SI Appendix

Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide degrading enzymes

Meiling Zhang^{1,2,3}, Jonathan R. Chekan⁴, Dylan Dodd^{1,2,5}, Pei-Ying Hong³, Lauren Radlinski^{1,2,5}, Vanessa Revindran^{1,2}, Satish K. Nair^{2,4*}, Roderick I. Mackie^{1,2,3*}, and Isaac Cann^{1,2,3,5*}

Energy Biosciences Institute¹, Institute for Genomic Biology², Department of Animal Sciences³, Department of Biochemistry⁴, Department of Microbiology⁵, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

SI Materials and Methods

Circular dichroism (CD) spectroscopy. The circular dichroism spectra for the wild type and mutant proteins were recorded to evaluate their secondary structures. The CD analyses were carried out using a J-815 CD spectropolarimeter (Jasco, Japan) equipped with a constant temperature cell holder. The proteins were equilibrated in a 1 mm path-length quartz cuvette at 25 °C for 5 min before scanning. The initial wavelength of the measurement was 260 nm and the final wavelength was 190 nm with a wavelength step of 0.1 nm. Secondary structure analysis was performed on the DichroWeb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) using an algorithm of CDSSTR with reference set 4.

SI Results

Circular dichroism spectra of Bixyn10A, CBM1, CBM2 and their mutants. The CD spectra of BiXyn10A, CBM1, CBM2 and their mutants were assessed to determine whether mutations introduced into their wild-type form led to gross changes in secondary structural elements. For the mutations that impacted the binding activity of CBM1 (i.e., W176A and W249A), neither yielded α -helix and β -turn compositions which were different compared to the wild-type protein (Table S8). In the case of CBM2, W363A abolished binding without impacting the secondary structural elements compared to the wild-type protein (Table S9). Importantly, when W176A, W249A and W363A were introduced into BiXyn10A as individual mutations or to create a triple mutant, the secondary structural elements of the mutants were not statistically different from the wild-type protein. A similar observation (no statistical significant changes in secondary structural elements) was made for BiXyn10A-E634A, the mutant made to abolish catalytic activity (Table S10).

SI Tables

Table S1. Anaerobic medium for culturing *Bacteroides intestinalis* DSM 17393 and *Bacteroides ovatus* ATCC 8483

Ingredients	Concentration in Media
	(mg/L)
Xylose ^a	5000
Wheat arabinoxylan (medium viscosity, 22 cSt) ^{a}	5000
Clarified rumen fluid	200 mL
Yeast extract	500
Tryptone	1000
Resazurin (0.1% w/v)	1.0 mL
Cysteine-HCl $(2.5\%, w/v)$	10 mL
Hemin $(0.1\% \text{ w/v})$	1.0 mL
Sodium sulfide $(2.5\% \text{ w/v})$	5.0 mL
Sodium carbonate $(8\%, w/y)$	30 mL
Mineral solution 1 (mL/L) KH ₂ PO ₄ (6 g/L)	75 mL
Mineral solution 2 (mL/L) KH ₂ PO ₄ (6 g/L) (NH ₄) ₂ SO ₄ (12 g/L) NaCl (12 g/L) MgSO ₄ ·7H ₂ O (1.2 g/L) CaCl ₂ ·2H ₂ O (1.2 g/L)	75 mL
Trace element solution $(mL/L)^{b}$ Nitrilotriacetic acid $(1.5 g/L)$ MgSO ₄ ·7H ₂ O $(3 g/L)$ MnSO ₄ ·2H ₂ O $(0.5 g/L)$ NaCl $(1 g/L)$ FeSO ₄ ·7H ₂ O $(0.1 g/L)$ CoCl ₂ $(0.1 g/L)$ CaCl ₂ ·2H ₂ O $(0.1 g/L)$ ZnSO ₄ $(0.1 g/L)$ CuSO ₄ ·5H ₂ O $(0.01 g/L)$ AlK(SO ₄) ₂ $(0.01 g/L)$ H ₃ BO ₃ $(0.01 g/L)$ Na ₂ MoO ₄ ·2H ₂ O $(0.01 g/L)$	10 mL
Vitamin solution (mL/L) Thiamine-HCl (200 mg/L) Riboflavin (200 mg/L) Pyridoxine-HCl (200 mg/L) <i>Para</i> -aminobenzoic acid (10 mg/L) Biotin (2.5 mg/L) Folic acid (2.5 mg/L) Calcium pantothenate (200 mg/L) Nicotinamide (200 mg/L) Vitamin B ₁₂ (1 mg/L)	5.0 mL
VFA solution (mL/L) Acetic acid (16.8% v/v) Propionic acid (6.68% v/v) n-butyric acid (3.96% v/v) Isobutyric acid (0.8% v/v) n-valeric acid (0.92% v/v) Isovaleric acid (0.92% v/v) D,L-2-methylbutyric acid (0.8% v/v)	10 mL

^a Either xylose or soluble wheat arabinoxylan were used as the sole carbohydrate source.

^{*b*} Trace element solution was prepared as described by Balch *et al.* (1). Nitrilotriacetic acid was first dissolved by adjusting the pH to 6.5 with KOH. Next, the remaining trace elements were added, the pH was adjusted to 7.0 with KOH, and then the volume was brought to 1 L with milliQ H₂O.

1. Balch WE, Fox GE, Magrum LJ, Woese CR, & Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. *Microbiol Rev* 43(2):260-296.

	• • • •	Reads after	Uniquely	Non-specifically	Unmapped
	Total reads	Trimming ^a	mapped reads ^b	mapped reads	reads
RNAseq Sample ID	(avg. length)	(avg. length)	(%)	(%)	(%)
BACINT_WAX1	10,101,023	10,100,976	8,597,177	8,786	1,495,013
	(100 nt)	(94.7 nt)	(85.1%)	(0.09%)	(14.8%)
BACINT_WAX2	22,325,130	22,325,047	18,839,356	20,881	3,464,810
	(100 nt)	(94.8 nt)	(84.4%)	(0.09%)	(15.5%)
BACINT_Xylose1	17,076,556	17,076,484	14,281,134	14,737	2,780,613
	(100 nt)	(94.7 nt)	(83.6%)	(0.09%)	(16.3%)
BACINT_Xylose2	11,009,018	11,008,962	9,142,140	9,677	1,857,145
	(100 nt)	(94.9 nt)	(83.0%)	(0.09%)	(16.9%)
BACOVA_WAX1	21,824,448	21,824,352	16,738,339	125,379	4,960,634
	(100 nt)	(95.1 nt)	(76.7%)	(0.6%)	(22.7%)
BACOVA_WAX2	27,234,520	27,234,391	20,244,307	105,564	6,884,520
	(100 nt)	(95.3 nt)	(74.3%)	(0.4%)	(25.3%)
BACOVA_Xylose1	11,265,889	11,265,845	9,240,294	58,302	2,025,551
	(100 nt)	(95.1 nt)	(82.0%)	(0.5%)	(18.0%)
BACOVA_Xylose2	15,992,242	15,992,175	12,609,816	60,094	3,322,265
	(100 nt)	(95.0 nt)	(78.8%)	(0.4%)	(20.8%)

Table S2. RNAseq mapping results

 a Reads were trimmed using CLC Genomics Workbench v5.0 with a quality score limit of 0.05 and maximum number of ambiguities of 2. b Reads were mapped to the *B. intestinalis* DSM 17393 or *B. ovatus* ATCC 8483 genome using CLC Genomics Workbench v5.0 with a minimum length fraction of 0.9, a minimum similarity fraction of 0.8, and maximum number of hits for a read of 10.

Cloning ^a			
BACINT 04215	P1	Forward	GACGACGACAAGATGGTGGACGACAAACCGTTGGCATTCGAAG
BACINT 04215	P2	Forward	GACGACGACAAGATGAATAACAAGTTTTTGAATTCGTTGATT
BACINT 04215	P3	Reverse	GAGGAGAAGCCCGGTTAAGCCTCAGAATGAGTAATCTTAACATA
BACINT 04215	P4	Forward	GACGACGACAAGATGGCTCCGGTTATGGAAATCTTTACCGAC
BACINT 04215	P5	Reverse	GAGGAGAAGCCCGG <i>TTA</i> GAGAGGAATAGAATTGCCCTTAGTTAC
BACINT_04215	P6	Reverse	GAGGAGAAGCCCGGTTATTTTCCAGCCAATCCATCAGC
BACINT_02810	P1	Forward	GACGACGACAAGATGGCTTCGGGAGGCGCACAATATTTTC
BACINT_02810	P2	Reverse	GAGGAGAAGCCCGGTTAGTAAGCATGCCACTC
BACOVA_00247	P1	Forward	GACGACGACAAGATGAATAATGGGACATTAGTG
BACOVA_00247	P2	Reverse	<u>GAGGAGAAGCCCGG</u> TTACTTAGTTGCAGCAAC
BACINT_04197	P1	Forward	<u>GACGACGACAAGATG</u> CAGCAGAAACAAATGTAC
BACINT_04197	P2	Reverse	<u>GAGGAGAAGCCCGG</u> TTAGTCGGCAAACGAAG
PBR_0377	P1	Forward	GACGACGACAAGATGTCTCAGCAGCAAGTAGC
PBR_0377	P2	Reverse	GAGGAGAAGCCCGGTTACTTTACTTCTTCGGTC
BACOVA_04390	P1	Forward	<u>GACGACGACAAGATG</u> ACTAATCAGAATGCGAG
BACOVA_04390	P2	Reverse	GAGGAGAAGCCCGGTTAAAAATCTCCGTTAGAAATC
BACEGG_01298	P1	Forward	GACGACGACAAGATGGTAGGCAAACATACTGGTG
BACEGG_01298	P2	Reverse	<u>GAGGAGAAGCCCGG</u> TTAGCAGGCTTCCATC
PRU_2739	P1	Forward	<u>GACGACGACAAGATG</u> AGCTATGACGGTACTCTTG
PRU_2739	P2	Reverse	GAGGAGAAGCCCGGTTACTCTGTCAGAGGCAG
Mutagenesis ^b			
BACINT_04215	Y173A	Forward	GAAATAGACTATTCTACTGCGGGC <u>GCT</u> AGTTTTTGGAACGAAGTAAA
			TGAA
BACINT_04215	F175A	Forward	GACTATTCTACTGCGGGCTATAGT <u>GCT</u> TGGAACGAAGTAAATGAAGA
			AG
BACINT_04215	W176A	Forward	CTATTCTACTGCGGGCTATAGTTTT <u>GCG</u> AACGAAGTAAATGAAGAAG
BACINT_04215	W249A	Forward	GAATTTTGGTGTAGGACCT <u>GCG</u> AGTGGTAGAGCAGAAGGT
BACINT_04215	W263A	Forward	AAGGTTCTTTTCTTTCAACACAGAA <u>GCG</u> AAAGAGTATGAGTTTTCAT
			TCAAAG
BACINT_04215	W363A	Forward	CAGCAGGTGGTGGTGTAAATAGT <u>GCG</u> GATACTCAGTTCTT
BACINT_04215	W421A	Forward	GGATGTGCTGTTGATTTTACTACAGAA <u>GCG</u> CAACATTTTGAAAAAAC
			ТАТААС
BACINT_04215	W445A	Forward	GAAAACATGCAGACTTTTGCA <u>GCG</u> AATCTTGATGTAGGTGTGCC
BACINT_04215	E654A	Forward	TGGTAAACIGGTAAAGATATCA <u>GCA</u> CTTGATATGGGTTATATAGATG

Orientation Sequence $(5' \rightarrow 3')$

Tab	le S3.	Primers	used in	this	study.

Primer name

Gene name

^a Underlined sequences indicate the incorporated T4 exonuclease digestion sites. Italicized nucleotides indicate translational stop codons inserted at the end of the construct. The primer names correspond to those mentioned in the text and shown in Figure S1. ^b Primers were designed using the Agilent Technologies QuikChange primer design tool. Underlined sequences indicate the substituted codon.

	bared to Aylose assessed by MASE	and instea by magnitu	ac of maaction.
ORF	Annotation ^b	Fold change	CAZy Designation
BACINT_04218	SusC-like	214	-
BACINT_04220	SusC-like	182	-
BACINT_04215	endo-xylanase	170	GH10/CBM
BACINT_04216	hypothetical protein	167	-
BACINT_04219	SusD-like	142	-
BACINT_00570	beta-xylosidase	135	GH43
BACINT_00569	arabinofuranosidase/endo-xylanase	132	GH43/GH10
BACINT_04217	SusD-like	98.1	-
BACINT_04201	Na/sodium co-transporter	97.0	-
BACINT_04202	endo-xylanase/arabinofuranosidase	90.0	GH10/GH43
BACINT 04199	beta-galactosidase	87.5	GH35
BACINT 04200	esterase	85.1	GH2/CE6
BACINT 04198	hypothetical protein	78.4	-
BACINT 04203	beta-xylosidase	71.0	GH43
BACINT 04213	endo-xylanase	70.1	GH5
BACINT 04204	oxidoreductase	65.6	-
BACINT 04205	alpha-glucuronidase	62.5	GH67
BACINT 04214	hypothetical protein	60.7	-
BACINT 04196	hypothetical protein	41.9	-
BACINT 01180	hypothetical protein	41.7	-
BACINT 01179	hypothetical protein	41.4	-
BACINT 04197	endo-xylanase	39.2	GH10/CBM
BACINT 04195	SusD-like	36.4	-
BACINT 02768	beta-xylosidase	34.2	GH43
BACINT 04194	SusC-like	32.1	-
BACINT 00076	xylanase-esterase	28.8	GH10/CE1
BACINT 02774	SusC-like	28.2	-
BACINT 02773	SusD-like	26.3	-
BACINT 02772	SusC-like	25.8	-
BACINT 02776	hypothetical protein	25.2	-
BACINT 01178	hypothetical protein	23.7	-
BACINT 02767	arabinofuranosidase	22.9	CBM4/GH51
BACINT 02775	SusD-like	22.5	-
BACINT 02771	hypothetical protein	21.8	-
BACINT 00908	SusC-like	21.4	-
BACINT 00927	exo-xylanase	19.7	GH8
BACINT 02777	beta-xylosidase	19.7	GH43
BACINT 00926	beta-xylosidase	19.2	GH3
BACINT 02766	beta-xylosidase	19.1	GH43
BACINT 00907	SusD-like	18.7	-
BACINT 01181	hypothetical protein	17.5	-
BACINT 02782	L-arabinose isomerase	17.5	-
BACINT 04210	exo-xylanase	17.2	GH8
BACINT 04212	esterase	16.8	CE1
BACINT 02783	xylulose kinase	15.3	-
BACINT 04706	hypothetical protein	15.1	-
BACINT 01183	hypothetical protein	14.4	-
	2 F	· ·	

Table S4. Genes up-regulated greater than five-fold during growth of *B. intestinalis* DSM 17393 with WAX compared to xylose assessed by RNAseq and listed by magnitude of induction.^{*a*}

BACINT_02784	hypothetical protein	14.4	-
BACINT_04211	alpha-rhamnosidase	14.3	CE6/GH95
BACINT_02786	arabinofuranosidase	14.3	GH51
BACINT_02781	L-ribulose-5-phosphate 4-epimerase	14.2	-
BACINT_02785	alpha-glucosidase	13.8	GH97
BACINT_01095	beta-xylosidase	13.5	GH43/CBM6
BACINT_01182	hypothetical protein	13.4	-
BACINT_01094	esterase	13.1	CE1
BACINT_01184	hypothetical protein	12.8	-
BACINT_02779	Na/sodium cotransporter	10.8	-
BACINT_04223	hypothetical protein	10.7	GH115
BACINT_02780	ADP-ribose pyrophosphorylase	10.7	-
BACINT_02778	aldose 1-epimerase	9.92	-
BACINT_00772	hypothetical protein	9.14	-
BACINT_04222	esterase	7.91	GH2/CE6
BACINT_01185	hypothetical protein	7.47	-
BACINT_03137	hypothetical protein	7.16	-
BACINT_01190	hypothetical protein	6.78	-
BACINT_01096	hypothetical protein	6.17	-
BACINT 01186	hypothetical protein	5.89	-

 BACINI_01186
 nypotnetical protein
 5.89

 ^a B. intestinalis DSM 17393 was cultured in a synthetic medium with either soluble wheat arabinoxylan (WAX) or xylose as the sole carbohydrate source. RNA was then extracted and RNAseq experiments were performed as described in experimental procedures.
 b
 Open reading frame assignments and gene annotations were from the Joint Genome Institute's Integrated Microbial Genomes database

 (http://img.jgi.doe.gov/cgi-bin/w/main.cgi).

ORF	Annotation ^b	Fold change	CAZy Designation
BACOVA_04393	SusC-like	341	-
BACOVA_04390	endo-xylanase	335	GH10/CBM
BACOVA_04389	Esterase	319	GH2/CE6
BACOVA_04384	hypothetical protein	312	-
BACOVA_03427	SusD-like	300	-
BACOVA_03422	alpha-glucosidase	294	GH31
BACOVA_03425	beta-xylosidase	286	GH43
BACOVA_04386	beta-xylosidase	286	GH43
BACOVA_04385	alpha-glucuronidase	256	GH67
BACOVA_04387	endo-xylanase	244	GH10
BACOVA_03426	SusC-like	241	GH35
BACOVA_03423	alpha-glucosidase	234	GH97
BACOVA_03428	SusC-like	217	-
BACOVA_03424	beta-xylosidase	201	GH43/CBM6
BACOVA_03431	hypothetical protein	201	-
BACOVA_04391	hypothetical protein	194	-
BACOVA_03433	endo-beta-galactosidase	171	GH98/CBM35
BACOVA_03429	SusD-like	166	-
BACOVA_03432	endo-xylanase	164	GH30
BACOVA_03421	beta-xylosidase	163	GH43
BACOVA_03417	beta-xylosidase	158	GH43
BACOVA_04392	SusD-like	145	-
BACOVA_04388	Na/sugar cotransporter	112	-
BACOVA_03434	alpha-glucuronidase	105	GH115
BACOVA_03436	beta-xylosidase	94.0	GH43/CBM6
BACOVA_01707	hypothetical protein	71.2	-
BACOVA_03430	hypothetical protein	58.6	-
BACOVA_03435	Esterase	49.2	CE6/CE1
BACOVA_03449	alpha-glucuronidase	43.6	GH115
BACOVA_01708	alpha-arabinofuranosidase	42.1	GH51
BACOVA_03450	Esterase	41.3	GH2/CE6
BACOVA_01709	hypothetical protein	36.6	-
BACOVA_01715	aldose 1-epimerase	29.6	-
BACOVA_01714	Na/sugar cotransporter	21.8	-
BACOVA_01710	xylulose kinase	20.0	-
BACOVA_03419	beta-xylosidase	19.8	GH3
BACOVA_01713	ADP-ribose pyrophosphatase	19.5	-
BACOVA_01711	L-arabinose isomerase	19.2	-
BACOVA_01712	L-ribulose-5-phosphate 4-epimerase	16.9	-
BACOVA_03637	hypothetical protein	15.7	-

Table S5. Genes up-regulated greater than five-fold during growth of *B. ovatus* ATCC 8483 with WAX compared to xylose assessed by RNAseq and listed by magnitude of induction.^{*a*}

BACOVA_04183	hypothetical protein	11.8	-
BACOVA_03438	hypothetical protein	10.2	-
BACOVA_01199	SusD-like	9.63	-
BACOVA_03483	alpha-arabinofuranosidase	9.00	GH51
BACOVA_03440	hypothetical protein	8.17	-
BACOVA_01866	hypothetical protein	8.12	-
BACOVA_03443	SusC-like	8.00	-
BACOVA_03447	hypothetical protein	7.98	-
BACOVA_03437	HTCS regulator	7.83	-
BACOVA_01865	hypothetical protein	7.69	-
BACOVA_03444	SusD-like	7.59	-
BACOVA_03446	hypothetical protein	7.38	-
BACOVA_01864	hypothetical protein	7.06	-
BACOVA_03445	hypothetical protein	7.03	-
BACOVA_03439	hypothetical protein	6.87	-
BACOVA_03484	alpha-glucosidase	6.59	GH97
BACOVA_01868	hypothetical protein	6.41	-
BACOVA_01867	hypothetical protein	6.28	-
BACOVA_01869	hypothetical protein	5.83	-
BACOVA_04621	site-specific recombinase	5.75	-
BACOVA_04960	hypothetical protein	5.62	-
BACOVA_01497	hypothetical protein	5.23	-
BACOVA_05005	pectate lyase	5.02	PL1

^a B. ovatus ATCC 8483 was cultured in a synthetic medium with either soluble wheat arabinoxylan (WAX) or xylose as the sole carbohydrate source. RNA was then extracted and RNAseq experiments were performed as described in experimental procedures.
 ^b Open reading frame assignments and gene annotations were from the Joint Genome Institute's Integrated Microbial Genomes database (http://img.jgi.doe.gov/cgi-bin/w/main.cgi).

Protein	k_{cat} (s ⁻¹)	K _M (ml mg ⁻¹)	$\frac{k_{\rm cat}/\rm K_M}{\rm (ml\ mg^{-1}\ s^{-1})}$
WT	54 ± 6	7.4 ± 2	7.4 ± 2
W176A	32 ± 7	11 ± 5	2.9 ± 1
W249A	39 ± 6	11 ± 4	3.4 ± 1
W363A	27 ± 2	8.8 ± 2	3.1 ± 0.7
W176A/W249A/W363A	15 ± 1	6.7 ± 1	2.2 ± 0.4

Table S6. Kinetic properties of BiXyn10A and mutants with OSX^a

^{*a*} BiXyn10A wild type and mutants were incubated with OSX and initial rates of reducing sugar release were monitored at different substrate concentrations. The rate of reducing sugar release was plotted against the substrate concentration and non-linear regressions were used to estimate the kinetic parameters. Experiments were performed in triplicate and the data are represented as means \pm standard deviations.

Protein	k_{cat} (s ⁻¹)	K _M (ml mg ⁻¹)	$\frac{k_{\rm cat}/\rm K_M}{\rm (ml\ mg^{-1}\ s^{-1})}$
WT	93 ± 6	1.7 ± 0.4	57 ± 10
W176A	70 ± 4	2.7 ± 0.5	26 ± 5
W249A	57 ± 2	1.5 ± 0.2	37 ± 5
W363A	57 ± 3	2.0 ± 0.3	29 ± 5
W176A/W249A/W363A	69 ± 3	2.1 ± 0.3	33 ± 5

Table S7. Kinetic properties of BiXyn10A and mutants with WAX^a

^{*a*} BiXyn10A wild type and mutants were incubated with WAX and initial rates of reducing sugar release were monitored at different substrate concentrations. The rate of reducing sugar release was plotted against the substrate concentration and non-linear regressions were used to estimate the kinetic parameters. Experiments were performed in triplicate and the data are represented as means \pm standard deviations.

β-turns unordered α-helices β-strands Protein (%) (%) (%) (%) CBM1 1 ± 1 49 ± 1 21 ± 0 26 ± 0 CBM1 W176A 2 ± 1 47 ± 1 22 ± 1 26 ± 1 CBM1 W249A 3 ± 1 46 ± 2 22 ± 1 27 ± 3

Table S8. CD spectroscopy analysis of CBM1 and its mutants with abolished substrate binding a

 a CD spectra were recorded in the far-UV range utilizing a J-815 CD spectropolarimeter. The spectra were recorded from 190 to 260 nm at a scan rate of 50 nm/s and a 1-nm wavelength step with five accumulations. Each reaction was performed three times, and the data are represented as means \pm standard deviations of the means. The spectra were uploaded onto the DICHROWEB on-line server and analyzed as described in supplemental materials and methods.

Table S9. CD spectroscopy analysis of CBM2 and its mutant with abolished substrate binding^a

Protein	α-helices (%)	β-strands (%)	β-turns (%)	unordered (%)
CBM2	2 ± 1	38 ± 0	23 ± 6	34 ± 0
CBM2 W363A	2 ± 1	39 ± 1	22 ± 1	35 ± 1

^{*a*} CD spectra were recorded in the far-UV range utilizing a J-815 CD spectropolarimeter. The spectra were recorded from 190 to 260 nm at a scan rate of 50 nm/s and a 1-nm wavelength step with five accumulations. Each reaction was performed three times, and the data are represented as means \pm standard deviations of the means. The spectra were uploaded onto the DICHROWEB online server and analyzed as described in supplemental materials and methods.

Protein	α-helices (%)	β-strands (%)	β-turns (%)	unordered (%)
WT	10 ± 0	37 ± 1	22 ± 0	31 ± 1
E634A	10 ± 2	37 ± 2	22 ± 1	30 ± 1
W176A	10 ± 2	35 ± 2	22 ± 1	30 ± 0
W249A	11 ± 1	35 ± 1	22 ± 1	31 ± 1
W363A	10 ± 2	37 ± 2	22 ± 1	31 ± 1
W176A/W249A/W363A	10 ± 2	37 ± 2	22 ± 0	30 ± 1

Table S10. CD spectroscopy analysis of BiXyn10A and its mutants^{*a*}

^{*a*} CD spectra were recorded in the far-UV range utilizing a J-815 CD spectropolarimeter. The spectra were recorded from 190 to 260 nm at a scan rate of 50 nm/s and a 1-nm wavelength step with five accumulations. Each reaction was performed three times, and the data are represented as means \pm standard deviations of the means. The spectra were uploaded onto the DICHROWEB on-line server and analyzed as described in supplemental materials and methods.

	BiXyn10A CBM1	BiXyn10A CBM1-X6	PBXyn10C CBM
Cell Dimensions			
Space group	P21212	P212121	P3 ₁ 2 ₁
a, b, c (Å)	53.7, 90.7, 30.9	36.9, 57.0, 85.3	68.7, 68.7, 111.5
α, β, γ, (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 120.0
Resolution	22.79-1.80 (1.83-	57.049-1.144 (1.148-	15.83-1.68 (1.71-1.68)
	1.80)	1.144)	
Total Reflections	112,403	513,642	161,095
Unique reflections	14,401 (695)	65,859 (4,183)	35,308 (1,720)
R _{sym} (%)	9.0 (59.5)	6.4 (74.7)	5.0 (74.4)
I/σ	21.5 (2.4)	16.2 (2.3)	26.5 (2.0)
Completeness (%)	100.0 (100.0)	100.0 (99.8)	99.9 (99.8)
Redundancy	7.8 (6.5)	7.8 (6.4)	4.6 (4.6)
Phasing			
Figure of Merit	0.414		0.260
Refinement			
Resolution (Å)	22.79-1.801	47.44-1.14	15.83-1.68
No. reflections	14,363	62,558	33,795
R_{work}/R_{free}	0.159/0.186	0.160/0.178	0.186/0.208
No. of atoms			
Protein	1125	1127	1268
Water	190	311	418
B-factors			
Protein	16.52	13.64	14.51
Oligosaccharide		21.74	
Water	29.14	33.56	30.31
Ramachandran analysis			
Favored	98.58	97.9	98.09
Allowed	1.42	2.1	1.91
Outliers	0.0	0.0	0.0
RMSD			
Bond lengths (Å)	0.006	0.0313	0.006
Bond angels (°)	1.024	2.362	1.168
PDB Code	4MGS	4QPW	4MGQ

 Table S11. Crystallographic Statistics for BiXyn10A CBM1 and PbXyn10C CBM

SI Figures

Figure S1. Primers used to amplify designated truncational mutants in this study. The nucleotide sequences for the individual primers are provided in Table S3. The BACINT_04215 truncational mutants, the primers used, and the amino acid regions constructed are as follows: WT (P1-P6, 33-746); TM1 (P2-P5, 138-477); TM2 (P2-P3, 138-301); TM3 (P4-P5, 302-477). The amino acid regions amplified for the remaining genes are as follows: BACINT_02810 CBM 2 (305-484); BACOVA_00247 CBM, 123-358; BACINT_04197 CBM1, 140-329; PBR_0377 CBM, 133-306; BACOVA_04390 CBM1, 138-330; BACEGG_01298 CBM2, 265-471; PRU_2739 CBM2, 278-442.

Figure S2. Affinity Gel Electrophoresis. Native polyacrylamide gels were prepared with or without 0.1% w/v polysaccharide, and 2 μ g of each truncational mutant or 1 μ g of bovine serum albumin (BSA) was loaded and electrophoresed at 100 V for 6 h at 4 °C. The proteins were then visualized by staining with Coomassie Brilliant Blue G-250. Polysaccharides used were carboxymethyl cellulose (CMC), potato galactan, sugar beet arabinan, debranched (DB) arabinan, and larch arabinogalactan.

Figure S3. Representative ITC data for binding of (A) CBM1 and (B) CBM2 with xylooligosaccharides as the ligand. All experiments were carried out in 50 mM sodium phosphate buffer, pH 7.0 at 25 °C.

Figure S4. Representative ITC data for binding of (A) CBM1 and (B) CBM2 with lichenan and xyloglucan derived oligosaccharides as the ligand. Linkages within the ligands are as follows: Glucotetraose A, Glc β 1-3Glc β 1-4Glc β 1-4Glc; Glucotetraose B, Glc β 1-4Glc β 1-4Glc β 1-3Glc, Glucotetraose C, Glc β 1-4Glc β 1-3Glc β 1-4Glc; Xyloglucanoheptaose, X₃Glc₄. All experiments were carried out in 50 mM sodium phosphate buffer, pH 7.0 at 25 °C.

Control

0.1% WAX

В.

Figure S5. Affinity gel electrophoresis. Native polyacrylamide gels were prepared with or without 0.1% w/v wheat arabinoxylan (WAX). Two μ g of each protein or 1 μ g of bovine serum albumin (BSA) was loaded and electrophoresed at 100 V for 6 h at 4 °C. (A) CBM1 and its mutants. (B) CBM2 and its mutants.

۰.

0 1 2 5 4 5 6 7 8 1 Molar Ratio

1 - Calling

1 2 3 4 5 Molar Ratio

2 3 4 5 6 Molar Ratio

22

Figure S6. Representative ITC data for binding of (A) CBM1 W176A, (B) CBM1 W249A and (C) CBM2 W363A, with xylo-oligosaccharides as the ligand. All experiments were carried out in 50 mM sodium phosphate buffer, pH 7.0 at 25 °C.

Control

0.1% CMC

EDO10010.1|141-297|

EEC54455.1|281-449|

ADE81777.1|278-442|

24

Figure S7. The detection of binding activity of selected proteins with CMC and xylooligosaccharides. (A) SDS-PAGE showing the purified proteins. The proteins were purified as described in materials and methods. Two μ g of protein was loaded on the 12% w/v polyacrylamide gel and stained with Coomassie brilliant blue G-250. (B) Affinity gel electrophoresis. Native polyacrylamide gels were prepared with or without 0.1% w/v carboxymethyl cellulose (CMC). Two μ g of each protein or 1 μ g of bovine serum albumin (BSA) was loaded and electrophoresed at 100 V for 6 h at 4 °C. (C) ITC data for binding activity of selected proteins with xylopentaose as the ligand. All experiments were carried out in 50 mM sodium phosphate buffer, pH 7.0 at 25 °C.

Figure S8. SDS-PAGE analysis of the purified recombinant proteins BACINT_04215 (BiXyn10A), BACINT_00569, BACINT_00570, and BACINT_00926 (BiXyl3A). Two µg of each of the proteins was resolved on a 12% w/v SDS-polyacrylamide gel and stained with Coomassie brilliant blue G-250.

Figure S9. Genomic organization of the major xylan utilization locus in *Bacteroides intestinalis* DSM 17393. ORF numbers indicated within each of the genes correspond to those listed in the GenBank database. Numbering indicates the nucleotide position along the genome. Annotations were made using a hybrid approach with dbCAN, RAST, and Pfam as described in the text.

	1 10	20	30	40	50	60	70	80	90	100
BACINT_4202 CCY87565.1	MKLKYLALSVCAAT MKLKYLALSVCAAT	FMSCNSDKP	/AADPTLKDIL /AADPTLKDIL	GNKFLVGVAI GNKFLVGVAI	NSEQAVGRD NSEQAVGRD	ISGVDVVRRHF ISGVDVVRRHF	NSIVAENCMK NSIVAENCMK	SEVIHPEEDE SEVIHPEEDE	YDFSLADEF YDFSLADEF	/KFGEDN /KFGEDN
	110	120	130	140	150	160	170	180	190	200
BACINT_4202	GMFIIGHCLVWHSC		GKNVSPEVLK	ERLRSHIHTI	VGRYKGRIK	GWDVVNEAIEG	DGSYRKSKFY	EILGEEYIPI	AFQYAHEADE	PEAELYY
CC187565.1	GMF11GAC1VWASC	LISPWICVDAL	JGRNVSFEVER	EREKSHIHII	VGKINGKIN	GHDVVNEAIEG	DGSIK <u>K</u> SKFI	EILGEEIIFI	AF QI ANEAD F	LALLII
	210	220	230	240	250	260	270	280	290	300
BACINT_4202 CCY87565.1	NDYGMHEPGRRDAV NDYGMHEPGRRDAV	VRMVNSLKER VRMVNSLKER	GLRIDAVGMQ GLRIDAVGMQ	GHMGLDYPSI GHMGLDYPSI	GEYETSIFA GEYETSLLA	FASTGAKVMIT FASTGAKVMIT	EWDMSALPTV EWDMSALPTV	NRGANIADKV NRGANIADKV	AFEKALNPY AFEKALNPY	PEALPDS PEALPDS
						2.60				
BACINT_4202	VSNLWNARMKSFME	320 LFIKHSDVII	RVTAWGVSDG	340 DSWKNDWPVP	GRREYPLLFI	J 60 DRNYOPKPFLK	ETLEPRVAKE	380 Y EFSYSI DNS	390 Soltidnsmof	RDSAANC
CCY87565.1	VSNLWNARMKSFME	LFIKHSDVI	RVTAWGVSDG	DSWKNDWPVP	GRREYPLLFI	DRNYQPKPFLK	EILEPKKAVF	D eftytv ap.		. KDTDKA
	410	420	430	440	450	460	470	480	490	500
BACINT_4202	QLSTVNCQLQNPII	PGCYPDPSIC	CRVGNDYYMVN	SSFAFYPGVP	IWHSTNLTN	WEQLGYVLNRP	SQLPMYDGLR	ISGGIYAPDI	KYNPHNGLFY	LITTAV
CC187505.1		FGCIFDFSI	LKVGNDIIMVN	SSIAIIFGVP	IWASIDLIN	MEQLGIVLNKP	Sõremingry	ISGGIIAPDI	KINPHNGLF1	
	510	5 2 Q	530	540	55 <u>0</u>	560	570	580	590	600
BACINT_4202 CCY87565.1	DGGGNFFVTTDDPK DGGGNFFVTTDDPK	(KGSWSDPTFI (KGSWSDPTFI	LPEVGGIDPGF LPEVGGIDPGF	LFDEDGKAYI LFDEDGKAYI	VNNDGPAGKI VNNDGPAGKI	PEYDGHRAIWI PEYDGHRAIWI	REFDWKNGCT REFDWKNGCT	VGKQKMIVDO VGKQKMIVDO	GVDKTRHPIN GVDKTRHPIN	VIEGPHL VIEGPHL
	61.0		6.2.0	640	650		67.0			700
BACINT_4202	YHINGTYYLMAAEG	GTGPNHSEVI	E S O	640 KPCAINPILT	QRGLPGDRPI	NPVTCVGHADI	VETPAGDWYA	VFLGVRPYRI	GHDVMGRETE	700 Mlpvtw
CCY87565.1	YHINGTYYLMAAEG	GTGPNHSEVI	FTSASPFGPF	KPCAINPILT	QRGLPGDRP1	NPVTCVGHADI	VETPAGDWYA	VFLGVRPYRD	GHDVMGRETE	FMLPVTW
	710	720	730	740	750	760	770	780	790	800
BACINT_4202	KENOPIILPEGDVI	TYTADRSYG	APLWTANGLA	KEAFFIRTPL	VPCYSINDK	GOLEMTASSTD	LNOKROPAAI	GRWINNWTFT	AQTGLDFVPQ	QPKDFA
CC18/565.1	KENQPIILPEGDVI	TITADRSIG	APLWIANGLA	KEAFFIRTPL	VPCISINDK	GQLEMTASSTD	LNQKRQPAAI	GRWINNWTFI	AQTGLDEVPÇ	<u>o</u> oprdfa
	810	820	830	840	850	860	870	880 <u>.</u>	890	90 <u>و</u>
BACINT_4202 CCY87565.1	GIICFHDDNCYIRF GIICFHDDNCYIRF	GKTLDKDGKI GKTLDKDGKI	VMLLETYSHG VMLLETYSHG	RLCSQAGSPL RLCSQAGSPL	TWTDGKVYLI TWTDGKVYLI	KVEGDNAVNYT KVEGDNAVNYT	FCYSTSPKGS FCYSTSPKGS	WTQVGEPVSA WTQVGEPVSA	ADLISTQTAGO ADLISTQTAGO	GFTGTMV GFTGTMV
BACINT 4202	910 GIYATGNYTN									
CCY87565.1	GIYATGNYTN									

Figure S10. Amino acid sequence alignment of BACINT_04202 and the most similar protein (CCY87565.1) from *B. intestinalis* CAG:564. The amino acid sequences were obtained from GenBank, aligned with ClustalW, and then visualized using ESPript 3.0.

385 Q L T I D CAATTGACAATTGA	390 N S M CAATTCTATG	395 Q R D S A CAGCGTGACAGCGCA	400 A N C Q L GCCAATTGTCAATTG	405 S T V N C FTCAACTGTCAATTGT	Q L CAATTG	
					220	
1160	1170	1180 11	90 1200	1210 12		
Inverted Repeat 2						
385	390	395	400	405	0 T.	
0 I, T I D	N S M	0	ANCOL	S T V N C		
CAATTGACAATTGACAATTCTATGCAGCGTGACAGCGCAGCCAATTGTCAATTGTCAATTGTCAATTG						
					220	
1160	1170	1180 11	90 1200	1210 12		

Inverted Repeat 1

Figure S11. Analysis of the inverted repeats in BACINT_04202. The nucleotide sequence for BACINT_04202 was analyzed for inverted and direct repeats using UGENE (1). Two pairs of inverted repeats with 23 (IR1) and 43 (IR2) nucleotide spacers were identified with partial overlap at the 5' end. Shaded regions represent the inverted repeats. Top numbers indicate amino acid position and the bottom numbers indicate nucleotide positions.

1. Okonechnikov K, Golosova O, & Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics* 28(8):1166-1167.