Supporting Information

Drexler et al. 10.1073/pnas.1323502111

SI Methods

Clinical Specimens. Samples were collected at Pointe Noire hospitals with verbal informed consent from patients before the time of their death. All specimens (n = 24) were received along with names and ages of patients at the Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon, from October until November 2, 2010, i.e., 10 d before the first supplementary immunization activity in response to the outbreak (1). After initial investigation samples were transferred to the University of Bonn without further opening of sample containers. Control sera (n = 12) were collected in neighboring Gabon between May and June 2011, several weeks after an oral polio vaccine (OPV) campaign in Gabon between January and April 2011. Additional control sera (n = 34) were obtained from German medical students and from German outpatients (n = 17)sent to the National Reference Center for Poliomyelitis and Enteroviruses (NRC PE) at the Robert Koch Institute for confirmation of anti-polio virus immunity.

RT-PCR. RNA was purified from all specimens using the Qiagen Viral RNA kit (Qiagen) and tested at CIRMF for enterovirus RNA by real time RT-PCR targeting the viral 5'-UTR (2). Confirmatory testing was done at the Institute of Virology, using the 5'-UTR real-time (2) and additional (hemi)nested RT-PCR assays targeting the viral 5'-UTR, VP2, and VP1 genomic regions (3–5). The full genome was determined by long-range PCR and Sanger sequencing. Genome termini were determined using a RACE strategy (Roche). Further PCR protocols are available upon request.

Exclusion of Alternative Outbreak-Associated Etiologies. Testing for viruses other than poliovirus type 1 (PV1) included PCR or RT-PCR for cytomegalovirus, human herpesvirus type 6, herpes simplex virus type 1 and 2, varicella–zoster virus, rotavirus serogroup A, norovirus genogroups 1 and 2, sapovirus, astrovirus, human parechovirus, and influenza viruses A and B. Broad-range RT-PCR was used for the genera *Enterovirus, Flavivirus, Alphavirus, Phlebovirus, Mastadenovirus, Alphacoronavirus*, and *Betacoronavirus* and the family *Paramyxoviridae* (2–20).

Cell Culture. Human rhabdomyosarcoma (RD) cells were used for virus isolation, according to World Health Organization (WHO) guidelines. Neutralization assays in RD, human epidermoid carcinoma 2 (HEp-2) Cincinatti, and Vero cells were done including an in-house reference serum calibrated against the International Standard Serum with known neutralizing activity in each test to control reproducibility of results (21). Calibrated reference antibody sera against PV1-3 obtained from the National Institute for

- 1. Centers for Disease Control and Prevention (CDC) (2011) Poliomyelitis outbreak— Republic of the Congo, September 2010-February 2011. *MMWR Morb Mortal Wkly Rep* 60(10):312–313.
- Verstrepen WA, Kuhn S, Kockx MM, Van De Vyvere ME, Mertens AH (2001) Rapid detection of enterovirus RNA in cerebrospinal fluid specimens with a novel singletube real-time reverse transcription-PCR assay. J Clin Microbiol 39(11):4093–4096.
- Nix WA, Oberste MS, Pallansch MA (2006) Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol 44(8):2698–2704.
- 4. Nix WA, et al. (2004) Failure to detect enterovirus in the spinal cord of ALS patients using a sensitive RT-PCR method. *Neurology* 62(8):1372–1377.
- Nasri D, et al. (2007) Typing of human enterovirus by partial sequencing of VP2. J Clin Microbiol 45(8):2370–2379.
- Chu DK, Poon LL, Guan Y, Peiris JS (2008) Novel astroviruses in insectivorous bats. J Virol 82(18):9107–9114.
- 7. Engelmann I, et al. (2008) Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr

Biological Standardization and Control (NIBSC) (Hertfordshire, UK; NIBSC code 82/585) were used additionally to control results. Briefly, heat-inactivated sera (30 min at 56 °C) were diluted two-fold (starting dilutions varied according to the available serum volumes for each laboratory; see Tables S2–S7) and incubated with 100 TCID₅₀ of challenge virus at 37 °C for 1–3 h. After adding RD, HEp-2C, or Vero cells, microtiter plates were incubated at 37 °C with 5% (vol/vol) CO₂ for 2 d (Vero cells) or 5 d (RD and HEp-2C cells). Virus-induced cytopathogenic effect (CPE) was evaluated by direct microscopy. Endpoint titers were defined as reciprocals of the highest serum dilutions inhibiting CPE in 50% of replicate wells. The titers of seed virus were redetermined from control wells receiving no neutralizing serum in each assay (back titration) in agreement with WHO protocols (22).

Phylogenetic Analysis. Because poliovirus 1 (PV1) fulfilled the necessary population genetic criteria of both the hosts (a connected population exchanging the virus) and the virus (one species comprising genetically closely related viruses that originate from a common ancestor), coalescent-based analysis was performed. Complete VP1 gene sequences were aligned with all wild PV1 (WPV1) sequences available in GenBank. Sequences with unknown isolation dates and reference sequences that were >98%identical to any other sequence were excluded from further analysis. Based on published data on WPV1 molecular clock analyses, only strains detected during the last 20 y were included, to avoid saturation of branches (23). This dataset was analyzed under an SRD06 substitution model optimized for coding sequences with a relaxed uncorrelated lognormal clock and constant population growth assumptions. Phylogenetic analysis was done with Bayesian evolutionary analysis by sampling trees (BEAST) 1.4.7 (24) using 50,000,000 generations sampled every 1,000 steps, resulting in 50,000 trees of which 25% were discarded as burn-in. Identical tree topology was yielded in confirmatory analyses with MrBayes Version 3.1 (25) using a GTR+G+I nucleotide substitution model and default chain and run parameters over 2,000,000 generations.

Statistics. All statistics were calculated using SPSS V22 (IBM).

Ethics. This study was part of an outbreak control operation coordinated by the Republic of Congo Ministry of Health and the WHO Central Africa Regional Office. The study was additionally approved by the CIRMF scientific review board. Sera from German vaccinees were obtained during poliovirus neutralization exercises during medical courses and from outpatients sent for PV routine diagnostics.

virus, and human herpesvirus 6 DNA in blood and other clinical specimens. J Med Virol 80(3):467–477.

- Rose TM (2005) CODEHOP-mediated PCR a powerful technique for the identification and characterization of viral genomes. Virol J 2:20.
- Logan C, O'Leary JJ, O'Sullivan N (2006) Real-time reverse transcription-PCR for detection of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. J Clin Microbiol 44(9):3189–3195.
- Hoehne M, Schreier E (2006) Detection of Norovirus genogroup I and II by multiplex real-time RT- PCR using a 3'-minor groove binder-DNA probe. BMC Infect Dis 6:69.
- Bellau-Pujol S, et al. (2005) Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses. J Virol Methods 126(1-2):53–63.
- Panning M, et al. (2011) Singleplex real-time RT-PCR for detection of influenza A virus and simultaneous differentiation of A/H1N1v and evaluation of the RealStar influenza kit. J Clin Virol 50(2):171–174.
- 13. Moureau G, et al. (2007) A real-time RT-PCR method for the universal detection and identification of flaviviruses. *Vector Borne Zoonotic Dis* 7(4):467–477.

- Baumgarte S, et al. (2008) Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. J Clin Microbiol 46(1):242–248.
- Grywna K, et al. (2010) Detection of all species of the genus Alphavirus by reverse transcription-PCR with diagnostic sensitivity. J Clin Microbiol 48(9):3386–3387.
- Allard A, Albinsson B, Wadell G (2001) Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J Clin Microbiol 39(2): 498–505.
- de Souza Luna LK, et al. (2007) Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent lowdensity microarray. J Clin Microbiol 45(3):1049–1052.
- da Silva Filho LV, et al. (2012) The differential clinical impact of human coronavirus species in children with cystic fibrosis. J Infect Dis 206(3):384–388.
- Tong S, Chern SW, Li Y, Pallansch MA, Anderson LJ (2008) Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J Clin Microbiol 46(8):2652–2658.

- Sánchez-Seco MP, et al. (2003) Detection and identification of Toscana and other phleboviruses by RT-nested-PCR assays with degenerated primers. J Med Virol 71(1): 140–149.
- 21. Diedrich S, Claus H, Schreier E (2002) Immunity status against poliomyelitis in Germany: Determination of cut-off values in International Units. *BMC Infect Dis* 2:2.
- World Health Organization (1997) Manual for the virological investigation of poliomyelitis (WHO/EPI/GEN/97.01) (World Health Organization, Geneva).
- Jorba J, Campagnoli R, De L, Kew O (2008) Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J Virol 82(9):4429–4440.
- Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19(12):1572–1574.

Fig. S1. Genome organization of *PV1-RC2010*, PV1 antigenic sites (AgS), and PV1 structural protein folding (stereo image). (A) Representation of the genome organization of *PV1-RC2010* including 5'- and 3'-UTRs. (B) PV1 AgS1-4 annotated according to refs. 1 and 2 with amino acid residues indicated below. GenBank accession numbers, where applicable: CHAT, AJ416942; Sabin-1, V01150; Mahoney, V01149; VDPV1, AF462418; Bar65, AY278553; PV1-RC2010, JF838278; Tajik TJK35325, KC880372; and Angola 2009 VP1, JF313102. Amino acid identities with Sabin-1 are indicated by dots; deviations are spelled out. (C) The AgS2 domain 2a (VP1 residues 221–226) is highlighted as a red loop with a small alpha-helix part. The opposing domain 2b (VP2 residues 168–170) is shown as a loop surrounded by dots (van der Waals radii, shown for clarity of presentation only). All proteins are shown as C trace and ribbons without side chains; therefore neither specifically depicts PV1 Sabin nor *PV1-RC2010* strains.

1. Minor PD (1990) Antigenic structure of picornaviruses. Curr Top Microbiol Immunol 161:121–154.

2. Yakovenko ML, et al. (2006) Antigenic evolution of vaccine-derived polioviruses: changes in individual epitopes and relative stability of the overall immunological properties. J Virol 80(6):2641–2653.

Fig. S2. Deviations between serum neutralization of WPV1 strains *PV1-RC2010*, Bar65, and Tajik compared with Sabin-1. Relative reciprocal neutralization titers determined on RD cells against each WPV1 divided by those against Sabin-1 (" α -Sabin"). Bars pointing left indicate an excess of antibodies against Sabin-1 and vice versa. Null deviations are indicated by circles color-coded by each WPV1.

5% sequence distance

Wild PoliovirusesVaccine-derived PoliovirusesVaccine Polioviruses

Fig. S3. Phylogenetic relationships between PV1 used for comparative neutralization tests. The neighbor-joining phylogeny was calculated using Molecular Evolutionary Genetics Analysis Version 5 (1) with a percentage nucleotide distance substitution model and a complete deletion option. Full genomes were used for all viruses identified by strain names and GenBank accession numbers, where applicable. Values at nodes indicate statistical support from 1,000 bootstrap replicates.

1. Tamura K, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 28(10): 2731–9.

Fig. S4. WPV1 complete VP1 gene phylogeny including the RC2010 viruses and PV1 reference strains. The phylogenetic reconstruction was created with BEAST Version 1.4.7 (1) for the complete VP1 genome region of 76 PV1 strains isolated from 1990 to 2010. (Scale bar: 1980–2010; indicates evolutionary timing in years.) Filled circles at tree nodes indicate posterior probabilities above 0.95. African viruses are in red, Asian in blue, and others in black. Viruses from the RC2010 outbreak are given with patient codes.

1. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.

Table S1.	Results in laboratory-confirmed fatal poliomyelitis cases
Patient	RT-PCR

ration			itt i eit		
Code	Age, y	Throat swab	Rectal swab*	Cerebrospinal fluid	Virus characterization
PN20	21	_	+	N/A	VP1
PN21	14	+	+	-	VP1
PN23	18	+	+	N/A	VP1
PN27	12	-	+	N/A	VP1
PN28	23	-	+	N/A	VP1
PN30	18	N/A	-	+	_
PN31	22	-	+	-	VP1
PN32	18	N/A	+	N/A	VP1
PN33	20	+	+	N/A	VP1
PN35	20	-	+	N/A	VP1
PN37	24	+	+	-	VP1
PN43	20	N/A	+	N/A	VP1
PN45	20	N/A	+	N/A	Full genome, isolate PV1 RC2010

PNAS PNAS

N/A, not available; —, negative. *Second rectal swab samples for further laboratory confirmation could not be confirmed for the reason of death.

Table S2. Neutralizing antibody titers: Laboratory-confirmed poliomyelitis cases

Neutralization titer

Patient		Reciprocal, laboratory 1, Vero cells	Reciprocal, laboratory 2, RD cells		Reciprocal, laboratory 1, Vero cells		
Code	Age, y	PV1, PV2,	, PV3 Sabin	PV1 Mahoney	PV1 Sabin; repeated testing for comparison with RC2010	PV1 RC2010	Virus characterization
PN20	21	5, 80, 160	320, 160, 40	20	10	80	VP1
PN21	14	640, 640, 80	160, 1,280, 320	N/A*	640	40	VP1
PN23	18	2,560, 640, 80	160, 2,560, N/A*	N/A*	160	80	VP1
PN27	12	320, 320, 160	5,120, 640, 160	320	5,120	320	VP1
PN28	23	640, 640, 160	1,280, 640, 320	640	1,280	640	VP1
PN30	18	5,120, 1,280, 80	160, 40, N/A*	N/A*	640	80	
PN31	22	160, 640, 80	2,560, 2,560, 320	N/A*	2,560	320	VP1
PN32	18	80, 320, 20	N/A*	N/A*	80	40	VP1
PN33	20	1,280, 640, 160	N/A*	80	160	80	VP1
PN35	20	160, 10, 10	2,560, 320, 320	N/A*	80	10	VP1
PN37	24	640, 320, <5*	N/A*	640	640	160	VP1
PN43	20	320, 320, 160	2,560, 640, 1,280	160	5,120	160	VP1
PN45	20	80, 640, 640	640, 640, 320	320	80	320	Full genome, Isolate
							PV1 RC2010

*These titers could not be finally determined due to exhaustion of serum samples.

PNAS PNAS

Table S3.	Neutralizing antibod	v titers: Epidemiolog	ically linked	poliomyelitis ca	ases without laboratory	<pre>confirmation</pre>

			Νε	eutralization titer					
Patient		Reciprocal, laboratory 1, Vero cells	Reciprocal, laboratory 2, RD cells	Reciprocal, laboratory 1, Vero cells					
Code	Age, y	PV1, PV2,	PV3 Sabin	PV1 Mahoney	PV1 Sabin; repeated testing for comparison with RC2010	PV1 RC2010			
РК	23	80, 640, 160	5,120, 1,280, 320	N/A*	80	40			
PN6	19	2,560, 1,280, 10	320, N/A*, N/A*	N/A*	1,920	240			
PN8	26	5, N/A*, N/A*	N/A*	10	10	80			
PN9	21	1,280, 320, 80	N/A*	1,280	1,280	320			
PN10	17	160, 20, N/A*	80, 160, 40	160	160	80			
PN11	11	640, 320, 320	1,280, 320, 40	N/A*	640	160			
PN12	13	320, 160, 10	160, 640, 1,280	2,560	320	160			
PN17	26	320, 2,560, 160	2,560, 1,280, 640	640	640	2,560			
PN18	21	160, 2,560, N/A*	N/A*	160	160	80			
PN19	17	640, 640, 320	320, N/A*, 160	2,560	1,280	640			
PN41	22	640, 640, 80	320, 320, N/A*	N/A*	640	160			

*These titers could not be finally determined due to exhaustion of serum samples.

PNAS PNAS

			Neutralization ti	iter
Control		Recipr	ocal, laboratory 1	, Vero cells
Code	Age, y	PV1 Sabin	PV1 RC2010	PV1 Mahoney
GO	3	80	20	N/A*
JCE	43	20	20	160
GM	43	20	<10*	80
AO	56	80	40	N/A*
AE	48	320	80	N/A*
AN	29	10	10	20
CM	46	160	160	N/A*
EM	29	10	<10*	N/A*
CO	55	80	40	N/A*
MA	N/A	40	10	N/A*
EE	40	40	40	N/A*
ME	38	160	80	N/A*

Table S4. Neutralizing antibody titers: African healthy controls

 $\ensuremath{^*\text{These}}$ titers could not be finally determined due to exhaustion of serum samples.

Controls		Re	ciprocal, labora Vero cells	tory 1,	Reciprocal, RD	laboratory 2, cells	Reciprocal, laboratory 2, Hep2 cells		
Code	Age, y	PV1 Sabin	PV1 RC2010	PV1 Mahoney	PV1 Sabin	PV1 RC2010	PV1 Sabin	PV1 RC2010	
10/14246	26	N/A	N/A	N/A	256	32	512	32	
10/18599	27	N/A	N/A	N/A	384	64	512	64	
10/18620	23	N/A	N/A	N/A	>512	64	>512	64	
10/18627	25	N/A	N/A	N/A	>512	64	>512	64	
10/18628	21	N/A	N/A	N/A	128	32	384	64	
10/18629	27	N/A	N/A	N/A	512	64	256	64	
10/19066	25	N/A	N/A	N/A	>512	64	>512	64	
10/20787	24	N/A	N/A	N/A	32	<4*	48	<4*	
10/19071	22	80	20	80	192	32	128	96	
10/20787	24	20	<5*	5	32	<4*	48	<4*	
11/14082	22	20	10	N/A*	192	64	128	128	
11/19504	22	80	10	80	128	16	192	24	
11/19694	21	80	10	80	256	24	256	96	
11/19697	35	40	40	N/A*	384	128	384	384	
11/20102	24	80	80	N/A*	>512	384	512	512	
11/20203	23	20	<5*	N/A*	256	12	128	48	
11/20204	22	5	5	N/A*	192	8	192	64	
11/20210	24	20	<5*	N/A*	192	24	128	64	
11/20238	22	80	20	N/A*	>512	128	>512	512	
11/20247	22	160	20	N/A*	>512	32	>512	128	
11/20249	25	20	5	N/A*	256	48	384	64	
11/20250	23	10	5	N/A*	192	16	128	32	
11/20253	22	40	5	N/A*	192	32	128	48	
11/20357	22	>640	40	N/A*	>512	192	>512	48	
11/20359	23	80	20	N/A*	>512	96	384	96	
11/20496	24	5	<5*	N/A*	96	8	64	16	
11/20690	25	5	<5*	N/A*	64	16	48	48	
11/20804	22	40	5	N/A*	512	16	384	32	
11/20920	23	20	5	N/A*	384	48	256	64	
11/20934	23	20	5	N/A*	256	24	256	64	
11/21026	28	20	10	N/A*	192	16	256	64	
AFT	35	10	<5*	N/A*	32	<4*	32	<4*	
RMZ	27	10	<5*	N/A*	16	<4*	32	<4*	
SB	30	20	<5*	N/A*	128	<4*	96	<4*	

Table S5. Neutralizing antibody titers: German healthy controls (Medical students)

Neutralization titer

N/A, not available.

PNAS PNAS

*These titers could not be finally determined due to exhaustion of serum samples.

Table S6.	Neutralizing	antibody titers:	German	outpatients

Control		Reciprocal, laboratory 2, Hep2 cells				
Code	Age, y	PV1 Sabin	PV1 RC2010			
13-46	55	16	<4*			
13-53	35	384	64			
13-77	57	12	<4*			
13-105	17	512	192			
13-116	11	128	96			
13-124	8	96	24			
13-125	55	512	8			
13-126	13	256	256			
13-127	24	48	8			
13-136	26	96	96			
13-137	64	16	<4*			
12-645	21	96	16			
12-759	N/A	24	4			
12-760	N/A	48	16			
12-834	21	32	4			
12-838	15	64	8			
12-848	19	128	128			

Neutralization titer

N/A, not available.

*These titers could not be finally determined due to exhaustion of serum samples.

PNAS PNAS

Control				Reciprocal, l	aboratory 3, RD ce	lls	
Code	Age, y	PV1 Sabin*	PV1 RC2010	PV1 Bar65	PV1 Tajik (strain 35325)	VDPV1 (strain 11262)	VDPV2 (strain 35329)
10/14246	26	80	40	80	80	160	160
10/18599	27	160	40	80	80	160	160
10/18620	23	320	40	160	80	320	320
10/18627	25	640	40	160	80	320	320
10/18628	21	40	20	40	80	80	80
10/18629	27	80	20	40	40	160	160
10/19066	25	640	40	160	160	320	320
10/19710	22	20	10	10	10	20	20
10/20787	24	20	10	10	10	10	10
10/19071	22	80	20	40	40	80	80
11/14082	22	40	40	40	40	40	80
11/19507	22	80	<10 [†]	20	20	80	40
11/19694	21	80	<10 [†]	40	20	80	80
11/19697	35	320	80	160	80	320	320
11/20102	24	320	80	160	80	320	320
11/20203	23	80	<10 [†]	40	20	80	40
11/20204	22	80	<10 [†]	20	80	80	<10 [†]
11/20210	24	80	20	20	40	40	40
11/20238	22	320	160	160	160	640	320
11/20247	22	1,280	80	160	160	640	1,280
11/20249	25	80	20	80	80	160	80
11/20250	23	80	<10 [†]	40	40	80	80
11/20253	22	160	<10 [†]	40	40	40	80
11/20357	22	1,280	80	80	80	640	1,280
11/20359	23	320	80	160	80	320	320
11/20496	24	40	<10 [†]	<10†	10	20	40
11/20690	25	40	<10 [†]	20	20	40	20
11/20807	22	160	<10 [†]	40	20	160	160
11/20920	23	320	40	80	160	160	160
11/20934	23	160	20	40	40	80	160
11/21026	28	160	40	40	40	80	80

Table S7. Neutralizing antibody titers: German healthy controls (Medical students)

Neutralization titer

*Back titration yielded a challenge dose of 300–500 tissue culture infectious dose₅₀ (TCID₅₀) for Sabin-1; all other viruses were used at 100–150 TCID₅₀.

[†]These titers could not be finally determined due to exhaustion of serum samples.

PNAS PNAS

Table S8. Results of PV1 neutralization assays using three mAbs against AgS2 epitopes located in the VP2 and VP1 proteins

	Dilution, 1/x											
mAb	16	32	64	128	256	512	1,024	2,048	4,096	8,192	16,384	32,768
						PV1 N	lahoney*					
14D2E9	0/0	0/0	0/0	0/0	0/0	+/+	+/+	+/+	+/+	+/+	+/+	+/+
12(237)	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	+/+	+/+	+/+	+/+
14(427)	0/0	0/0	0/0	0/0	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
			Es	cape m	utant [·]	1083; si	te 2a mu	utant, VP	1 S221L [†]			
14D2E9	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
12(237)	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
14(427)	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	+/0	+/+
			Es	cape m	utant 1	1005; si	te 2b mu	utant, VP	2 P1705 [†]			
14D2E9	0/0	0/0	0/0	0/0	0/0	0/0	0/0	+/0	+/+	+/+	+/+	+/+
12(237)	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
14(427)	0	0	0	0	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
					PV1-R	C2010	outbreal	c strain				
14D2E9	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
12(237)	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
14(427)	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+

Virus strains and neutralization test results; duplicate assays

0, no CPE and neutralization of infectivity; +, CPE and no neutralization.

*mAb 14D2E9 binds specifically in site 2a (1) and has been found to correlate well with neutralizing antibody titers against PV1 (2); 237 is a mAb eliciting a VP2 P170S exchange (escape mutant 1005) as published in ref. 3; 427 binds a composite epitope in AgS2.

^{*PV1*} mutants generated by culture under antibody pressure, as published in ref. 3. Mutant 1083 (designated as "9" in ref. 3) has a mutation in AgS2a, VP1 residue 221 (S \rightarrow L). Mutant 1005 (designated as "7" in ref. 3) has a mutation in AgS2b, VP2 residue 170 (P \rightarrow S).

1. Osterhaus AD, et al. (1983) Monoclonal antibodies to polioviruses. Comparison of intratypic strain differentiation of poliovirus type 1 using monoclonal antibodies versus crossabsorbed antisera. Intervirology 20(2-3):129–136.

2. Herremans MM, et al. (1997) Evaluation of a poliovirus-binding inhibition assay as an alternative to the virus neutralization test. Clin Diagn Lab Immunol 4(6):659-664.

3. Minor PD, Ferguson M, Evans DM, Almond JW, Icenogle JP (1986) Antigenic structure of polioviruses of serotypes 1, 2 and 3. J Gen Virol 67(Pt 7):1283-1291.

SANG SANG