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Evaluation of the Force on a Vertex Due to Bending
The free energy of our model membrane comprises bending,
stretching, and electrostatic energies. As we adopt a molecular
dynamics simulation method as the basis of minimizing the free
energy, the energy expression does not suffice (as it would for
example in case of a Monte Carlo simulation of the membrane).
We require analytical expressions for the gradients of the energy
with respect to the vertex positions. Whereas the evaluation of the
gradient of stretching and electrostatic energy terms is straight-
forward, computing the gradient of the bending term involves
some key steps that we highlight here.
We begin with a summary of our discretized membrane model.

We work with a membrane that is a 2D, closed surface that is
embedded in three dimensions, and it has spherical topology. We
model the membrane as a mesh of discrete points that are as-
sumed to form a triangular lattice. We call the discrete point
a vertex. The basic unit of the discretized membrane is a triangle
that is identified by three vertices, three edges, and one face. Each
edge has exactly two vertices and two adjoining faces, and each
face has exactly three vertices and three edges.
Consider a face identified by the index k with vertices v0, v1, v2,

which have the respective position vectors r0, r1 and r2, where
the vectors are being defined with respect to an origin that is
chosen arbitrarily. We define relative position vectors rij = ri − rj.
The area Ak of the face can be expressed in terms of these rel-
ative position vectors as

Ak =
1
2
jr10 × r20j: [S1]

Note that Ak is invariant under cyclic permutation of the indices
0 → 1 → 2 → 0. In other words,

Ak =
1
2
jr10 × r20j= 1

2
jr21 × r01j= 1

2
jr02 × r12j: [S2]

Finally, the normal vector associated with the kth face can be
written as

n̂k =
r20 × r21
jr20 × r21j: [S3]

Using the definition of area Ak, we can also write the normal
vector as

n̂k =
r20 × r21
2Ak

: [S4]

To simulate the bending of the membrane, we use the following
discretized form for the bending energy:

UB =
κ

2

X
e∈E

jn̂e;1 − n̂e;2j2; [S5]

which forms the first term in Eq. 1. Here, n̂e;1 and n̂e;2 are nor-
mals to the two adjacent faces that share the edge e, E is the set
of all edges, and κ is a constant related to the bending rigidity of
the continuum membrane. We can promptly reduce the above
expression to the following:

UB = κ
X
e∈E

�
1− n̂e;1 · n̂e;2

�
: [S6]

The bending force fi on a vertex vi is the negative gradient of UB
at ri, where ri is the position vector of the vertex vi. It is easy to
see from the above equation that fi is

f i = κ∇ri

X
e∈E

n̂e;1 · n̂e;2: [S7]

We now describe the procedure used to compute the bending
force fi. The sum in Eq. S7 is over all of the edges of the dis-
cretized membrane. Because the gradient of a sum is the sum of
the gradients, it suffices to show the process for the gradient
computation for one edge, the final result for the gradient can be
arrived at by repeating the procedure for all of the other edges
and consolidating the gradient evaluations. Consider an edge
e and let us identify the faces that share this edge with indices k
and l. Let n̂k and n̂l be respectively the normals associated with
faces k and l. Further, let us associate the face k with vertices v0,
v1, and v2. With no loss of generality, we identify vertices v0, v2,
and v3 to face l (recall that faces k and l are neighbors). Clearly,
the edge between v0 and v2 is the shared edge (Fig. S1). We
define r0, r1, r2, and r3, respectively, as the position vectors of v0,
v1, v2, and v3. It should be evident that n̂k · n̂l is a function of the
position vectors of all of the four vertices. If the vertex vi is not
one of these four vertices, the contribution to the force fi from
this edge vanishes. Further, it is not difficult to see that the ex-
pression for the gradient with respect to the (position vector of)
vertex vi when vi is one of the vertices that lied on the shared
edge e (vi = v0 or vi = v2) is different from the gradient expression
for the vertex vi which is not on the shared edge (vi = v1 or vi = v3).
From symmetry considerations, the result for the gradient with re-
spect to r0 leads to the expression for the gradient at the v2 vertex.
Similarly, the gradient expression for the v3 vertex is obtained from
the result for the gradient with respect to vertex r1. Thus, we only
need to perform two gradient calculations explicitly.
It is useful to define a scalar s as

s= ðr20 × r21Þ · ðr20 × r32Þ; [S8]

with which we can write

n̂k · n̂l =
s

4AkAl
: [S9]

It is easy to show that the gradient in the above expression takes
the form

∇
�
n̂k · n̂l

�
=

1
4AkAl

 
∇s− s

�
∇Ak

Ak
+
∇Al

Al

�!
: [S10]

The gradient of s, Ak, and Al can be readily evaluated from Eqs.
S8 and S1 with respect to r0 and r1. These gradient evaluations
allow us to first calculate the gradient of n̂k · n̂l with respect r0
following Eq. S10. Switching indices 0 and 2 in the resulting
expression and multiplying the result by a negative sign leads to
the expression for the gradient of n̂k · n̂l with respect to r2. Next, we
compute the gradient of n̂k · n̂l with respect to r1. Switching indices
1 and 3 in the resulting expression and multiplying the result by
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a negative sign leads to the expression for the gradient of
n̂k · n̂l with respect to r3. This completes the evaluation of
the contribution from the edge e toward the bending force
on a vertex vi.

Analysis of Shape Transitions in Charged Shells
In the main text, we simulate a closed soft shell with a fixed
amount of charge uniformly distributed on the surface. We let the
charges interact via a screened (Debye–Hückel) potential field
which can be tuned, and allow only those deformations to the
shape of the shell that preserve the enclosed volume. The initial
shell conformation is set to be spherical. Our key finding is that
upon increasing the strength of the electrostatic interactions,
either by increasing the Debye length or enhancing the charge z
associated with a discretized vertex on the shell, the shape of the
shell changes. In general, the shape transition obeys the order
spheres → ellipsoids → discs → bowls, and we have demonstrated
that the shape change is driven by the reduction of electrostatic
energy. For some cases, the parameter range to observe the full
spectrum of the aforesaid shapes is too narrow and we see a sphere
directly changing into bowl-shaped structures. In the main text, we
also provided explanations for the origin of observed shape tran-
sitions which were substantiated by analytical calculations resulting
from the consideration of the deformation of a charged spherical
shell into oblate spheroidal shells of varying eccentricity. Here we
provide the details of the analytical calculations.
The explanation provided in the main text for the observed

transitions is as follows. Due to the mutual repulsion between the
surface charges, the shell seeks to expand and stretch. Because the
volume enclosed in the shell must remain fixed, the shell increases
its area to lower its electrostatic energy. However, an increase of
area costs in stretching (and to a lesser extent, bending) energy.
The competition between the stretching and electrostatic energy
sets an effective area for the membrane, which the latter must
conform to. The salt concentration c controls this competition,
and hence the area assigned, thus leading to the formation of a
variety of shapes, including discs and bowls. We test this expla-
nation by performing analytical calculations for the following
simpler version of our simulation system. We focus on the initial
half of the observed shape transition sphere → ellipsoid → disc.
Judging by the simulation snapshots (Fig. 1), we approximate
these shapes as oblate spheroids with different degrees of ec-
centricity e and major semiaxis lengths a. Because the volume of
the shell is fixed, we realize that e and a are coupled and our
simplified model shell can be characterized by a single parameter
which we choose to be e. The competition between elastic and
electrostatic energies can now be considered as determining the
eccentricity e for the oblate spheroid. The concentration c, which
in the original simulation served as a control over the area of the
membrane, can now be considered as tuning the eccentricity. In
other words, the lowering of c can be understood as an increase
in e for the oblate spheroid. Thus, we set out to examine the
behavior of the electrostatic energy of an oblate spheroidal shell
as its eccentricity is changed.
Because an exact calculation of the electrostatic energy of an

oblate spheroidal shell with Debye–Hückel type of charge–charge
interaction is more cumbersome, we invoke another approximation
and examine the pure Coulomb energy of a uniformly charged
oblate spheroidal shell. Because we also observe shape transitions
by varying the charge strength of the shell at a fixed concentration
(which can assume a low value), computing the bare Coulomb in-
teraction result does have a direct relevance to our simulation
findings. We will often, as an example to compare back to our
simulation results, refer to the particular shape transition ob-
served for the shell represented by bending rigidity of κ = 10 and
z = 0.6. This transition is recorded in the shell snapshots be-
longing to the right column in Fig. 1 and next in the open blue

circles of Fig. 3. For convenience, we show the snapshots asso-
ciated with this shape transition at the top of Fig. S2.
We now derive the general expression for the Coulomb energy

of a uniformly charged oblate spheroidal shell, which, to the best
of our knowledge, is not available in the literature.

Electrostatic Energy of a Uniformly Charged Oblate Spheroidal Shell.
An ellipsoid is described by the equation

x2

a21
+
y2

a22
+
z2

a23
= 1; [S11]

where a1, a2, and a3 are the semiprincipal lengths associated with
the three Cartesian axes. A spheroid is an ellipsoid whose cross-
section normal to the z axis (the choice of the axis is arbitrary) is
a circle (rather than an ellipse). An oblate spheroid is a spheroid
where a1 = a2 > a3. The following is an equation that generates
an oblate spheroid:

r2

a21
+
z2

a23
= 1; [S12]

where r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
is the distance between the point on the sur-

face of the spheroid and the z axis. It is convenient to define the
eccentricity e as

e=

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

a23
a21

s
: [S13]

Note that 0 < e < 1 for an oblate spheroid. When e → 0, the
oblate spheroid reduces to a sphere. In the opposite limit of e →
1, one obtains a circular disc. We will invoke these limits at
several places in what follows. Also, from here forward, we will
identify a1 = a.
First we consider oblate spheroidal coordinates u, v, ϕ, which

are related to the Cartesian coordinates x, y, and z by

x= ae coshðuÞsinðvÞcosðϕÞ; [S14]

y= ae coshðuÞsinðvÞsinðϕÞ; [S15]

z= ae sinhðuÞcosðvÞ; [S16]

where

0≤ u<∞; 0≤ v≤ π; − π <ϕ≤ π: [S17]

The set (u, v, ϕ) uniquely characterizes a point in the 3D space. It
is straightforward to show that the metric coefficients are

hu = hv = ae
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 u+ cos2 v

p
; hϕ = ae cosh u sin v; [S18]

with which the form for the Laplacian ∇2Φ = 0 is readily obtained.
The oblate spheroidal shell in these coordinates is represented by
the simple equation u = u0, where u0 is connected to the eccentricity
via the relation

sech u0 = e: [S19]

The region of space interior to the spheroid corresponds to the
values 0 ≤ u < u0 and the exterior region is represented by the
u > u0 domain.
Gaussian units will be used in the following calculation. Our goal

is to find the electrostatic potential generated by a uniformly
charged oblate shell represented by u = u0. Because this system has
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axial symmetry, the electrostatic potential created by the oblate
spheroid will depend only on the coordinates u and v. Using
separation of variables we can write the solution as Φ(u, v) = U(u)
V(v), upon which the Laplace equation separates into two differ-
ential equations for u and v. A closer examination of these
equations reveals the general solution for the potential to be

Φðu; vÞ=
X∞
n=0

�
AnPnði sinh uÞ+BnQnði sinh uÞ

�
Pnðcos vÞ; [S20]

where Pn and Qn are Legendre functions of the first and second
kind respectively, and An and Bn are unknown coefficients. To
ensure that the solutions are bounded in the interior and exterior
regions of the spheroid, we find that An = 0 in the domain u > u0,
and Bn = 0 when 0 < u < u0. We thus have the following form for
the potential inside and outside the oblate shell:

Φin =
X∞
n=0

AnPnði sinh uÞPnðcos vÞ; [S21]

Φout =
X∞
n=0

BnQnði sinh uÞPnðcos vÞ: [S22]

The potential must be continuous at the shell surface u − u0 = 0.
This boundary condition leads to the relation

AnPnði sinh u0Þ=BnQnði sinh u0Þ [S23]

for n = 0, 1, 2, . . .. Note that sinh u0 = ð1=eÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
. The disconti-

nuity in the normal component of the electric field at the charged
surface provides the other boundary condition:

−û ·∇Φout + û ·∇Φin = 4πσ; [S24]

where σ is the surface-charge density. Using the expression for
the gradient in oblate coordinates, the above equation becomes

1
hu

δΦin

δu

����
u=u0

−
1
hu

δΦout

δu

����
u=u0

= 4πσ; [S25]

where hu is given by Eq. S18. Using Eqs. S21 and S22 in Eq. S25,
the above boundary condition becomes

X∞
n=0

�
AnP′nði sinh u0Þ−BnQ′nði sinh u0Þ

�
i cosh u0Pnðcos vÞ

= 4πσa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 sin2 v

p
:

[S26]

Using Eq. S23 in Eq. S26, we can eliminate Bn in favor of An and
solve for the latter to obtain

An =
2n+ 1

2
4πσai cosh u0Qnði sinh u0Þ

×
Zπ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 sin2 v

p
Pnðcos vÞsin v dv;

n= 0; 1; . . . :

[S27]

In arriving at this result we used the identity

W
�
PnðzÞ;QnðzÞ

�
=

1
1− z2

; [S28]

where W is the Wronskian of Pn(z) and Qn(z), and the orthogo-
nality relation for the Legendre polynomials

Zπ
0

Pnðcos vÞPlðcos vÞsin v dv= 2
2n+ 1

δnl: [S29]

It is easily checked that for odd n, the integral in Eq. S27 van-
ishes, implying A1 = A3 = A5 . . . = 0. Using An in Eq. S23, Bn is
known as well and consequently from Eqs. S21 and S22, the
electrostatic potential can be calculated at any point in space.
For the computation of the electrostatic energy, the knowledge

of the potential on the shell surface suffices. Using Eqs. S21 and
S27, we obtain the surface potential as

Φshellðv; e; aÞ= 4πσai cosh u0 ×
X

n=0;2;4;...

2n+ 1
2

Qnði sinh u0Þ

×Pnði sinh u0ÞInðeÞPnðcos vÞ;
[S30]

where In(e) is the integral

InðeÞ=
Zπ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 sin2 v

p
Pnðcos vÞsin vdv: [S31]

The electrostatic energy is given by the equation

U =
1
2

Z
σΦshelld2s: [S32]

The shell surface area element in the oblate spheroidal coordi-
nates is given by

d2s= hvhϕ dvdϕ= a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 sin2 v

p
sin vdvdϕ; [S33]

where the second equality follows from Eqs. S18 and S19. After
substituting this expression for the area element in Eq. S32 and
using Eq. S30, we find the electrostatic energy to be

Uðe; a; σÞ= 4π2σ2a3i cosh u0 ×
X

n=0;2;4;...

2n+ 1
2

Qnði sinh u0Þ

×Pn
�
i sinh u0ÞðInðeÞ

�2
:

[S34]

As we consider the shell to have a uniformly distributed total
charge Q, it is useful to express the result in terms of Q rather
than σ. Using the fact that the area of an oblate spheroid is

Aðe; aÞ= 2πa2SðeÞ; [S35]

where

SðeÞ= 1+
�
1
e
− e
�
tanh−1 e; [S36]

we obtain the electrostatic energy of the oblate shell as

Uðe; a;QÞ=Q2

a
1�

SðeÞ�2
i
e
×

X
n=0;2;4;...

2n+ 1
2

Qn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!

×Pn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!�
InðeÞ

�2
:

[S37]
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Note that we have assumed throughout the above derivation that
the spheroidal shell is in free space. If the environment surround-
ing the shell is polarizable, the above result for the energy must be
scaled down by the dielectric constant of the environment assuming
that the latter can be represented as a uniform dielectric medium.
We now take a quick look at the limiting cases of the energy

expression found in Eq. S37. First we let e approach zero, which
corresponds to a spherical shell, and find

Uðe→ 0; a;QÞ=Q2

2a
: [S38]

Indeed, we recover the well-known result for the energy of a uni-
formly charged spherical shell. Taking the opposite limit, e → 1,
which corresponds to a circular disc, gives

Uðe→ 1; a;Q; n≤ 6Þ= 0:84872
Q2

a
; [S39]

where we have included terms up to n = 6 in the expansion in Eq.
S37 as the series converges rapidly [in what follows, we will work
with the expression of U(e, a, Q) that includes terms up to n = 6].
Unlike the spherical case, it is difficult to locate the energy of
a uniformly charged disc in the literature. It can, however, be
derived using the result for the electrostatic potential on the
surface of a disc obtained in ref. 1. Carrying out the derivation,
we obtain the electrostatic energy of a uniformly charged disc of
radius a and total charge Q as

Udisc =
8
3π

Q2

a
: [S40]

We can now compare the disc energy obtained in Eq. S39 with
the above exact result and find the deviation to be

Udisc −Uðe→ 1; a;Q; n≤ 6Þ
Udisc

× 100≈ 0:01%: [S41]

Clearly, the two energies are in very good agreement.

Application of Volume Constraint. In our simulations, the shell
deforms under the constraint of constant volume. The volume of
an oblate spheroid is

Ωðe; aÞ= 4
3
πa3

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p
: [S42]

This equation suggests that if Ω is fixed, a and e are coupled. The
volume of the shell in our simulations is constrained to its initial
volume which was taken to be that of the sphere of radius R.
Hence, a and e become related via the equation

a≡ aðe;RÞ= R

ð1− e2Þ16
: [S43]

Eliminating a from Eq. S37, we arrive at the expression for the
electrostatic energy of an oblate spheroidal shell constrained to
a fixed volume of (4/3)πR3 as a function of the eccentricity e:

Uðe;R;QÞ= lB
Q2

R

�
1− e2

�1
6

ðSðeÞÞ2
i
e
×

X
n=0;2;4;...

2n+ 1
2

Qn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!

×Pn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!�
InðeÞ

�2
;

[S44]

where we have expressed the final result in a dimensionless form
by introducing Bjerrum length lB (in other words, the energy is
measured relative to the thermal energy at room temperature).
Note that Q is now the charge in units of electron charge. Be-
cause in our simulation we consider the charged shell to be
present in an aqueous medium, we take lB = 0.714 nm (the
Bjerrum length in water), and we use R = 10 nm just as is the
case with our simulated system. We define the quantity dU as

dU =Uðe;R;QÞ−Uðe→ 0;R;QÞ; [S45]

which is the energy relative to the electrostatic energy of the
sphere with identical parameters.
We now evaluate dU for the case of Q = 600 and report its

variation with e in Fig. S2. We show the eccentricity e increasing
from 0 on the right to 1 on the left, inviting a comparison with
Fig. 3 (upper half). It is clearly seen that the energy of an oblate
spheroidal shell subject to the constraint of constant volume
decreases with increasing e. In other words, a charged shell with
an ellipsoid-like shape has lower Coulomb energy than a charged
sphere of the same volume, and further, a disc-like shape re-
duces the Coulomb energy even more. Hence, the order of
transitions between these shapes as predicted by our simulations
is backed by the above analytical results. Further, we consider
the curve followed by the blue open circles in the upper half of
Fig. 3 which shows the change in the total electrostatic energy of
the shell (relative to the spherical conformation) as the con-
centration is lowered. This curve corresponds to the case of Q =
600 with associated snapshots shown in the top of Fig. S2.
Comparison between this curve and the analytical result pro-
duced in Fig. S2 shows that our calculations qualitatively agree
with the trend captured in our simulations. We note that the
level of approximation we have used in these analytical calcu-
lations performed for the simplified version of our simulation
system does not allow us to make quantitative comparisons.
In Fig. 4 we showed the spatial distribution of electrostatic

energy on the surface of a disc (top row) as predicted by our
simulations. Our analytical calculations allow us to confirm some
of the features of this distribution. Eq. S30 provides the potential
on the surface of the oblate shell characterized by eccentricity e
and major semiaxis a as a function of the oblate spheroidal co-
ordinate v. This expression can be quickly converted into a form
that complies with the aforementioned constraint of constant
volume by using Eq. S43 to substitute for a in terms of e and R.
The local electrostatic potential energy UL can be defined in
terms of the resulting potential as UL(v, e) = zΦshell(v, e, R, Q),
where z is the charge associated with the vertex on the shell and
we have suppressed the dependence of UL on other variables for
brevity. In terms of the total charge Q and the number of dis-
cretizations N, we have z = Q/N. It is easy to show that the local
potential energy is

ULðv; eÞ= lB
zQ
R

1
SðeÞ

i
e
×

X
n=0;2;4;...

�
2n+ 1

�
Qn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!

×Pn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!
InðeÞPnðcosvÞ:

[S46]

This expression can be seen as providing the variation of the po-
tential energy on the surface of the shell. We note that the oblate
spheroidal coordinate v measures the deviation of a point from
the z axis, v = 0 refers to the center of the shell, and v = π/2
corresponds to the edge. As before, we consider the case of Q =
600 (with z = 0.6 like in our simulations). We plot the variation
of UL as a function of v for different e. We see that for the
spherical shell (e = 0), the potential energy is constant everywhere,
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which is to be expected. However, as e increases, the energy be-
comes nonuniform. In particular, for e = 0.95, which corresponds to
a disc-like shape, we find the electrostatic energy varies significantly
with v. It is higher near the center and lower on the edge of the disc.
As is evident from the top row of Fig. 4, we observe this trend in our
simulation results as well.

The Effect of Counterion Condensation on Shell Shape
In the main text we report the shapes that minimize the free
energy of a soft, uniformly charged shell present in an aqueous
medium with salt. Because the shell is charged, the surrounding
solvent contains counterions in addition to the salt ions. We as-
sumed that the counterions remain in the bulk and do not condense
on the shell surface. However, in a real system or in an experiment
it is possible that a fraction of the counterions do condense, and in
that event it becomes important to analyze their effect on the
observed shape transitions. In this section, we present a calculation
based on the Manning–Oosawa two-state model (2, 3) that qual-
itatively captures this effect (4, 5). We consider a Wigner–Seitz
(WS) cell of volume VWS containing a single shell, with Q = zN
charge on its surface, placed at the center. The cell also contains N
counterions, each of charge z to neutralize the shell charge and we
consider a salt-free system for simplicity. The counterions are
separated into two distinct groups: free ions and condensed ions.
The condensed counterions are restricted to have translational
motion in a thin layer of volume V = 2πa2S(e)b surrounding the
shell, where b is the thickness of the layer. Free ions occupy the
available space in the WS cell, which in the dilute limit can be
approximated to be the volume of the cell. We focus our argu-
ments on the sphere-to-oblate transition using the analytical results
derived in the previous section, although the procedure outlined
below can be applied to study other (disc → bowl) transitions as
well, provided the associated analytical expressions are available.
We begin by considering two different models to represent the

charged shell surface, homogeneously charged or equipotential
(conducting), and carry out the ion condensation analysis for each
model. For either case, the Coulomb energy of an oblate spheroid
subject to the constraint of constant volume can be written in the
following form

Uðe;R; z;NÞ= lBz2N2

R
f ðeÞ; [S47]

where we have used Q = zN, with N being the total number of
charges on the shell surface. For a homogeneously charged sur-
face, the function f(e) can be deduced from Eq. S44 to be

f ðeÞ=
�
1− e2

�1
6�

SðeÞ�2
i
e

×
X

n=0;2;4;...

2n+ 1
2

Qn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!
Pn

 
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e

!�
InðeÞ

�2
;

[S48]

and for a conducting surface, we have from ref. 6

f ðeÞ=
�
1− e2

�1
6

2e
tan−1

effiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p : [S49]

It can be checked that f(e) = 1/2 for a spherical shell and it de-
creases as e is increased, approaching the value of 0 as e → 1.
Recall that the latter case corresponds to a disc of infinitely large
area and so the vanishing of the electrostatic energy in that limit
gets justified. We again define the electrostatic energy difference
dU as

dUðe;R; z;NÞ=Uðe;R; z;NÞ−Uðe→ 0;R; z;NÞ [S50]

and introduce the free-energy difference dF,

dFðe;R; z;NÞ=Fðe;R; z;NÞ−Fðe→ 0;R; z;NÞ; [S51]

where F is the free energy (that includes the entropy contribution
of condensed and free ions) of the shell. We study how dF and
dU are modified when the possibility of counterion condensation
is included in the analysis.
Let α be the fraction of counterions that condense. Clearly,

(1 − α)N ions remain free in the bulk. Further, the condensed ions
neutralize the surface charge on the shell reducing the net charge
to Q = z(1 − α)N. We approximate the WS cell to be spherical
with volume VWS = ð4=3ÞπR3

WS, with RWS being the radius of the
cell that gets determined by the shell volume fraction. We write
the free energy (in units of kBT) associated with the shell as

FðαÞ= lBz2N2ð1− αÞ2 f ðeÞ
R

+ αN ln

 
αNΛ3

2πa2SðeÞb

!
− αN

+ ð1− αÞN ln

 
ð1− αÞNΛ3

4
3 πR

3
WS

!
− ð1− αÞN;

[S52]

where Λ is the thermal de Broglie wavelength and we have sup-
pressed the dependence of F on other variables for the sake of
brevity. In Eq. S52, the first term is the electrostatic potential
energy of the shell with charge z(1 − α)N, the next two terms
stem from the entropic contribution of the αN condensed ions,
and the last two terms correspond to the entropy of (1 − α)N free
counterions. Note that within this model, the entropy of both the
condensed and free ions is assumed to be that of an ideal gas.
Further, note that a is a function of e and R and is given by Eq.
S43. We approximate the thickness b of the condensed layer by
the Gouy–Chapman (GC) length b = 1/(2πlBσ), where σ is the
shell charge density (5). Higher charge density or longer Bjerrum
length leads to a stronger shell–counterion attraction implying
a thin condensed layer; this is indeed reflected when b is chosen
as the layer thickness as seen from the above expression. We also
note that the GC length is a length scale associated with the
planar interface and hence our analysis is limited to the regime
where b is shorter than the characteristic lengths associated with
the shell. We have carried out the following analysis by choosing
the Bjerrum length lB as the thickness of the condensed layer and
we find no changes in the conclusions reached below.
As σ is a function of the area, which depends on e, the free en-

ergy F in Eq. S52 can be considered as a function of e and α. For
a given e, we now minimize the above free energy with respect to α
to find the fraction of counterions that condense on the shell. We
obtain the extremum condition

−ξð1− αÞ+N ln

 
α

1− α

2
3
λ

η

�
1− e2

�1
2

SðeÞ

!
= 0; [S53]

where ξ = 2lBz
2N2f(e)/R measures the strength of the Coulomb

interactions, λ = a/b can be considered as the Manning length
associated with the shell, and η is the volume fraction of the
shells given by

η=
Ω

VWS
=

4
3 πR

3

4
3 πR

3
WS

: [S54]

We note that in the limit e→ 0, λ becomes the Manning radius of
the sphere (5).
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We now compute the condensed fraction for the example
studied in previous section that corresponds to our simulations.
We take R = 10 nm, z = 0.6, and n = 1,000. We begin with the
case of a homogeneously charged shell surface using f(e) from
Eq. S48 in Eq. S53. For a given e and η, we solve Eq. S53 using
Mathematica (Wolfram). We obtain α as a function of e for
various values of shell volume fractions ranging from 10−12 to
10−3. We find that α decreases with increasing e for all values of
η. That is, higher the eccentricity of the shell, lower is the amount
of ion condensation on it. Further, α is lowest in the dilute limit
when η is very small (10−12), and it increases as the volume
fraction gets larger. Using the value of α, the electrostatic energy
U of the shell at equilibrium can be computed from Eq. S47 by
replacing N with (1 − α)N:

U =
lBð1− αÞ2z2N2

R
f ðeÞ: [S55]

Using the above result in Eq. S50, the difference between the
renormalized electrostatic energy of the oblate shell and that of
the sphere, dU, can be calculated. It is easy to show that the free-
energy difference, dF, defined in Eq. S51, at equilibrium is given by

dF =
1+ α

1− α
U −

1+ αs
1− αs

Us +N ln
1− α

1− αs
: [S56]

In Eq. S56, α is the fraction of condensed counterions on the shell
(obtained as the solution of Eq. S53) and U is given by [S55]. αs
and Us denote these values for the case of a spherical shell.
In Fig. S4, we plot dF computed from Eq. S56 as a function of e

for various values of η. We consider e values from 0 to 0.95 and
examine if the sphere-to-oblate shape transitions are favorable
within this range of eccentricity values according to the analysis
based on the two-state model. The red line corresponds to the
case of no ion condensation and provides a reference. All other
lines are the result of taking ion condensation into consideration
and correspond to different values of η ranging from 10−12 to 10−3.
We find that for all values of the volume fraction η, dF becomes
increasingly more negative as the eccentricity e is raised, implying
that the shape transitions from sphere to oblate spheroids are
favored. We examine each of these curves in greater detail. The
lower values of shell volume fraction, η = 10−12 (green), 10−11

(blue), and 10−10 (dark green) correspond to a dilute system, and
we find that the dF curves for these volume fractions lie in the
vicinity of the no-condensation result. We find the condensate
fraction α for these η values to be near 0.1. For slightly higher
values of packing fraction, η = 10−8 (brown) and 10−6 (orange),
which we will term as intermediate values, we obtain the con-
densate fraction to be around 0.3. Finally, for higher shell vol-
ume fractions, η = 10−4 (purple) and 10−3 (cyan), we obtain α to
be ∼0.5, implying the condensation of nearly half of the coun-
terions in the WS cell. To summarize, we find that for both low
and high amounts of condensation, the shell with higher eccen-
tricity is preferred energetically.

Next, in Fig. S5 we show the variation of dU with e for different
η values to probe the origin of these shape transitions. When the
volume fraction is low (η = 10−12 and 10−11), we find that dU is
negative and decreases (just like dF) upon the increase of e. We
find a similar trend for higher values of η (10−4 and 10−3), where
the behavior of dU is in alignment with the free-energy change
dF. However, for η = 10−10 and the intermediate values of η =
10−8 and 10−6, we observe that the variation of dU vs. e is in sharp
contrast with the corresponding results for dF. For example, in
the case of η = 10−10 (the dashed dark-green line), we find that
oblates of eccentricities closer to 0 (sphere-like) have a higher
energy than a sphere (e = 0), but the high eccentricity oblate
spheroids have lower energy than a sphere. Further, for η = 10−8

and 10−6, we find that the electrostatic energy increases as e is
raised in sharp contrast to the free energy associated with the
shell. We can understand this by observing the expression for the
equilibrium electrostatic energy U given by Eq. S55. As we noted
before, α decreases with increasing e for all values of η implying
that the factor (1 − α)2 rises as e increases. On the other hand, the
function f(e), given by Eq. S48, is a monotonically decreasing
function of e as is evident from the plot of dU in Fig. S2. For some
values of η, the decrease in α with increase in e is strong enough
to overcome the lowering of f(e), thus leading to the rise in the
renormalized electrostatic energy U as the shape is transformed
from a sphere to an oblate.
The main conclusions reached above remain unchanged when

we repeat the two-state model analysis assuming that the shell is
an equipotential surface. This calculation begins by using f(e)
given by Eq. S49 in Eq. S53 and solving for the condensate
fraction α. Once again we find that, for all values of η, α decreases
and dF becomes increasingly more negative as the eccentricity e is
raised, implying that the shape transitions from sphere to oblate
spheroids are favored. We present these findings in Fig. S6. We
also observe that for all values of η, the reduction in the free
energy of the shell upon deformation to an oblate shape is higher
for a conducting shell in comparison with the homogeneously
charged shell. We show the comparison for the particular value of
η = 10−8 in Fig. S6, Inset.
Thus, judging by the variation of dF vs. e determined by the

above two-state model analysis, we conclude that if the shell is
flexible enough, the shape transitions from sphere to oblates of
increasing eccentricity should be feasible in the event of ion con-
densation. However, due to the renormalization of the charge on
the shell surface as a result of the ion condensation, it is likely that
the specific parameter values (for example, the concentration
strengths) at which the shape transitions occur will change. Also, as
is evident from Fig. S5, we find that the transition to oblate shapes
will not always accompany a decrease in the electrostatic energy.
For some values of shell volume fractions, the transition will occur
despite an increase in the electrostatic energy. We attribute the
occurrence of such transitions to the entropy gained by the ions
due to the reduction in the number of ions that condense when the
shape is deformed from a sphere to an oblate.
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Fig. S1. Edge e shared by the faces k and l shown along with their associated normals. Vertices v0 and v2 belong to the edge ewhereas the vertices that do not
lie on e are v1 and v3. The dot product of the normals is a function of the position vectors of all four vertices. The bending energy gradient evaluation with
respect to a vertex that belongs to the shared edge (v0 or v2) is different from the evaluation with respect to the vertex that is not a part of the shared edge
(v1 or v3).

Fig. S2. Electrostatic energy difference dU in units of kBT between an oblate spheroidal shell and a sphere of identical parameters (Q = 600 and R = 10 nm) as
a function of the eccentricity e. e increases from right to left. The oblate shell has a lower energy than the spherical shell with the difference increasing with
increasing e. This figure qualitatively captures the trend of the electrostatic energy represented by the blue open circles in Fig. 3. The snapshots of the shell
shapes obtained in the simulations corresponding to the above parameters as a result of lowering concentration (from right to left) appear at top.

Fig. S3. Local electrostatic potential energy UL(v) on the shell surface (in units of kBT) as a function of the oblate spheroidal coordinate v for spheroidal shells
of different eccentricities e. The coordinate vmeasures the angular deviation from the z axis, the latter being taken along the minor axis of the spheroid. Thus,
v = 0 corresponds to the center (poles) of the shell and v = π/2 refers to its edge (equator). For e = 0, which corresponds to the spherical shell, the potential is
constant everywhere on the shell as expected. As e is raised, the potential becomes increasingly nonuniform. Note that shells characterized with different e
correspond to the same volume. This figure qualitatively captures the features of the spatial distribution of electrostatic energy on the surface of a disc as
reported in the top row of Fig. 4.

Jadhao et al. www.pnas.org/cgi/content/short/1413986111 7 of 8

www.pnas.org/cgi/content/short/1413986111


Fig. S4. Equilibrium free-energy difference dF (in units of kBT) between an oblate spheroidal shell and a sphere of identical parameters (z = 0.6, n = 1,000, and
R = 10 nm) as a function of the eccentricity e assuming the shell to be a homogeneously charged surface postcondensation. The red curve is the case when we
assume no counterion condensation on the shell surface. All other curves take into account ion condensation and correspond to different values of the shell
volume fraction η. Results are shown for η = 10−12 (green), 10−11 (blue), 10−10 (dark green), 10−8 (brown), 10−6 (orange), 10−4 (purple), and 10−3 (cyan). We find
that the oblate shell has a lower free energy than the spherical shell with the difference enhancing as e increases. This suggests that the shape transition from
a sphere to an oblate spheroid is feasible in the event of ion condensation.

Fig. S5. Equilibrium electrostatic energy difference dU (in units of kBT) between an oblate spheroidal shell and a sphere of identical parameters (z = 0.6, n =
1,000, and R = 10 nm) as a function of the eccentricity e. Here, the shell is assumed to be a homogeneously charged surface postcondensation. The red curve is
the case when we assume no counterion condensation on the shell surface. All of the other curves take into account ion condensation and correspond to
different values of the shell volume fraction η. η values are shown alongside each curve.

Fig. S6. Equilibrium free-energy difference dF (in units of kBT) between an oblate spheroidal shell and a sphere of identical parameters (z = 0.6, n = 1,000, and
R = 10 nm) as a function of the eccentricity e. Here, the shell is assumed to be an equipotential surface postcondensation. The red curve is the case when we
assume no counterion condensation on the shell surface. All other curves take into account ion condensation and correspond to different values of the shell
volume fraction η. Results are shown for η = 10−12 (green), 10−10 (blue), 10−8 (purple), 10−6 (brown), and 10−4 (orange). We find that the oblate shell has a lower
free energy than the spherical shell with the difference enhancing as e increases. This suggests that the shape transition from a sphere to an oblate spheroid is
feasible in the event of ion condensation. Inset shows the comparison between dF obtained by assuming a homogeneously charged shell (dashed line) vs.
a conducting shell (solid line) in the two-state model analysis for η = 10−8.
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