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SI Materials and Methods
Mouse Lung Endothelial Cell Isolation.Mouse lung endothelial cells
(MLECs) were isolated from three to four pairs of lungs dissected
from WT, Akt1−/−, and Akt2−/− mice between 3 and 4 wk of age.
Freshly isolated lung tissue was minced with scissors and allowed
to digest at 37 °C in Type I collagenase (SIGMA, at 2 mg/mL,
∼175 U/mg) for 1 h. Lung tissue was further subjected to me-
chanical disruption by passage 20–30 times through a 14-gauge
needle and filtration through fine steel mesh (130–150 μm;
BELLCO). Cells were washed once with culture media consist-
ing of 20% (vol/vol) heat-inactivated FBS, 40% (vol/vol) low-
glucose DMEM, 40% (vol/vol) F-12 HAM, 2 mM L-glutamine,
penicillin (10 international units/mL)/streptomycin (10 μg/mL),
100 μg/mL heparin, and 50 μg/mL endothelial cell (EC) growth
supplement (Collaborative Research). Cells were plated onto
a 0.1% gelatin-coated T175 flask overnight. Blood cells were
washed off the next day and replaced with media harvested from
an Eco-Pack2-mT (ClonTech) retroviral packaging cell line
containing polyoma middle T-antigen and 8 μg/mL Polybrene
(Sigma) to immortalize lung cell homogenates. Lung cells were
infected three to four times with either 100% (vol/vol) Eco-
Pack2-mT retroviral supernatant for 6–8 h or 50% (vol/vol)
culture media and 50% (vol/vol) Eco-Pack2-mT retroviral su-
pernatant overnight over the course of 2–3 d. When cells were
70–90% confluent with visible EC clusters, ECs were immuno-
isolated using 107 sheep anti-rat IgG–coated magnetic beads
(Dynal) precomplexed with 12.5 μg of rat α-platelet/endothelial
cell adhesion molecule 1 (PECAM-1) antibody (Pharmingen)
and 6.25 μg of rat α-ICAM-2 antibody (Pharmingen) per three to
four lung homogenates. Immunoisolated cells were washed in
culture media three times, plated onto a 0.1% gelatin-coated
T75 flask, and cultured in endothelial basal medium (EBM-2)/
endothelial growth medium micro vasculature as described above.
When cells became 100% confluent, they were immunoisolated
again to purify the EC population further.

Immunoprecipitation and in Vitro Kinase Assays. Confluent mouse
embryonic fibroblasts (MEFs) were serum-starved for 16 h and
then either left untreated or stimulated with PDGF (40 ng/mL for
15 min). Cells were washed twice with ice-cold PBS and lysed on
ice with lysis buffer: 50 mM Tris·HCl (pH 7.4), 1.5 mM MgCl2,
137 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 10% (vol/vol)
glycerol, 10 mM NaF, 1 mM sodium pyrophosphate, 1 mM so-
dium orthovanadate, 25 mM sodium β-glycerophosphate, 1 mM
Pefabloc SC (Roche), and 2 mg/mL protease inhibitor mixture
(Roche Diagnostics). Insoluble proteins were removed by cen-
trifugation at 17,000 × g for 10 min at 4 °C. Protein concen-
trations were determined using the DC Protein Assay Kit (Bio-
Rad), after which lysates were diluted to a protein concentration
of 1 mg/mL. Next, 600 μL of cell lysates was precleared with
Protein G Sepharose beads [30 μL of 50% (vol/vol) solution;
Sigma–Aldrich] for 1 h at 4 °C with end-to-end rotation. Protein
G Sepharose was pelleted by centrifugation, and 500 μL of
precleared lysates was transferred into new microfuge tubes,
followed by addition of 4 μg of either rat anti-HA antibody (Roche)
or anti-rat IgG control antibody (Santa Cruz Biotechnology).
Samples were rotated at 4 °C for 2 h, and Protein G Sepharose
beads [50 μL of a 50% (vol/vol) slurry] were then added to each
sample and rotated for an additional 1 h at 4 °C, followed by
centrifugation at 8,000 × g for 1 min. In vitro kinase assays were
performed using a commercial kit (Nonradioactive Akt Kinase
Assay Kit; Cell Signaling Technology). Immunoprecipitates were

washed twice with lysis buffer and twice with the Akt kinase
buffer: 25 mM Tris (pH 7.5), 2 mM DTT, 10 mM MgCl2, 5 mM
β-glycerophosphate, and 1 mM Na3VO4. Pellets were resus-
pended in 50 μL of kinase buffer supplemented with 1 μL of
10 mM ATP and 1 μg of glycogen synthase kinase 3 (GSK-3)
fusion protein (Cell Signaling Technology) or 1 μg of purified
recombinant full-length bovine endothelial nitric oxide synthase
(eNOS). The reaction mixtures were incubated at 30 °C for
30 min and terminated by the addition of 25 μL of 3× SDS
sample buffer. After vortexing and microcentrifugation for 30 s
at 14,000 × g, reaction products were resolved by SDS/PAGE
and analyzed by Western blotting.

Western Blot Analysis. For analysis of basal protein phosphoryla-
tion, MLECs were cultured for 72–96 h before growth arrest in
serum-free EBM-2 medium for 48 h. In experiments with MEFs,
cells were growth-arrested in serum-free DMEM for 12–16 h and
then treated with 20 ng/mL PDGF (Calbiochem) for 15 min.
Following the appropriate treatment, cells were washed twice
with ice-cold PBS and lysed on ice with lysis buffer: 50 mM
Tris·HCl (pH 7.4), 0.1 mM EDTA, 0.1 mM EGTA, 1% Nonidet
P-40, 0.1% sodium deoxycholate, 0.1% SDS, 100 mM NaCl,
10 mM NaF, 1 mM sodium pyrophosphate, 1 mM sodium ortho-
vanadate, 25 mM sodium β-glycerophosphate, 1 mM Pefabloc SC,
and 2 mg/mL protease inhibitor mixture (Roche Diagnostics).
Protein concentrations were determined using the DC Protein
Assay Kit. Lysates (containing 20–50 μg of protein) were ana-
lyzed by SDS/PAGE and immunoblotting. Primary antibodies
used include the following: Akt1 mAb (1:2,500 dilution, no. 06-558;
Upstate Biotechnology), Akt2 polyclonal antibody (pAb) (1:3,000
dilution) (1), Akt3 pAb (1:1,000 dilution; Cell Signaling Tech-
nology), anti-HA mAb (1:1,000 dilution; Roche Diagnostics),
PECAM-1 pAb (1:500 dilution; Santa Cruz Biotechnology), pAkt-
S473 mAb (1:500 dilution; Cell Signaling Technology), pAkt-T308
mAb (1:500 dilution; Cell Signaling Technology), Hsp90 mAb
(1:500 dilution; BD Transduction Laboratories), β-actin mAb
(1:5,000 dilution; Sigma–Aldrich), PDGF receptor β pAb (1:500
dilution; Santa Cruz Biotechnology), phosphorylated (p)-eNOS-
S1179 pAb (1:500 dilution; Zymed), peNOS-S617 pAb (1:500
dilution; Upstate Biotechnology), p-eNOS-S116 pAb (1:200 di-
lution; Upstate Biotechnology), eNOS mAb (1:1,000 dilution;
BD Transduction Laboratories), pFKHR-S256 pAb (1:250 di-
lution; Cell Signaling Technology), phosphorylated GSK3β-S9
pAb (1:500 dilution; Cell Signaling Technology), GSK3α/β mAb
(1:1,000 dilution; Upstate Biotechnology). Secondary antibodies
were conjugated directly to IR fluorescent dyes (IRDye680 and
IRDye800, 1:10,000 dilution; LI-COR Biotechnology). Bands
were visualized using the Odyssey IR imaging system (LI-COR
Biotechnology).

Phosphoproteomic Analysis of RxRxxS*/T* Substrates. For each ex-
perimental condition (n = 3), 2 × 108 MLECs were grown to 70–
80% confluency, washed twice in PBS, and lysed in urea lysis
buffer [20 mM Hepes (pH 8.0), 9.0 M urea, 1 mM sodium or-
thovanadate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerol
phosphate). The Akt isoform-specific phosphoproteome of MLEC
lysates was characterized using PTMScan Technology (Cell Sig-
naling Technology) based on LC/tandem MS (MS/MS), as de-
scribed previously (2). Briefly, cellular proteins were reduced
with 4.1 mM DTT, alkylated with 8.3 mM iodoacetamide, and
digested overnight with 1 mg/mL GluC in 20 mM Hepes (pH 8.0;
Worthington Diagnostics), 1.5 units per 20 mg of protein of LysC
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(Roche Penzberg), and 2 mg/mL of chymotrypsin in 20 mM
Hepes (pH 8.0; Worthington Diagnostics). The resulting pep-
tides were subjected to immunoaffinity purification using a
PTMScan (RxRssS/T*) motif antibody conjugated to protein A
agarose beads (Cell Signaling Technology). Unbound peptides
were removed through washing, and the captured posttransla-
tionally modified (PTM)-containing peptides were further di-
gested with trypsin (Worthington Diagnostics). The digested
peptides were extracted using Sep-Pak C18 Solid Phase Extraction
Column (Waters). After drying in a SpeedVac (Thermo Scientific),
the peptides were redissolved in 5 μL of 5% (vol/vol) MeCN and
0.1% TFA and loaded onto a PicoFrit capillary column (New
Objective) packed with Magic C18 AQ reversed-phase resin

(Michrom Bioresources). The chromatographic column was de-
veloped with a 72-min linear gradient of acetonitrile in 0.125%
formic acid delivered at 280 nL/min. MS/MS spectra were obtained
using an LTQ-Orbitrap-Elite system using collision-induced disso-
ciation (Thermo Fisher Scientific), and the label-free quanti-
fication of the phosphoproteome was evaluated and normalized
using SEQEST 3G (Thermo Fisher Scientific) and the Sorcerer
2 platform (Sage-N Research) (3). Searches were performed
against the National Center for Biotechnology Information
Mus musculus database with a mass accuracy of ±50 ppm for
precursor ions and 1 Da for product ions. Results were filtered
with mass accuracy of ±5 ppm on precursor ions and presence of
the intended motif.
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receptor tyrosine kinases. Sci Signal 3(136):ra64.
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Fig. S1. (A) Serum-starved MLECs were stimulated with VEGF (50 ng/mL) for subsequent p-eNOS immunoblotting. (B) Fibroblasts isolated fromWT, Akt1−/−, or
Akt2−/− embryos were reconstituted with adenoviral HA-tagged Akt1 or Akt2. (C) Isolated MEFs were serum-starved for 16 h before a 15-min PDGF-BB (20 ng/mL)
stimulation. Protein lysates were analyzed for the indicated phosphorylation events. (D and E) Akt1−/− MEFs were infected with adenoviral HA-tagged Akt1 or
Akt2. Cells were serum-starved (16 h) and stimulated with PDGF-BB (40 ng/mL) for 15 min. Cell lysates were collected for immunoprecipitation with either anti-HA
or a control IgG antibody (Fig. 1C). Immunoprecipitates (IPs) were incubated with a GSK3 peptide for in vitro kinase assays. Reaction products were then analyzed
by SDS/PAGE and immunoblotting using antibodies specific for p-GSK3 (D) or p-eNOS S116 (E). Dll4, Delta-like 4. Representative experiments are shown.
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Fig. S2. Loss of endothelial Akt1 does not significantly affect vessel thickness (A) or filopodia number (B) [WT, n = 6; Akt1-inducible EC KO (iECKO), n = 8].
NG2-positive pericyte (vascular plexus; C) and GFAP-positive astrocyte coverage (vascular front; D) are not overtly affected by Akt1 loss in ECs. (E) Loss of
endothelial Akt1 does not drastically affect tip/stalk cell identity or arterial/venous specification patterns. n.s., not significant. Representative images are shown
on postnatal day 6. A, artery; IsoB4, isolectin B4; NG2, neuron-glial antigen 2; V, vein. (Magnification: C–E, 200×.)
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Fig. S3. (Continued)
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Fig. S3. (A) Global Akt2 deletion does not impair retinal outgrowth as depicted by littermate comparisons (postnatal day 6). (B) Global Akt2 deletion does not
affect radial extension on either postnatal day 6 or postnatal day 7. (C) NG2-positive pericyte coverage appears normal in Akt2−/− retinas. (D and E) GFAP-
positive astrocyte coverage in Akt2−/− retinas is comparable to that in WT. Artery/venous specification and tip/stalk cell specification are maintained in Akt2−/−

mice, as assessed through dll4 staining. Representative images are shown. (Scale bar: A, 5 mm. Magnification: C–E, 200×.)
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Fig. S4. (A and B) Endothelial-specific Akt1 deletion on an Akt2-null global background does not significantly affect vessel thickness or filopodia number
(Akt2−/−, n > 7; Akt1iECKO;Akt2−/−, n > 6). (C and D) Dual loss of endothelial Akt1/2 does not overtly affect NG2-positive pericyte coverage. Tip cell identity and
arterial specification also appear maintained, as seen through Dll4 staining. Representative images are shown on postnatal day 6. (Magnification: C and D, 200×.)
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Fig. S5. (A) Global Akt1 deletion significantly affects overall growth (postnatal day 7, Akt1+/−, n = 3; Akt1−/−, n = 6). (B–D) Global Akt1 deletion impairs radial
outgrowth and vascular patterning, similar to acute, endothelial-specific deletion. **P < 0.01; ***P < 0.001. Representative images are shown. (Scale bar: B,
5 mm. Magnification: D, 200×.)
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Fig. S6. (A) Diseases/biological functions affected by the loss of Akt1 or Akt2 activity in MLECs using the Ingenuity Pathways Knowledge Analysis (IPA) da-
tabase. Only phosphoproteomic changes that were larger than −2.5-fold were included in the pathway analysis. The red line indicates where the significance
value equals 0.05. B-H, Benjamini–Hochberg method. (B) Canonical pathway analysis using the IPA database for the Akt1-null condition. The Akt2-null con-
dition did not yield any associated, statistically significant canonical pathways. PTEN, phosphatase and tensin homolog; TSP1, thrombospondin 1.

Table S1. Comparison of disease/biological functions affected by the loss of Akt1 or Akt2 in MLECs

Diseases and biological functions B-H P values* Proteins included in the disease/biological functions

Tumor morphology (results for Akt1−/−) 9.5 × 10−6 MKK4, HMOX1, FOXO4, TIAM2, FOXO1, CABLES1, FOXO3, NOS3
Nucleic acid metabolism (results for Akt1−/−) 4.39 × 10−4 HMOX1, FOXO4, TIAM2, FOXO1, FOXO3, NOS3
Cardiovascular system development and function

(results for Akt1−/−)
2.45 × 10−3 MKK4, AMOTL1, HMOX1, FOXO4, FOXO1, PTPRB, FLNC,

FOXO3, NOS3
Organ morphology (results for Akt1−/−) 2.45 × 10−3 MKK4, HMOX1, ITPKB, FOXO1, FLNC, CABLES1, FOXO3, NOS3
Cellular function and maintenance (results for Akt1−/−) 2.45 × 10−3 AMOTL1, MKK4, FOXO4, HMOX1, TIAM2, ITPKB, FOXO1, FOXO3,

MARK4, NOS3
Cellular function and maintenance (results for Akt2−/−) 4.49 × 10−2 WDFY3, TBC1D1
Tissue morphology (results for Akt1−/−) 2.45 × 10−3 MKK4, HMOX1, ITPKB, FOXO1, FLNC, FOXO3, NOS3
Cellular development (results for Akt1−/−) 3.24 × 10−3 MKK4, FOXO4, CABLES1, NOS3, Palld, HMOX1, HNRNPA1, TIAM2,

FOXO1, ITPKB, FLNC, PTPRB, FOXO3
Skeletal and muscular system development and function

(results for Akt1−/−)
3.24 × 10−3 MKK4, FOXO4, HMOX1, FOXO1, FLNC, FOXO3, NOS3

Cell death and survival (results for Akt1−/−) 3.76 × 10−3 AMOTL1, Palld, MKK4, HMOX1, FOXO4, HNRNPA1, ITPKB,
FOXO1, CABLES1, FOXO3, CLOCK, NOS3

Cellular movement (results for Akt1−/−) 4.6 × 10−3 AMOTL1, Palld, MKK4, FOXO4, HMOX1, TIAM2, FOXO1, FLNC,
FOXO3, ASAP2, NOS3

Cell signaling (results for Akt1−/−) 4.62 × 10−3 MKK4, HMOX1, NOS3
Cell signaling (results for Akt2−/−) 3 × 10−2 NUP93

*Resulting P values were adjusted for multiple comparisons using the Benjamini–Hochberg method (B-H).
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