correlations. (Inset)

Ensemble-averaged bending angles for different

bonds along the chain. (b) Comparison of the effec-

tive temperatures (Teff) obtained from the exponen-

tial fits of the decay of the orientational

correlations from the middle bead, as shown in

panel a (red, short range; green, long range).

Mean bending energy (black) averaged over all

the bonds and mean kinetic energy (lower dashed

lines) associated with the components of velocities

of the middle bead. (Inset) A typical conformation of the chain that provides visual evidence for the results shown in panel a (inset). (Pink symbols) Higher

Teff (and shorter persistence length) when the orientations are measured with respect to the end of the polymer, and compared to the mean bending energy of

the first seven beads of the chain (orange line). (c) Orientational correlations calculated for polymer of different bending modulus k; (inset) length-scale of the

resonance increases as lc f k1/4 (see Eq. 21). (d) As in panel c, we plot for different values of t ¼ 0.1, 0.5, 1, and 2 (top to bottom), showing (inset) that the

length-scale of the resonance (extracted from a spline fit to the maximum of the plateau) increases in rough agreement with the predicted behavior as lcf t1/4

(see Eq. 21). To see this figure in color, go online.
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to the large Teff comes from the energy stored in the bending
modes of the polymer, excited by the active forces (see
example configuration in the inset of Fig. 3 b). This situation
is unlike thermal equilibrium where the kinetic and potential
energies are equal. The case of purely tangential forces is
given in the Supporting Material, and although it is qualita-
tively similar, it exhibits lower values of Teff due to the
weaker bending (see Fig. S1 in the Supporting Material).
Note that the ends of the polymer tend to develop larger
bending (inset of Fig. 3 a), as manifested by the shorter
persistence lengths (higher Teff) for the tangent-tangent cor-
relations measured from the end of the polymer (Fig. 3 b,
and see Fig. S3).

For nonzero active forces, we find an interesting interme-
diate region where the correlations decay much more slowly
or have a plateau (Fig. 3 a, sometimes even showing a peak
in Fig. 3 c), separating the two regions of exponential decay,
which are described above by Lp,eff. This seems to imply sta-
bilization of a bending mode (or rather a band of bending
modes) in a form of resonance with the timescale of motor
activity. We can estimate the length-scale for this resonance,
by equating the motor activity timescale with the relaxation
time of the bending modes of the chain

kp=zp ¼ 1=t0lc ¼ L=p ¼ pðkb0t=zÞ1=4: (21)

For the parameters used in Fig. 3 a, we get lc/b0 ~ 4.4, which
is of the order of the length at which we find the onset of the
plateau (denoted by the vertical dashed line in Fig. 3 a).
Biophysical Journal 107(5) 1065–1073
Using Eq. 21, we predict a particular dependence of this
length-scale on the bending modulus (k, Fig. 3 c) and the
mean burst duration (t, Fig. 3 d), which we indeed find in
the simulations. Note that because the activity excites
many modes, the condition of the single mode resonance
given by Eq. 21 is an approximation. We find that the regime
of Lp ~ L exhibits a very similar resonance (see Fig. S2).
DISCUSSION AND COMPARISON TO
EXPERIMENTS

We now compare the results of our model to experimental
observations. The most trivial result, that activity increases
the MSD of the chain, is borne out by our model, as is
observed in chromatin under different conditions (6–
9,15,28), and for cytoskeletal networks of actin-myosin
(3). Next, we wish to compare our prediction about the
regime of larger-than-thermal MSD exponent a. In chro-
matin there are indications for activity giving rise to expo-
nents that are superdiffusive i.e., a > 1, in a certain
temporal regime (6,7,15,38,39), as we predict. A similar
superdiffusive regime was found in simulations (40) and ex-
periments (41) of active two-dimensional biopolymer gels.

We next compare the shape correlations along the chain,
arising from the activity. We find that the activity-driven
deformation of the chain leads to a smaller effective persis-
tence length Lp,eff, as was previously found theoretically
(17), and experimentally (5). In Zidovska et al. (15), the
displacement correlations, denoted by Cd(Dr, Dt), were
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quantified. We calculated this correlation function in an
active chain, as a function of Dr for different values of Dt
(Fig. 4 a). As we see, the long bursts of activity induce
longer range spatial correlations compared to short pulses
and purely thermal fluctuations. The typical length-scale
for the decay of correlations is extracted by an exponential
fit, in the small Dr regime:

CdðDr;DtÞ � expð � Dr=xðDtÞÞ

(Fig. 4 a). We find that x increases with the temporal win-
dow Dt (Fig. 4 b), and reaches a maximal value at a plateau
(or maybe even a small peak), for Dt of order t.

This maximal value of the correlation length x of the
displacement correlations Cd (Fig. 4 b) is found to be very
similar to the length-scale of the onset of the plateau we
found in the tangent-tangent correlations (Ct, Fig. 3 a).
We therefore conclude that these two length-scales have
the same order of magnitude and are determined by the
same resonance-like condition (Eq. 21), i.e.: max(x) ~
O(lc). In Fig. 4, c and d, we demonstrate that this relation
between x and lc is indeed borne out by the dependence
of x on the bending modulus and its independence of the
magnitude of the active force Fa, exactly as lc behaves ac-
cording to Eq. 21.

This leads us to propose that the increased displacement
correlations seen in experiments (15) indeed arise from
the resonance-like condition of the elastic modes of the
chromatin and the timescale of the active forces. Comparing
the findings of our model (shown in Fig. 4 b) to the experi-
mental observations (see Fig. 2G in Zidovska et al. (15)), we
conclude that the typical timescale for activity in the cell is t
~ 5–10 s. Using the relation that we propose between max(x)
a b

c d
and lc, we can use Eq. 21 and the measured values of the
relevant parameters to check for overall consistency. The
effective bending modulus of chromatin is kb0 x 10�22 �
10�23 Nm2 (42), the effective viscosity of chromatin is z ~
105zwater ~ 102 Pa-s (43), and our estimate of t is ~10 s.
Using these values in Eq. 21, we get lc ~ O(1)mm, which
is of the order of max(x) found in the experiments (15).

We can use Eq. 21 to analyze the observed reduction in
the correlation length when the cells were treated with drugs
targeting various nuclear enzymes that affect chromatin sta-
bility (15). It was proposed that the reduced displacement
correlations under these conditions are somehow related to
the reduced condensation of the chromatin in the presence
of these drugs. This would correspond to a lower elastic
modulus of the chromatin, which in our single-chain model
is represented by lowering the bending modulus k in Eq. 21,
resulting in a lower value of lc, and therefore max(x). In
addition, from Eq. 21 we predict that shorter active bursts
will also result in reduced displacement correlations. The
relative roles of activity and elasticity, which together deter-
mine the correlation length, need to be farther explored sys-
tematically in future experiments. It is important to note that
the activity, which we have considered, is described by sim-
ple kicking of the polymer, while in the chromatin more
complex remodeling can occur, involving bending, stretch-
ing, and twisting (44).

A similar resonance-like peak was reported for the
displacement correlations of a fluorescent microtubule
embedded in a network of actin-myosin (3). In Fig. 2 of
Brangwynne et al. (3), a peak is found for this correlation
function (in q-space) in the presence of myosin-II motors,
corresponding to a distance of ~2–3 mm. We can use the
measured values of the parameters in this system (3) to
FIGURE 4 (a) Displacement correlation func-

tion C(Dr, Dt), for displacements in the (trans-

verse) z direction (Fa ¼ 200, t ¼ 1, Lp ¼ 250,

and L ¼ 50), as function of Dr (in microns), for

Dt ¼ 0.1, 0.5, 1, 2.5, and 5 (from bottom to top).

Main panel shows the initial roughly exponential

decay used to extract the correlation length x.

(Inset) Correlations in linear scale. (b) Correlation

lengths (x) as function of Dt, for the active case

(t ¼ 5, 1, and 0.1; blue, green, and red, respec-

tively), and for the purely thermal case (black).

(c) The correlation length x(Dt) as a function of

Dt, for different values of the bending modulus

k ¼ 100, 300, 400, and 500 (from bottom to top).

(Inset) Log-log plot shows that x(t) has a power-

law dependence with an exponent 0.25 (dashed

line in the exponent), as predicted by Eq. 21 (see

Fig. 3 c). (d) Plot of x(Dt) for different values of

the active force F ¼ 130, 170, and 200 (green,

blue, and red, respectively). We find that x is

largely independent of Fa, as predicted by Eq. 21.

To see this figure in color, go online.
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check whether this length corresponds to our lc of Eq. 21: z
~ 1 Pa-s, Lp ¼ 2kb0/

3kBT ~ 10�3 m, which gives lc ~ 2 mm if
t ~ 5 s. The observed durations of the myosin-induced force
fluctuations were measured to be of order of a few seconds
(see Fig. 4c of Brangwynne et al. (3)), in agreement with our
calculation based on the concept of resonance between the
active timescale and the relaxation time of the bending
model (Eq. 21).
CONCLUSIONS

In this study, we have analyzed the dynamics of an active
semiflexible chain embedded in a viscous medium, using
a minimal model for the active shot-noise (16,17), and found
the following main features:

1. TheMSD exponents of the motion of individual segments
display a marked maximum at an intermediate temporal
regime (which corresponds to the transition from a ther-
mal- to an activity-dominated, i.e., ballistic behavior)
and then return to thermal-like behavior at times longer
than the intrinsic timescale of motor activity.

2. We observe that the alignment of the polymer decays over
shorter length-scales when there is activity (in addition to
the thermal noise, which is always present), and the decay
is dominated by activity-driven bending modes.

3. In addition to the decay, however, we also observe a reso-
nance-like effect, due to matching between the timescale
of motor activity and the relaxation time of the bending
modes of the polymer. We find that the critical compo-
nent distinguishing the active noise from the thermal, is
the finite timescale, i.e., the temporal correlations.

The experimental observations on chromatin motion in
living cells (6–10,15,28) show similarities with the behavior
we find in our simple model, specifically the observed activ-
ity-driven coherence of the displacements (15). Despite the
obvious simplicity of the model and the fact that it does not
take into account the full complexity of the cytoskeletal
network or chromatin packing, our work demonstrates that
the interplay between activity and elasticity (related to
bending and stretching in our single polymer case) is
enough to qualitatively explain some puzzling experimental
observations, and therefore may be a basic underlying prop-
erty of such systems. Our relatively simple model allows for
more complex additional components to be added, and can
be used to motivate future experiments.
SUPPORTING MATERIAL

Three figures, and 44 equations are available at http://www.biophysj.org/
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ANALYTICAL MODEL

The free energy of a semiflexible polymer can be expressed as -

F [~r(s)] =

∫ L

0

ds

((

boκ

2

)

∂t̂

∂s
· ∂t̂
∂s

+ g(s)t̂(s) · t̂(s)
)

(S1)

where L is the length of the polymer, bo is the thickness of the chain, κ is the bending rigidity, t̂(s) = ∂r̂
∂s is the

unit tangent vector to the chain at location s along the chain, ζ is the friction per unit length and g(s) is a Lagrange
multiplier preserving the local metric; g(s) has the interpretation of local tension, and is assumed to be independent
of time (though strictly this is not true).
The functional derivative δF/δ~r gives us the force on the chain. We perform a variation ~r(s) → ~r(s) + δ~r(s) and

obtain the forces due to bending and instretchability separately as shown below -

δFbending

δ~r(s)
≃ 2

∫ L

0

ds
∂2~r(s)

∂s2
· ∂

2δ~r(s)

∂s2

= 2

∫ L

0

ds
∂4~r(s)

∂s4
(S2)

where integration by parts was used and variations at the boundary neglected. Similarly the stretching term yields

δFstretching

δ~r(s)
= −2

∫ L

0

ds
∂

∂s

(

g(s, t)
∂~r(s, t)

∂s

)

(S3)

The overdamped equation of motion for the polymer can be written as

ζ
∂~r(s)

∂t
= −boκ

∂4~r

∂s4
+ 2

∂

∂s

(

g(s)
∂~r

∂s

)

+ ~fT (s, t) + ~F (s, t) (S4)

where ~fT (s, t) is the thermal noise and ~F (s, t) is the active noise. The equation is difficult to solve exactly. Various
methods such as gradient expansion have been used in the past to study the dynamics. We resort to a simple
approximation in which the tension g(s) along the chain is replaced by the mean tension g; the above equation then
simplifies to

ζ
∂~r(s)

∂t
= −boκ

∂4~r

∂s4
+ 2g

∂2~r

∂s2
+ ~fT (s, t) + ~F (s, t) (S5)

Following the treatment of Doi and Edwards [1] we introduce modes -

~Xp(t) =
1

L

∫ L

0

ds φp(s) ~r(s, t) (S6)

We want to choose φp(s) such that the modes evolve in time according to

ζp
∂ ~Xp

∂t
= −kp ~Xp(t) + ~fT,p(t) + ~Fp(t) (S7)
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ζp
∂ ~Xp

∂t
= ζp

∫ L

0

ds φp(s)
∂r(s, t)

∂s

=
ζp
ζ

∫ L

0

ds

(

−boκ
∂4~r

∂s4
+ 2g

∂2~r

∂s2
+ ~fT (s, t) + ~F (s, t)

)

(S8)

Consider the first integral term apart from the factor −κb0ζp/ζ -

∫ L

0

ds φp(s)
∂4~r

∂s4
=

[

φp(s)
∂3~r

∂s3

]L

0

−
[

∂φp(s)

∂s

∂2~r

∂s2

]L

0

+

[

∂2φp(s)

∂s2
∂~r

∂s

]L

0

+

[

∂3φp(s)

∂s3
~r

]L

0

+

∫ L

0

ds
∂4φp(s)

∂s4
~r(s, t) (S9)

using integration by parts.
Similarly apart from the factor 2gζp/ζ the second term -

∫ L

0

ds φp(s)
∂2~r

∂s2
=

[

φp(s)
∂~r

∂s

]L

0

−
[

∂φp(s)

∂s
~r(s)

]L

0

+

∫ L

0

ds
∂2φp(s)

∂s2
~r(s, t) (S10)

Provided we can neglect the boundary terms with appropriate boundary conditions, comparing with the desired
equation for mode evolution we get

κ b0
ζp
ζ

∂4φp(s)

∂s4
= 2g

∂2φp(s)

∂s2
+ kpφp(s) (S11)

Choosing φ = 1
L cos

(

πps
L

)

, Eq. (S11) is satisfied provided

kp = κ b0
ζp
ζ

(πp

L

)4

+ 2g
ζp
ζ

(πp

L

)2

= a p4 + b p2 (S12)

The noise terms become

~fTp(t) =
ζp
L ζ

∫ L

0

ds cos
(πps

L

)

~fT (s, t) (S13)

and

~Fp(t) =
ζp
L ζ

∫ L

0

ds cos
(πps

L

)

~F (s, t) (S14)

Since the thermal and the active noise occur as a sum, we shall treat them separately.

MSD FOR THE THERMAL NOISE

Thermal forces have zero mean and obey the fluctuation-dissipation theorem

〈fTα(s, t)fTβ(s
′, t′)〉 = 2KBTζ δαβδ(t− t′) δ(s− s′) (S15)

We choose ζp such that their Fourier counterparts also obey the same form of the fluctuation-dissipation theorem -

〈fTp,α(t)fTq,β(t
′)〉 = 2KBTζp δαβδ(t− t′) δpq (S16)
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The correlation function in the Fourier space is

〈fTp,α(t)fTq,β(t
′)〉 = ζpζq

L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

〈fTα(s, t)fTβ(s
′, t′)〉

=
ζpζq
L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

2KBTζ δαβδ(t− t′) δ(s− s′)

=
ζpζq
L2ζ2

2KBTζ δαβδ(t− t′)

∫ L

0

ds cos
(πps

L

)

cos
(πqs

L

)

=
ζpζq
L2ζ2

2KBTζ δαβδ(t− t′) δpq
(1 + δp,0)

2
(S17)

Demanding that the RHS in the last line of the above equation has the same form as the fluctuation dissipation
theorem, we have ζ0 = Lζ and ζp6=0 = 2Lζ.
First we calculate the MSD for the zero-th mode which corresponds to the centre-of-mass

~X0(t) =
1

L

∫ L

0

ds~r(s, t) (S18)

We have kp=0 = 0 and so the equation of motion of the zero-th mode is

ζ0
∂ ~X0(t)

∂t
= ~fT0(t) (S19)

The formal solution to the above equation is

~X0(t) =
1

ζ0

∫ t

−∞

dt′ ~fT0(t
′) (S20)

The MSD for the centre-of-mass is given by

( ~X0(t)− ~X0(0))
2 =

1

ζ20

∫ t

0

dt1

∫ t

0

dt2〈~fT0(t1) · ~fT0(t2)〉

=
1

ζ20

∫ t

0

dt1

∫ t

0

dt2 2 · 3 kBTζ0 δ(t− t′)

= 6kBT t/ζ0

= 6kBT t/(Lζ)

= 6kBT t/(Nγ)

= 6DCOMt (S21)

where DCOM = kBT/(Nγ) is the diffusion coefficient as expected for the centre of mass using the definition ζ = γ/b0
and L = Nbo.
Now we proceed to calculate the MSD for an arbitrary monomer of the chain. The solution to the equation of

motion (Eq.S10) is

~X0(t) =
exp(−kpt/ζp)

ζp

∫ t

−∞

dt′ exp(kpt
′/ζp) cos

(πps

L

)

~fTp(t
′) (S22)

Corresponding to the adopted choice of modes, the inverse transform is given by

~r(s, t) = ~X0(t) + 2

∞
∑

p=1

~Xp(t) (S23)

The MSD of an arbitrary monomer is given by

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM + 4

∞
∑

p=1

cos
(πps

L

)

〈( ~Xp(t)− ~Xp(0)) · ( ~X0(t)− ~X0(0))〉

+ 4

∞
∑

p=1

∞
∑

q=1

cos
(πps

L

)

cos
(πqs

L

)

〈( ~Xp(t)− ~Xp(0)) · ( ~Xq(t)− ~Xq(0))〉 (S24)
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The first term has already been evaluated and the second term is trivially seen to be zero using Eq.(S17). We
proceed to evaluate the last term which involves the evaluation of the following four terms -

〈 ~Xp(t) · ~Xq(t)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~fTp(t1) · ~fTq(t2)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 6ζpKBTδpqδ(t1 − t2)

=
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

) (S25)

The last term can be evaluated simply by setting t = 0 in the last eqation -

〈 ~Xp(0) · ~Xq(0)〉 =
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

) (S26)

The third and the fourth terms viz.〈 ~Xp(t) · ~Xq(t)〉 and 〈 ~Xq(t) · ~Xp(t)〉 have a p → q symmetry that will be exploited;
one of the terms will be calculated and the other will be obtained by interchanging p with q.

〈 ~Xp(t) · ~Xq(0)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~fTp(t1) · ~fTq(t2)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 6ζpKBTδpqδ(t1 − t2)

= exp(−kpt/ζp)
6ζpKBTδpq

ζpζq
× 1
(

kp

ζp
+

kq

ζq

)

So the counterpart term is exp(−kqt/ζq)
6ζqKBTδpq

ζqζp
× 1

(

kp
ζp

+
kq
ζq

) .

Gathering all the above terms, we finally obtain

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM + 4
∞
∑

p=1

∞
∑

q=1

cos
(πqs

L

)

cos
(πps

L

) 1
(

kp

ζp
+

kq

ζq

)×

[

12ζpKBTδpq
ζpζq

− exp(−kpt/ζp)
6ζpKBTδpq

ζpζq
− exp(−kqt/ζq)

6ζqKBTδpq
ζqζp

]

= 24

∞
∑

p=1

cos2
(πps

L

) KBT (1− exp(−kpt/ζp))

kp
(S27)

RECOVERING WINKLER’S RESULT FOR THE ABOVE CHOICE OF MODES

Using Eq.(S23), we get the unit tangent vector to the polymer is given by

t̂(s, t) = −2
∞
∑

p=1

~Xp(t)
(pπ

L

)

sin
(pπs

L

)

(S28)
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The equal time tangent-tangent correlation is given by

〈t̂(s) · t̂(s′)〉 = 4

∞
∑

p,q=1

(π

L

)2

pq sin
(pπs

L

)

sin

(

qπs′

L

)

〈 ~Xp(t) · ~Xq(t)〉

= 4
∞
∑

p,q=1

(π

L

)2

pq sin
(pπs

L

)

sin

(

qπs′

L

)

6ζpKBTδpq
ζpζq

× 1
(

kp

ζp
+

kq

ζq

)

≃ 12
(π

L

)2

KBT

∫ ∞

0

dp p2/kp sin
(pπs

L

)

sin

(

pπs′

L

)

= 12
(π

L

)2

KBT

∫ ∞

0

dp p2/(a p4 + b p2) sin
(pπs

L

)

sin

(

pπs′

L

)

= 12KbT
(π

L

)2

π/(4
√

(ab) exp(−
√

(b/a)(π/L) |s− s′|) (S29)

where Eq(S25) has been used. Since the denominator in the exponent should give us the persistent length Lp and the
correlation function of two unit vectors can at most be unity in magnitude, we demand, using the definitions of a and
b (See Eq.(S12)),

√
2κb0g = 3KBT/2 and

√

(2g/κb0) = 1/Lp. This gives us 2g = 3KBT/2Lp and κb0 = 3KBTLp/2.
This is a result familiar from the work of Winkler and co-workers and this self-consistent determination establishes
the efficacy of our simple model.

DYNAMICS WITH ACTIVE NOISE

Derivation of the MSD for the centre of mass and an arbitrary monomer basically proceeds along similar lines as
above; the only additional ingredient is the correlations of the active forces. We assume, contrary to earlier studies by
Liverpool that the average of the active force is zero. This is not artificial because in the simulations that we perform,
the active forces act in the direction of the local normal to the polymer. The azimuthal symmetry about the axis of
the filament (assumed stiff) justifies the above assumption though the average in the longitudinal direction need not
be zero because of the polarity of the track. The active forces do not obey the fluctuation-dissipation theorem and
the active force correlations are given by

〈~F (s, t) · ~F (s′, t′)〉 = C exp(−|t− t′|/τ) δ(s− s′) (S30)

The prefactor is not dependent on ambient temperature and friction; it is expressed as C = F 2pon/bo where F (s, t)
is the magnitude of the active force, τ is the time period of motor activity and pon is the probability for a single motor
to remain active. The correlation function in the Fourier space is

〈~Fp(t) · ~Fq(t
′)〉 = ζpζq

L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

〈~F (s, t) · ~F (s′, t′)〉

=
ζpζq
L2ζ2

∫ L

0

∫ L

0

dsds′ cos
(πps

L

)

cos

(

πqs′

L

)

C exp(−|t− t′|/τ) δ(s− s′)

= C
ζpζq
L2ζ2

δαβ exp(−|t− t′|/τ)δpq(1 + δp,0)L/2 (S31)

First we evaluate the MSD for the centre of mass. As before the MSD for the centre-of-mass is given by

( ~X0(t)− ~X0(0))
2 =

1

ζ20

∫ t

0

dt1

∫ t

0

dt2〈~F0(t1) · ~F0(t2)〉

=
1

ζ20

∫ t

0

dt1

∫ t

0

dt2LC exp(−|t− t′|/τ)

=
2Cτ

Lζ2
(t+ τ(exp[−t/τ ]− 1)) (S32)

For t ≪ τ , the exponential can be expanded and we get

( ~X0(t)− ~X0(0))
2 =

C

Lζ2
t2

= N(
F

Nγ
)2 t2 (S33)
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which offers the scope of defining an active velocity vactiv ∼
√
N (F/(Nγ))

The general solution for the active modes can be written as

~X0(t) =
exp(−kpt/ζp)

ζp

∫ t

−∞

dt′ exp(kpt
′/ζp) ~Fp(t

′) (S34)

As before the MSD for an arbitrary monomer is evaluated using the same structure as Eq.(S24). For active noise,
evaluation of the different terms proceeds as follows. First term in the summation -

〈 ~Xp(t) · ~Xq(t)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1)/ζp exp(kqt2)/ζq 〈~Fp(t1) · ~Fq(t2)〉

=
exp(−kpt/ζp) exp(−kqt/ζq)

ζpζq

∫ t

−∞

∫ t

−∞

dt1dt2 exp(kpt1)/ζp exp(kqt2)/ζq C
ζpζq
L2ζ2

exp(−|t− t′|/τ)δpq
L

2

=
Cδpq
2Lζ2

× 1
(

kp

ζp
+

kq

ζq

) ×





1
(

kp

ζp
+ 1

τ

) +
1

(

kq

ζq
+ 1

τ

)



 (S35)

The last term in the summation is the same as above using similar arguements as with the thermal noise.
Let us evaluate the second term and the third term will follow from p → q symmetry.
The second term -

〈 ~Xp(t) · ~Xq(0)〉

=
exp(−kpt/ζp)

ζpζq

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) 〈~Fp(t1) · ~Fq(t2)〉

= C δpq
exp(−kpt/ζp)

2Lζ2

∫ t

−∞

∫ 0

−∞

dt1dt2 exp(kpt1/ζp) exp(kqt2/ζq) exp(−|t− t′|/τ)

= exp(−kpt

ζp
)
Cδpq
2Lζ2

×





(exp(kp/ζp − 1/τ)t− 1)
((

kp

ζp
− 1

τ

)

+
(

kq

ζq
+ 1

τ

)) +
1

(

kp

ζp
+

kq

ζq

) ×





1
(

kp

ζp
+ 1

τ

) +
1

(

kq

ζq
+ 1

τ

)









Finally we gather all the terms to get

(〈~r(s, t) − ~r(s, 0))2〉 = MSDCM

+4C/(Lζ2)

∞
∑

p=1

cos2(πps/L) (T 1 + T 2) (S36)

where

T 1 = (1− exp(−kpt/ζp))/

(

kp
ζp

(

kp
ζp

+
1

τ

))

(S37)

and

T 2 = (exp(−t/τ)− exp(−kpt/ζp))/

(

(

kp
ζp

)2

−
(

1

τ

)2
)

(S38)

ESTIMATE OF THE CROSSOVER TIME

As seen from Fig.(2) of the main text, very small times are thermal noise dominated and there is a crossover time
for the system to be adequately excited by the active noise. By comparing the MSD terms (thermal and active) for
the first mode, we make an approximate estimate of the crossover time tc as follows -
We expand the exponentials in the corresponding expressions Eqs.(S27 and S35) to get

24KBT

kp
(kpt/ζp − k2pt

2/2ζ2p) =
4C

Lζ2
1

1 + kpτ/ζp
t2/2 (S39)
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After some algebra, we get

6KBTζ

C
(1− tkp/2ζp) = t/(1 + kpτ/ζp) (S40)

This can be simplified to yield

tc =
1

C
6KBTζ(kpτ/ζp+1) +

kp

2ζp

(S41)

In the higly overdamped case where kpτ/ζp is small, the crossover time tc ∼ 6KBTζ
C . In a somewhat intuitive way,

the same result can be obtained as follows - for the thermal motion 〈r2〉 ∼ 6Dt and for the active motion for t ≪ τ ,
〈r2〉 ∼ (Ft/γ)2. Equating the two, one gets tc ∼ 6D/(F/γ)2.

VELOCITY FLUCTUATIONS OF THE CENTRE OF MASS

The overdamped equation for the centre of mass is given by

M
dv

dt
= −Nγv + f + F (S42)

Fourier transforming and conjugating, we get

〈ṽ2〉 = 1

M

〈f̃2〉+ 〈F̃ 2〉
(γ/m)2 + ω2

(S43)

where M is the total mass of the polymer and m is the mass of a segment of the polyer. For thermal noise 〈f̃2〉 =
NγKBT/π. For active noise

〈f̃2(ω)〉 =
(

NF 2

2πbo

)∫ ∞

−∞

dt exp(iωt) exp(−|t|/τ)

=

(

NF 2

2πbo

)

(

∫ 0

−∞

dt exp(−iωt) exp(t/τ) +

∫ ∞

0

dt exp(−iωt) exp(−t/τ))

=

(

NF 2

πbo

)

Re(

∫ ∞

0

dt exp(−iωt) exp(−|t|/τ))

=

(

NF 2

πbo

)

τ

(1 + (ωτ)2)

Integrating over all frequencies, we get

〈ṽ2〉 = KBT/M +
N

bo

F 2

(Nγ)2
1

1 +mγ/τ
(S44)

The first term corresponds to the equipartition theorem while the second term represents the active contribution.

AUTOCORRELATION FUNCTIONS FOR PURELY TANGENTIAL FORCES

Simulations performed with tagential active forces also show similar stabilisation of bending mode in resonance with
active forces as shown below (Fig.S1). However the effect is less pronounced as compared to purely normal active
forces and for shorter filaments.

ATUOCORRELATION FUNCTIONS FOR PURLEY NORMAL FORCES FOR L ∼ Lp

We performed simulations with a chain of length L = 100.0 and Lp = 100.0 and found the resonance effect to be
present (Fig.S2); the qualitative features look very much the same as for the case L < Lp.
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(a)
(b)

FIG. S1: Tangent-tangent autocorrelation functions for magnitudes of tangential active forces = 0.0 (black), 90.0 (red), 130.0
(green), 170.0 (blue) and 200.0 (orange) for two different chain lengths L = 25, 100 (left and right panel respectively), Lp = 250.0.
The bending resonance effect is present for tangential active forces also. For shorter filaments, the effect is less pronounced as
they effectively are more stiff and hence more difficult to bend. Tangential forces on nearby beads effectively add up to point
in the local normal direction because of curvature of the polymer.

FIG. S2: Equal time tangent autocorrelation function for Lp = 100.0 and chain length L = 100.0 for magnitudes of active
forces Fa = 0.0, 90.0, 130.0, 170.0 and 200.0 from top down. The resonance-like effect is found to be persist in this regime.

AUTOCORRELATION FUNCTION WITH CORRELATIONS MEASURED FROM THE END OF THE

CHAIN

We show below the results for measurement of the tangent-tangent autocorrelation function measured from one
end of a polymer chain of length L = 100 and κ = 250.0. The results have been discussed in the context of Fig.(3b)
of the main text.

0 20 40 60 80 100
s

0

0.2

0.4

0.6

0.8

1

<
t(

s)
.t(

0)
>

FIG. S3: The tangent-tangent autocorrelation function measured from one end of the polymer with κ = 250.0 and contour
length L = 100.0 for different values of the active forces F = 0.0, 90.0, 130.0, 170.0 and 200.0 (from top down).
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