Supporting Information

Palovaara et al. 10.1073/pnas.1402617111

Fig. S1. Taxon-specific dynamics in gene expression patterns in the Pacific off Monterey Bay. Dynamics in SAR11 (*A* and *B*) and SAR86 (*C* and *D*) clade-specific relative expression levels of the genes encoding proteorhodopsin and RecA compared with light intensity (*A* and *C*) and the genes encoding isocitrate lyase and malate synthase (*B* and *D*). Figure based on gene-specific analyses of metatranscriptome data over a 48-h period in natural seawater at 23 m depth reported by Ottesen et al. (1), who showed SAR11 and SAR86 were the dominant heterotrophic bacteria clades in the studied seawater samples. Percent transcripts in total bacterioplankton community were obtained by BLASTX against RefSeq.

1. Ottesen EA, et al. (2013) Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA 110(6):E488-E497.

Fig. 52. Proposed alterations in metabolic pathways in *Dokdonia* sp. MED134 during growth in seawater with yeast extract and peptone (YEP) or alanine (Ala) in the absence (A) or presence (B) of light. In the dark, MED134 behaves like a standard chemoheterotrophic bacterium (A). Oxidation of a major portion of available organic matter for aerobic respiration is needed to generate the proton motive force that provides energy for growth. Only the remaining carbon can be used for biomass production. The much lower growth yield with Ala compared with YEP in dark cultures (Fig. 1) is consistent with the general notion that growth of bacteria on single carbon compounds imposes important metabolic challenges compared with growth with rich mixed carbon sources (the degree of difference depending on organism and the substrates compared). A shows part of this difference by indicating regular glycolysis and tricaboxylic acid (TCA) cycle functioning in the case of YEP, but emphasizing gluconeogenesis in the case of Ala. Interesting metabolic shifts occur when the cells are exposed to light (B). Thanks to proteorhodopsin (PR) proton pumping, and mediated by strongly increased expression of the PR gene, light energy can be used to generate a significant portion of the proton motive force and/or ATP for growth. Thus, a lower fraction of available dissolved organic carbon (DOC) needs to be oxidized to supply energy for cell metabolism. Consequently, a larger fraction of the carbon can be used for biosynthesis. This shift in metabolism is not the only significant change however. Further shifts in metabolism are illustrated in *B* by highlighting that PR phototrophy induces carbon dioxide transport into the cell through BicA, the concentration/interconversion of carbon dioxide to bicarbonate by carbonic anhydrase, and its subsequent anaplerotic fixation by ATP dependent pyruvate carboxylase. In YEP, the metabolism is mainly directed through the standard TCA cycle, whereas in Ala it goes through the glyoxylate shunt to thereby

Table S1	I. Statistic	al analysis o	f changes in relativ	'e gene exp	ression leve	ls between ti	ime points withi	n light treatme	ent or darknes	s in YEP and A	la cultures, as dete	ermined by	Fisher's
least sig	anificant dif	iference test	following repeate	d-measures	S ANOVA		2-Oxoglutarate				Malate dehydro-		
Media	Light condition	Time (h)	Proteorhodopsin	BicA	Carbonic anhydrase	lsocitrate dehydrase	dehydro- genase (E1)	Pyruvate carboxylase	PEP carboxy- kinase	PEP carboxylase	genase (NADP ⁺ , decarboxylating)	lsocitrate lyase	Malate synthase
ΥEP	Light	19 vs. 36	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		19 vs. 46	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.01	P < 0.05
		19 vs. 67	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.05
		19 vs. 114	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.05
		36 vs. 46	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	P < 0.01
		36 vs. 67	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.01
		36 vs. 114	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		46 vs. 67	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		46 vs. 116	<i>P</i> < 0.01	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001
		67 vs. 116	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	P < 0.01
	Dark	19 vs. 36	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		19 vs. 46	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	P < 0.05
		19 vs. 67	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.05
		19 vs. 114	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> > 0.05
		36 vs. 46	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.05	<i>P</i> < 0.01	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01
		36 vs. 67	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> < 0.05
		36 vs. 114	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05
		46 vs. 67	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> > 0.05
		46 vs. 116	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P < 0.05
		67 vs. 116	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05
Ala	Light	24 vs. 51	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.01	P > 0.05	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.001	P < 0.001
		24 vs. 72	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001
		24 vs. 94	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	P < 0.001
		24 vs. 141	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	P < 0.001
		51 vs. 72	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		51 vs. 94	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	P < 0.05
		51 vs. 141	<i>P</i> < 0.001	P < 0.001	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	P < 0.001
		72 vs. 94	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	P < 0.05
		72 vs. 141	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001

Cont.	
•	
<u> </u>	
S	
Ð	
q	
a	
F	

							2-Oxoglutarate				Malate dehydro-		
Media	Light condition	Time (h)	Proteorhodo <i>p</i> sin	BicA	Carbonic anhydrase	lsocitrate dehydrase	dehydro- genase (E1)	Pyruvate carboxylase	PEP carboxy- kinase	PEP carboxylase	genase (NADP ⁺ , decarboxylating)	lsocitrate lyase	Malate synthase
		94 vs. 141	<i>P</i> < 0.01	<i>P</i> < 0.01	<i>P</i> < 0.01	P > 0.05	P > 0.05	<i>P</i> < 0.05	P > 0.05	<i>P</i> < 0.01	P > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001
	Dark	24 vs. 51	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		24 vs. 72	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		24 vs. 94	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		24 vs. 141	<i>P</i> < 0.001	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> < 0.001	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.01	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05
		51 vs. 72	P > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		51 vs. 94	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		51 vs. 141	<i>P</i> < 0.001	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		72 vs. 94	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		72 vs. 141	<i>P</i> < 0.01	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05
		94 vs. 141	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> < 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	<i>P</i> > 0.05	P > 0.05
											1		

Statistical significance levels are indicated by different types of shading: dark blue, P < 0.001; medium blue, P < 0.01; pale blue, P < 0.05; white, not significant (P > 0.05).

PNAS PNAS

Table S2.	Abundance of the genes encoding PR, isocitrate lyase (AceA), malate synthase (AceB), and recombinase A (RecA) in samples
from the g	Jobal ocean survey

Samplo	Total	PR (no.	AceA (no.	AceB (no.	RecA (no.	PR:RecA	AceA:RecA	AceB:RecA
	peptides	011113)	01 mits)	of filts)	of filts)	(70)	(70)	(70)
GS000a—Sargasso Sea	1,002,506	179	329	502	303	59.1	108.6	165.7
GS000b—Sargasso Sea	492,305	262	230	430	339	//.3	67.8 6F.0	126.8
GS000d Sargasso Sea	517 2/10	200	214	540 //22	329	77.0 66.6	55 C	105.5
GS001c—Hydrostation S	138 631	96	63	108	141	68.1	44 7	76.6
GS002—Gulf of Maine	195,047	93	68	100	159	58.5	42.8	79.2
GS003—Browns Bank Gulf of Maine	100,992	43	37	43	59	72.9	62.7	72.9
GS004—Outside Halifax Nova Scotia	86,213	39	50	54	63	61.9	79.4	85.7
GS005—Bedford Basin Nova Scotia	100,367	38	22	24	97	39.2	22.7	24.7
GS006—Bay of Fundy Nova Scotia	96,567	65	47	59	97	67.0	48.5	60.8
GS007—Northern Gulf of Maine	84,286	43	33	27	78	55.1	42.3	34.6
GS008—Newport Harbor RI	211,453	89	31	106	126	70.6	24.6	84.1
GS009—Block Island NY	120,589	53	49	93	76	69.7	64.5	122.4
GS010—Cape May NJ	124,769	63	50	84	87	72.4	57.5	96.6
GS011—Delaware Bay NJ	202,844	76	35	104	125	60.8	28.0	83.2
GS012—Chesapeake Bay MD	205,465	/5	3/	8/	160	46.9	23.1	54.4
GS013—Off Nags Head NC	226,967	63 116	5/	101	100	54.3	49.1	87.1
GS014—South of Charleston SC	207,360	0/1	98	147	188	64.8	52.1	78.2 73.1
GS016—Gulf of Mexico	203,933	94	68	100	145	61.2	44.8	69.7
GS017—Yucatan Channel	415 844	180	128	242	372	48.4	34.4	65.1
GS018—Rosario Bank	230,700	85	88	141	223	38.1	39.5	63.2
GS019—Northeast of Colon	218,170	104	49	102	232	44.8	21.1	44.0
GS020—Lake Gatun	471,840	149	76	66	537	27.7	14.2	12.3
GS021—Gulf of Panama	212,561	88	73	140	201	43.8	36.3	69.7
GS022—250 miles from Panama City	193,148	73	63	120	157	46.5	40.1	76.4
GS023—30 miles from Cocos Island	212,713	83	70	148	218	38.1	32.1	67.9
GS025—Dirty Rock Cocos Island	201,505	15	9	7	140	10.7	6.4	5.0
GS026—134 miles NE of Galapagos	164,342	62	61	127	152	40.8	40.1	83.6
GS027—Devil's Crown Floreana Island	353,225	183	146	258	292	62.7	50.0	88.4
GS028—Coastal Floreana	301,799	164	93	213	253	64.8	36.8	84.2
GS029—North James Bay Santigo Island	208,795	112	66 220	13/	184	60.9	35.9	/4.5
GS030—Warm seep Roca Redonda	492,926	243	238	414 E20	410	59.3	58.0	101.0
GS031—Opwening Fernandina Island	222.062	202	549	220	116	04.1 28.4	64.7	95.2 70.7
GS032—Hypersaline Lagoon	1 083 /85	210	216	37/	533	20.4	40.5	70.7
GS034—North Seamore Island	215 123	84	59	109	182	46.2	32.4	59.9
GS035—Wolf Island	225.307	119	87	129	170	70.0	51.2	75.9
GS036—Cabo Marshall Isabella Island	124,562	41	57	64	117	35.0	48.7	54.7
GS037—Equatorial Pacific TAO Buoy	101,325	45	32	78	83	54.2	38.6	94.0
GS047—201 miles from F, Polynesia	102,474	48	28	64	84	57.1	33.3	76.2
GS048a—Moorea Cooks Bay	142,956	56	45	89	96	58.3	46.9	92.7
GS049—Moorea Outside Cooks Bay	145,765	62	38	116	117	53.0	32.5	99.1
GS051—Rangirora Atoll	205,339	93	86	110	202	46.0	42.6	54.5
GS108—Lagoon Reef	1,543,979	594	531	1142	1549	38.3	34.3	73.7
GS108a—Coccos Keeling Inside Lagoon	81,323	16	21	48	52	30.8	40.4	92.3
GS109—Indian Ocean	94,829	31	12	58	72	43.1	16.7	80.6
GS110a—Indian Ocean	157,847	67	49	86	145	46.2	33.8	59.3
GS111—Indian Ocean	93,629	39	36	61	6/	58.2	53.7	91.0
GS112—Indian Ocean	1,217,028	400	529	/83 77	1219	32.8 57.0	27.0	64.Z
GS112 Indian Ocean	136,363	82	55	103	121	56.9	45.8	05.0 71.5
GS114—500 Miles west Sevenelles	536 593	214	175	315	443	48.3	39.5	71.5
GS115—Indian Ocean	96.414	48	27	52	73	65.8	37.0	71.2
GS116—Outside Sevchelles Indian Ocean	96.918	49	2,	67	76	64.5	31.6	88.2
GS117a—St, Anne Island Sevchelles	530,775	255	199	333	397	64.2	50.1	83.9
GS119—Off Reunion Island	97,846	43	26	70	87	49.4	29.9	80.5
GS120—Madagascar Waters	72,241	35	19	45	59	59.3	32.2	76.3
GS121—Indian Ocean off South Africa	177,501	70	42	122	125	56.0	33.6	97.6
GS122a—Indian Ocean off South Africa	164,110	66	58	90	116	56.9	50.0	77.6
GS123—Indian Ocean off South Africa	173,644	87	75	103	105	82.9	71.4	98.1

PNAS PNAS

Table S2. Cont.

PNAS PNAS

Sample	Total peptides	PR (no. of hits)	AceA (no. of hits)	AceB (no. of hits)	RecA (no. of hits)	PR:RecA (%)	AceA:RecA (%)	AceB:RecA (%)
GS148—East coast Zanzibar, off Paje lagoon	168,982	81	67	100	115	70.4	58.3	87.0
GS149—West coast Zanzibar, harbor region	172,203	82	67	124	143	57.3	46.9	86.7
Summary	17×10^{6}	7,087*	5,881*	10,727*	13,928*	$54.6 \pm 13.9^{\dagger}$	$43.5 \pm 16.5^{++}$	$77.7 \pm 24.9^{\dagger}$

*Total number of hits in the investigated samples. [†]Mean values \pm SD of frequencies of PR, AceA, and AceB abundances normalized to RecA across the investigated samples (n = 63).

Table S3. Genes and primer sets used for quantitative PCR

Gene product	ORFs*	Primer pair (forward/reverse)	Product size (bp)
Proteorhodopsin	MED134_07119	AACCGGATACATAGGCGAAG/ACAGCTCCACCTGCCCTTAC	141
BicA	MED134_10061	GGCTACGGCAACAAGAGGT/GGATGGAGAAAACACCCTGTC	169
Carbonic anhydrase	MED134_10056	ACGAGTTTTGACCCAGCAAC/TGTATCGACTCTCGCGTACCT	146
Pyruvate carboxylase	MED134_06244	CAGGAGGAATAGCCGAAGGT/ATGTGCCCCAGCATTTTCTA	122
PEP carboxykinase	MED134_10331	TGGGTAAAACCGCATCATCT/GCAAACGCCTCTTCTTCAAA	154
PEP carboxylase	MED134_06089	CGCTCACCATTTTCATCTTG/CGGAGGGTTATCTCGCTTTA	157
Malate dehydrogenase (NADP ⁺ , decarboxylating) [†]	MED134_11446	CGTGTTTTTAGGTCTCTCTGTGG/CCTTCCCGTTGCCATTATT	160
Isocitrate dehydrogenase	MED134_14141	AGTATGGGTGCTTGGAGTGC/CGTATGTTGCCTGCCTCTTT	110
2-Oxoglutarate dehydrogenase (E1)	MED134_07711	CCGCACATACCGCTTACTTT/CCACAGTCTCTCCCCCTACA	153
Isocitrate lyase	MED134_01780	GGCACCAAGATGGAAAGGTA/AGTAAGACCAGCCCCCTCA	140
Malate synthase	MED134_01770	TGCTACAGCCGAAATCTCAA/ATCTTATCTGCCCCCACCTC	153
RpoD [‡]	MED134_12871	CACGGTCAGGGTTAGGTGAT/TGCAAAGGAGCTGGATATGA	152
RecA [‡]	MED134_08916	ACTCAAAAATGGGGCTTCAC/CCCGTAGTAGTCTCTGGGTTTC	151

*The ORFs of Dokdonia sp. MED134 can be accessed using GeneBank accession no. AAMZ00000000.

[†]This enzyme (EC:1.1.1.40) has traditionally been referred to as malic enzyme, but is currently denoted malate dehydrogenase (oxaloacetate-decarboxylating) (NADP⁺) or malate dehydrogenase (NADP⁺, decarboxylating) as used here.

[‡]Reference genes used for normalization.

PNAS PNAS