
Supporting Information 
 

for 
 

Explicit Spatio-Temporal Simulation of 
Receptor-G Protein Coupling in Rod Cell Disk 

Membranes 
 

Johannes Schöneberg1, Martin Heck2, Klaus-Peter Hofmann2, Frank Noé1 

 

1 Department of Mathematics, Computer Science and Bioinformatics, FU Berlin, Arnimallee 
6, 14195 Berlin, Germany 
2 Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 
Charitéplatz 1, 10117 Berlin, Germany 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table S1: Kinetic parameters of G activation 
 
Parameter Kinetic definition a Value b 
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k
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GDP  dissociation constant for 

GDP 2

2

−k
k  274 ± 37 µM 

a see (1) for derivation; for assignment of the individual rate constants see Fig. 1A and Table 
1.  
b Values are taken from (2) and represent the experimentally obtained values corrected for the 
fraction of active receptor relative to the total amount of light-activated rhodopsin.  
 
Table S2: Initial concentrations of the reactants in ODE-fitting 
 

Species Initial 
concentration 

0]1[ nM  5.7 µm-2 

0*][ nR   0 
0
1][G  273 µm-2   (a) 
0
2][G  1265 µm-2 (a) 
0
3][G   2525 µm-2 (a) 
0
4][G  5444 µm-2 (a) 
0
5][G  655 µm-2 
0
6][G  2160 µm-2  
0
7][G  3706 µm-2 

0]*[ nGR  0 
0

0 ]*[ nGR  0 
0*]*[ nGR  0 

0*][ nG  0 
0]*[ nsolG  0 

 
(a) G concentrations also used for ReaDDy 
 



 
 
 
Table S3: Initial estimation of selected rate constants 
 
Rate 
constant 

Description Initial estimation 

k1 Rate of R*G complex formation 0.27 µm2s-1 < k1 < 0.36 µm2s-1 

k-1 Rate of R*G complex dissociation 145 s-1 < k-1 < 192 s-1 

k2 Rate of GDP release from R*G complex > 594 s-1  

k-2 Rate of GDP uptake by R*G complex > 2.2 µM-1s-1 

k3  Rate of GTP uptake by R*G complex > 2.57 µM-1s-1 

k-3 Rate of GTP release from R*G* complex < 594 s-1  

k4 Rate of R*G* complex dissociation > 594 s-1 
 
 
Table S4: Estimation of rate constants 
 
Rate constant Set A Set B 

kM2 35.4 s-1 

k-M2 14.4 s-1 

k1 0.36 µm2s-1 0.27 µm2s-1 

k-1 200 140 

k2 600 s-1 60000 s-1 
GDPk 2− = k-2 [GDP] 2.6 µM-1s-1 [GDP] 260 µM-1s-1 [GDP] 

GTPk3 = k3 [GTP] 2.6 µM-1s-1 [GTP] 5.1 µM-1s-1 [GTP] 

k-3 600 s-1 

k4 60000 s-1 600 s-1 

k-4  0 s-1 

ksol 10000 s-1 

k-sol 0 s-1 
Reaction rates derived from ODE-fitting for the reaction system given in Eqs. (1)-(3) in Fig. 
1. 
 
 
Estimation of the rate constants and ODE-model 
 
Activation of  Gt is accompanied in vitro by a complete release of the active Gtα-subunit and 



a partial release of the Gtβγ-subunit from the disk membranes. Accordingly, light-induced 
activation of Gt can be monitored in real time by probing the resulting loss of mass of the 
disk vesicles as a decrease of near infrared light scattering (“dissociation signal”; (2-4)). In a 
previous study, kinetic parameters for the individual steps of Gt activation (Table S1) were 
quantified by a rate analysis of dissociation signals titrated with Gt, GTP and GDP (2). In the 
following, these kinetic parameters were used for a rough initial estimation of the individual 
rate constants.  
 
Initial estimation of k2 and k4 

Solving the definition equation of the turnover number 
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The lower limit for both values is thus k2 > 594 s-1 and k4 > 594 s-1. Importantly, the two 
values are mutually dependent (Eq. S1 and S2). 
 
 
Initial estimation of k1 
 
The lower limit for k1 (set B in Table S4) is given by (see (2) for details): 
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The upper limit of k1 is estimated as follows: 
With the definition of Kd

G , k-1 can be substituted in Eq. (S3) by k-1 = k1 534 µm-2, yielding 
after solving for k1: 
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With k2 > 594 s-1 (see above) one obtains k1 < 0.36 µm2s-1 (set A in Table S4) 
 
 
Initial estimation of k-1  

Solving the definition of 2

1

1 534 −− == µm
k
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k-1 =  k1 534 µm-2         (S5) 



 
With the limiting values for k1 one obtains 
 
145 s-1 < k-1 < 192 s-1. 
 
 
Initial estimation of k-2  
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With k2 > 594 s-1 one obtains 
 
k-2 > 2.2 µM-1 s-1 
 
 
Initial estimation of k3  
 
Analogous to the estimation of the lower limit for k1 (see above), the lower limit for k3 is 
given by: 
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Initial estimation of k-3  
 
A limiting value for k-3 can be obtained from the fact, that the Michaelis constant for GTP (

GTP
mK ) confine the upper limit of the dissociation constant for GTP ( GTP

dK ):  
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Solving Eq. S7 for k-3 yields 
 

33 kKk GTP
m≤−  

 
and with k3 > 2.57 µM-1 s-1 and GTP

mK = 231 µM one obtains 
 
k-3 < 594 s-1 
 
 
Estimation of k-4, ksol and k-sol 
 
Dissociation of G* from R* is in the visual system followed by dissociation of G* into its 
subunits (GαGTP and Gβγ) and a subsequent quantitative dissociation of GαGTP from the 
membranes. Since the overall reaction is essentially irreversible under the experimental 
conditions used (2), the respective rate constants were set as given in Table S4. 



 
 
Estimation of kM2 and k-M2 
 
Values of kM2 and k-M2 were calculated for 22°C and pH 7.4 with the equations provided by 
(5). The resulting values (see Table S4) are consistent with published values obtained at 
20°C, pH 7.0 and pH 8.0 (6) and allow to calculate the fraction of active receptor relative to 
the total amount of light-activated rhodopsin (fA; see (2)):  
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Estimation of rate constants by ODE fitting 
 
The classic G-protein activation scheme depicted in Fig. 1A (reactions 1-3) was used to 
derive a system of ordinary differential equations (ODE): 
 
[M1]n'   =  - kM2[M1]n + k-M2[R*]n 
 
[R*]n'   =  kM2[M1]n - k-M2[R*]n - k1[R*]n[G]n + k-1[R*G]n + k4[R*G*]n  
  - k-4[R*]n[G*]n 
 
[G]n'  = - k1[R*]n[G]n + k-1[R*G]n 
 
[R*G]n'  = k1[R*]n[G]n - k-1[R*G]n - k2[R*G]n + k-2[GDP][R*G0]n 

 
[R*G0]n'  = k2[R*G]n - k-2[GDP][R*G0]n - k3[GTP][R*G0]n + k-3[R*G*]n 
 
[R*G*]n'  = k3[GTP][R*G0]n - k-3[R*G*]n - k4[R*G*]n + k-4[R*]n[G*]n 
 
[G*]n'  = k4[R*G*]n - k-4[R*]n[G*]n - ksol[G*]n + k-sol[G*sol]n 
 
[G*sol]n'  =  ksol[G*]n + k-sol[G*sol]n 
 
 
where the subscript of the variables (n = 1-7)  identifies the individual dissociation signal 
used in this study. All protein concentrations are given in numbers/µm2, and [GDP] and 
[GTP] denote the volume concentrations of the respective nucleotide. Due to the different 
concentration units, [GTP] and [GDP] are treated in the following as constants.  
 
In order to estimate the individual rate constants, data points of  seven dissociation signals 
were simultaneously fitted with the ODE model by applying a multiple least squares fit 
procedure, i.e. the simultaneous fit of [G*sol]n using one and the same set of rate constants. 
Representative dissociation signals were taken from a previous study and scaled to 
concentration units as described (2). The initial (t = 0) concentrations are summarized in 
Table S2. 
 
In the fit procedure (Scientist Software, MicroMath), rate constants k-4, ksol, k-sol, kM1 and k-M1, 
respectively, were fixed to the values shown in Table S4. In order to include the constrains 



given by the experimentally determined kinetic constants Vmax/R*, G
mK , GTP

mK , G
dK  and GDP

dK
(Table S1), the rate constants k-1, k-2,  k3 and k4, respectively, were incorporated in the fit 
procedure by the following equations: 
 
k-1 =  k1 534 µm-2 (see Eq. S5) 
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Solving the definition of GTP

mK = 231 µM (Table S1) for k3 yields 
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The two sets of rate constants (Table S4) were then obtained by ODE-fitting with k1 fixed 
either to its upper limit (k1 = 0.36 µm2s-1, set A in Table S4) or to its lower limit (k1 = 0.27 
µm2s-1, set B in Table S4). In both cases the rate constants k2 and k-3 were allowed to vary 
within the limits described above. Both sets of rate constants fitted the experimental data 
equally well (Fig. 2 A).  
 
In order to verify the results, another series of dissociation signals measured in the presence 
of 200 µM GTP (0 µM GDP, data taken from (2)) were simulated with both sets of rate 
constants. As seen in Fig. 2 B, the resulting traces are in good agreement with the 
experimental data.  
 
Since the rate of GDP uptake by the R*G complex (i.e. rate constant k-2) is not defined in the 
absence of GDP, the value of k-2 was subsequently estimated by applying the ODE fitting 
procedure to dissociation signals measured in the presence of 750 µM GDP and 2000 µM 
GDP (data taken from (2)). In this case k-2 was allowed to vary while all other rate constants 
were fixed to the values given in Table S4. The results are depicted in Fig. S1 and 
summarized in Table S5. 
 
Table S5: Validation of k-2 
 

 750 µM GDP 2000 µM GDP 

Set A k-2 = 2.4 µM-1s-1 k-2 = 2.7 µM-1s-1 

Set B k-2 = 240 µM-1s-1 k-2 = 270 µM-1s-1 
 
 



 
Fig. S1 ODE-fitting of k-2. ODE-fits (lines) with k-2 as open parameter to representative 
dissociation signals (circles; taken from (2)) measured with 200 µM GTP, and 750 µM GDP 
(A) or 2000 µM GDP (B). (A) Best fits (solid lines) yield k-2 = 2.4 µM-1s-1 (rate constant set 
A, Table S4) or k-2 = 240 µM-1s-1 (rate constant set B). (B) Best fits (solid lines) yield k-2 = 
2.7 µM-1s-1 (rate constant set A) or k-2 = 270 µM-1s-1 (rate constant set B). Dotted lines 
represent simulations with rate constant set A and  k-2 = 2.7 µM-1s-1 (A) or k-2 = 2.4 µM-1s-1 
(B). 
 
 
 
Pre-complex case 
 
In the case of nonproductive complex formation between inactive receptor (R) and Gt 
(reaction (4) in Fig. 1A; pre-complex case), the ODE model was extended as follows: 
 
 
[Meta1]n'  =  - kM2[Meta1]n + k-M2[R*]n 
[R*]n'  =  kM2[MetaI]n - k-M2[R*]n - k1[R*]n[G]n + k-1[R*G]n + k4[R*G*]n  
  - k-4[R*]n[G*]n 
[G]n' = - k1[R*]n[G]n + k-1[R*G]n - kpre[R]n[G]n + k-pre[RG]n 
[R*G]n' = k1[R*]n[G]n - k-1[R*G]n - k2[R*G]n + k-2[GDP][R*G0]n 
[R*G0]n' = k2[R*G]n - k-2[GDP][R*G0]n - k3[GTP][R*G0]n + k-3[R*G*]n 
[R*G*]n' = k3[GTP][R*G0]n - k-3[R*G*]n - k4[R*G*]n + k-4[R*]n[G*]n 
[G*]n' = k4[R*G*]n - k-4[R*]n[G*]n - ksol[G*]n + k-sol[G*sol]n 
[G*sol]n' =  ksol[G*]n + k-sol[G*sol]n 
[R]' =  - kpre[R]n[G]n + k-pre[RG]n 
[RG]' = kpre[R]n[G]n - k-pre[RG]n 
 
Since the amount of RG-complex (and thus depletion of free Gt) depends on the values of kpre 
and k-pre, calculation of the initial concentrations of RG ( pre

nRG 0][ ), G ( pre
nG 0][ ) and R ( pre

nR
0][

) were integrated in the fit procedure:  
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were 
pre

prepre
d k

k
K −=  (i.e. dissociation constant of the RG-complex), 0][ nR  =  25000 µm-2 and 

0][ nG as given in Table S2. 
 
In order to obtain the limiting case, values of kpre and k1 were set to the diffusion limit. To 
compute this, we rely on the Smoluchowski-Equation: 
 

𝑘!!"# = 4𝜋 𝐷! + 𝐷! 𝑟!,! + 𝑟!,! . 
 
See Table 2 for the values of the used diffusion constants and reaction radii. We obtain 
𝑘!!"#=0.12µm3/s. This second order rate constant can be transformed from its volume 
concentration to the surface concentration necessary for our needs by the formula of (2):  

[𝑋]!!

[𝑋]!! =
[𝑅]!!

[𝑅]!! . 

 
Experiments were conducted at [R]3D = 3µM and [R]2D = 25,000 µm-2. Thus we obtain 𝑘!!"# 
= 1.67 µm2/s. 
 
 
 
Rates kpre and k1 were both set to 𝑘!!"# and k-pre was allowed to vary in the ODE model (all 
other rate constants were fixed to the values given in Table S4, Set A). The resulting fit yields 
the lower limit of k-pre (k-pre > 11200 s-1). Under these conditions and with native Gt 
concentrations (2500 - 3000 Gt µm-2), about 80 % of total Gt would be initially bound to 
inactive receptors. 

 
Fig. S2 ODE-fitting of k-pre. ODE-fits (solid lines) with k-pre as open parameter to 
dissociation signals (circles; measuring conditions as in Tables 1 and S2; rate constants as in 
Table S4). For details see text. 
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Model Geometry 
 
In the reference experiment (2), disk membranes expanded to roughly spherical vesicles after 
having been extracted from the rod outer segment. Thus, we confine particle diffusion to a 
spherical surface by applying a harmonic potential along the surface normal (see Supporting 
Information for details). Simulating vesicle sizes found in experiment (r = 220 nm, A = 0.6 
µm2) is very CPU-intensive. Therefore, the size of the simulated vesicles was chosen such 
that it would host one R* on average (radius r = 120nm and surface area A = 0.18 µm2). To 
mimic physiological conditions, the simulated particles comprise one R*, 4,500 R and 450 G. 
(See Figure 3 B for depiction). 
 
 
Partice Radius Parametrization  
 
All molecules involved in the system fall in three categories: R-type, G-type and RG-type. 
The R-type comprises hodopsin (R) in its inactive Meta I form (M1) and its active Meta II 
form (R*). The G-type contains G-proteins in its inactive (G) and active (G*) forms and the 
RG-type spans over all complexes formed from R-type and G-type molecules. Based on the 
two dimensional (2D) surface geometry of the system, all molecules are modeled as 2D disk 
objects. These particles collide with each other if they get closer than the sum of their 
collision radii (rc). Similarly, if the distance between reacting particles is smaller than the 
sum of their reaction radii (rr), a reaction can happen. In order to parametrize these radii, we 
rely on crystal structures (R: bovine, 1U19 (7), R*: bovine 3PQR (8); G: bovine, 1GOT (9), 
RG: 3SN6 (10)) 
Rhodopsin is a transmembrane protein, approximated by a disk with collision and reaction 
radii rc = rr = 2.1 nm. Note that collisions are not handled by hard space exclusions, but rather 
by a soft-core interaction, therefore rc = rr does represent a nonzero reaction volume. 
G is bound to disk membranes by two small lipid membrane anchors. The soluble part of the 
protein is modeled disk shaped with radius rc = 3.4 nm, enclosing the same area as the 
elliptical shape of G in the crystal with axe diameters of 9 nm x 5 nm. This is the radius with 
which G proteins will collide with each other. R, on the other hand, can move beneath G, 
only colliding with the membrane anchors of G. We therefore consider two types of collision 
radii: rc,mb for membrane internal collisions and rc,sol for the collisions of the soluble part. The 
two lipid moieties form one membrane anchor with a footprint of 73 nm2 inside the 
membrane (11), resulting in a collision radius of rc,mb = 0.6 nm in our model. The reaction 
radius of G (rr,G ) is chosen based on the distance of the N-terminal helix in Gα to the 
membrane anchors (5.2 nm - 5.5 nm). The anchor and some helix residues are missing in the 
crystal structure that would enlarge these distances. For these reasons, we set the reaction 
radius conservatively to rr,G = 3 nm (assuming a 6nm distance between anchor and N-
terminal helix).  
For the RG-type, we use rc,RG,mb = 2.1 nm, i.e. radius of rhodopsin, and rc,RG,sol = 3.4 nm, i.e. 
radius of soluble part of G.  RG-complexes do not participate in reactions with other particles 
and therefore possess no reaction radius. See Fig.  2 for an illustration of the particle model 
and Table 2 for a summary of the data. 
 
 
Particle collisions:  
 
During simulation, repulsive particle-particle interaction potentials prevent overlaps between 
particles. The stiffness of these potentials is related to the timestep with which the dynamics 



can be discretized. Too large timesteps in a given potential lead to large discretization errors 
in the time integration of the equations of motion. There is a trade-off between stiff 
potentials that prevent particles from overlapping and large timesteps needed to reach 
biologically relevant timescales. Here, we use harmonic softcore potentials:  
 

U r =   0.5  k!"# r− r! !          if  r < r!
0                                                        else

 ,                                  (S 8) 

 
with distance r between two particles, collision distance r0 and kpot = 10 kJ/mol/nm2. The 
resulting repulsion potentials have a small overlap region of around 0.8nm between full space 
exclusion and no interaction, resembling the fact, that biomolecules are not solid objects and 
feature certain long range interactions. See the following section for details about potential 
Parametrization. 
 
 
Potential Parametrization 
 
The used softcore potentials allow a small overlap between particles. Therefore, in order to 
correctly model the desired molecular radii, we have to adjust the force constant of the 
repulsive term of the potential in order to arrive at a distance distribution that matches our 
expected particle sizes. Given the potential, we can calculate the residence probability p(r) of 
particles in a certain distance r to one another with the following equation: 
 

𝑝 𝑟 = 4𝜋𝑟!𝑒 !!(!)!!! .                                                                                                                                            (𝑆  9) 
 
We define the inner core radius rc of a particle as the region below the 25% threshold of p(r), 
rc = {r | p(r) = 0.25} (See Figure S1). In order to set rc to the desired particle radii given in 
Table 2, we have to input slightly larger radii: 𝑟!!" = 𝑟! + 0.4𝑛𝑚.  
Figure S1 displays the repulsion potential in Eq. S8 for the collision distances of R-R, R-G 
and G-G, together with the residence probability p(r) (Eq. S9) for these distances. See also 
Ref. (12) for details about potential parametrization. 
  



 

 
Figure S3: Input and resulting collision distances between particles. Collision distances 
are investigated for the following pairings:  R-G (black), R-R (red) and G-G (blue). Input 
radii (solid vertical lines) and resulting collision radii (dashed vertical lines) are displayed in 
the same color code. R-G: 𝑟!,!,!"!" +𝑟!,!,!"!"  = 3.5nm, 𝑟!,!,!" = 2.7nm; R-R: 𝑟!,!,!"!" +𝑟!,!,!"!"  = 
5.0nm, 𝑟!,!,!"+𝑟!,!,!" = 4.2nm; G-G: 𝑟!,!,!"#!" +𝑟!,!,!"#!"  = 7.6nm, 𝑟!,!,!"+𝑟!,!"#$ = 6.8nm. A: 
Potential governing particle interactions (Eq. S8). B: Residence probability of particles, 
calculated from Eq. S9. C: Radial distribution function (rdf) calculated from Monte Carlo 
simulation of the full sample simulation including 4500 R and 450 G particles. Depicted are 
averages of 100 rdfs. 
  



Timestep Derivation 
The time step was derived as described in Schöneberg and Noé 2013 (12):  The size of ∆t 
depends on the stiffness of the used potentials.  In case of the current disk vesicle model, 
there are two potentials. A harmonic particle repulsion potential responsible for particle 
overlap prevention and a harmonic spherical shaped geometry potential keeping the particles 
on a spherical surface during the simulation. See SI Figure 2 for a depiction of the radial 
distribution function (RDF) of both potentials (upper left: particle repulsion, lower left: 
vesicle geometry). First a Monte Carlo simulation was performed in order to obtain an RDF 
that is not affected by time step discretization errors. This standard was then compared to 
BD-Simulation results of different ∆t. The root mean squared error of the differences 
between standard and BD-simulation was computed and the largest ∆t chosen that still lead to 
reasonable results. 



 
Figure S4: Influence of timestep choice on discretization error. Radial distribution 
function (rdf) of the two types of potentials is depicted that exist in the simulation: the 
pairwise repulsion potential (A) and the spherical geometry potential (B) holding the particles 
at 120nm distance to the origin. The black line indicates MCMC simulations that do not 
involve time discretization errors. The colored lines depict integration timestep length for the 
Brownian particle dynamics. Depicted are averages from 6 simulations per scenario. A’ and 
B’ depict the root mean squared error of the rdf results in MCMC compared with the 
respective time discretized Brownian particle dynamics. 



Diffusion Constant Parametrization 
 
Diffusion is a phenomenological process of large particles that perform a random motion 
when immersed in a solvent.  Its magnitude is measured by the diffusion constant D.  The 
Stokes-Einstein-Equation relates D to temperature T, solvent viscosity η and the radius of the 
immersed particle rc, weighted by the Boltzmann-constant kB: 
 

𝐷 =
𝑘!𝑇
6𝜋  𝜂  𝑟!

.                                                                                                                                        (𝑆10) 

 
The presences of other particles may slow down the effective diffusion speed, an effect 
usually referred to as crowding. In monitoring the mean square displacements (msd t =
(𝑥! − 𝑥!)! ) of the particles the diffusion constant can be obtained as follows: 

 

𝐷 =
1
2𝑑   

d   (𝑥! − 𝑥!)!

d  𝑡 .                                                                                                                  (𝑆11) 
 
D is proportional to the slope of the msd with d being the dimensionality of the diffusion 
process (d = 2 in this case).  In crowded systems a biphasic behavior can be observed. In the 
first few timesteps, particles move along their mean free path with the microscopic diffusion 
constant Dmicro. On longer timescales, particles collide with each other. This crowding slows 
down the average movement, resulting in a smaller apparent diffusion constant D ≤ D0.  
D0 can be derived via Eq. S10 using η = 100 cP at 22°C (13) as an estimate for the viscosity 
of the disk membrane. (Note that this viscosity value is assumed to be the viscosity of the 
lipid membrane only. Using a viscosity of a disk membrane including all proteins, Eq. S10 
would result in D.) While R has a rather well-defined radius in the membrane resulting in 
𝐷!"#$%
!,!!!"#$ = 1µμ𝑚!𝑠!!, the situation is less clear for G which has a small membrane anchor 

that would diffuse fast on its own (𝐷!
!,!"#!!",!!!"#$ = 3.6µμ𝑚!𝑠!!) but a large soluble 

domain whose footprint size would give rise to a much slower diffusion of (𝐷!
!,!"#,!!!"#! =

0.6µμ𝑚!𝑠!!) in the membrane. The latter value is most likely strongly underestimated, as the 
soluble domain is mostly affected by much less viscous cytoplasm. 
Depending on the experimental method used, either D0 or D is measured. The observed value 
range of D of rhodopsin is [DR = 0.13 µm2/s - 0.73 µm2/s] (14-19), being measured in 
physiological systems at 22°C, mostly in amphibian rod cells and based on fluorescence 
recovery after photobleaching (FRAP) experiments. The value for G protein (D! = 1.2 
µm2s−1) is based on an estimate of the diffusion of similar proteins and is also considered a 
Dmacro value (see Ref. (20) for a review of the experiments for R and the estimate for G).  
High values of D are likely to cancel any geometric effects of rhodopsin architecture while 
low values of D would point out geometrical effects more prominently. To do the most fair 
comparison between experimentally found structures, considering their ability to reproduce 
experimentally measured kinetics,  we chose the upper limit of the available diffusion 
constants. 
If we assume that all proteins are explicitely resolved in our simulation, given the number of 
particles, their macroscopic diffusion constants D and their microscopic arrangement (i.e. 
free diffusion of all particles, fractions of immobile particles e.g. racks of rhodopsin dimers, 
etc), D0 values can be sampled by simulation that reproduce D under the given conditions on 
long timescales (See Figure S5 and Ref (12)).  



 
 
Figure S5. Parametrization of Microscopic Diffusion Constant by Simulation. The mean 
squared displacement (MSD) over time is depicted for R (red fits above black simulation 
data) and G-protein (G, blue fits above black simulation data) in the standard disc vesicle 
simulation. During the first timesteps, particles diffuse with Dmicro (dashed lines). On longer 
time-scales, crowding slows down the particle movement (solid lines) to Dmacro. Depicted are 
averages from 6 simulations.  



Conversion of Reaction Rates into Reaction Probabilities 
 
Due to time discretization in ReaDDy, all unimolecular reaction rates have to be converted in 
probabilities, that the reaction has happened within each timestep, provided that the 
requirements for a reaction are met. There are no requirements for unimolecular reactions. 
For bimolecular reactions, the educt particle distance has to be closer than the sum of the 
educt reaction radii. Rates of unimolecular reactions represent microscopic reaction rates, for 
bimolecular reactions, these have first to bextracted from macroscopic bimolecular rates (see 
next section). The reaction probability is obtained from the Poisson probability of finding at 
least one reaction event with rate kmicro

 in a time window ∆t (12): 

p ∆t = 1− exp  (  𝑘!"#$%      ∆t)                                                                                                        (S  12) 

 
 
Microscopic Rate Constant Parametrization for Bimolecular Reactions 
 
Bimolecular reactions, e.g. the initial R*G complex formation  

  R ∗+  G    
𝑘!
⇌
𝑘!!

      R ∗ G,                                                                            (first  reaction  in  Eq. 2) 

require a modeling step for microscopic simulations. A bimolecular reaction rate in an ODE 
model includes both the bimolecular rate at which the two particles form an encounter 
complex by diffusion kenc and the unimolecular rate at which this complex overcomes the 
activation energy kmicro: 

R ∗+  G    
𝑘!"#!∗!

⇌
𝑘!!"#!∗!

      R ∗   .      G      
𝑘!!"#$%
⇌
𝑘!!

      R ∗ G.                                                                                                    (2.2) 

In our simulations, diffusion is modeled explicitly. I. e. particles have to come closer than the 
sum of their reaction radii rr in order to attempt a reaction with rate 𝑘!!"#$%. In order to 
parametrize the simulation to the macroscopic reaction rate k1, we must search a value for 
𝑘!!"#$% that, in conjunction with particle concentration, diffusion constants and reaction radii, 
leads to the effective rate k1.  
For three-dimensional diffusion, an explicit formulate exists to compute 𝑘!!"#$% (21). For the 
present two-dimensional system we have to rely on sampling. 𝑘!!"#$%  is the only free 
parameter in the free diffusion case, and can therefore obtained by sampling G protein 
activation  in this geometry, using the parameters from Table 1 and Table 2. The value kmicro 
= 5000s−1 matched best the production rate of  285 𝐺!"#∗ /s/R*, the initial catalysis rate of the 
ODE model starting with R* (instead of with M1). See Figure 4 for a depiction of the 
sampling results. 
This procedure is only possible for the scenarios that contain a single bimolecular reaction. In 
the precomplex scenario, the RG complex formation reaction introduces a second 
microscopic reaction rate 𝑘!"#!"#$%  (Eq. 4.2 in Figure 1), which renders the system 
indeterminate. 
 



 
Figure S6 Parametrization of the microscopic R*+G association rate: 𝑘!!"#$% is the single 
microscopic rate in the cascade that arises from a macroscopic bimolecular reaction (R* + G 
→ R*G) in the free diffusion scenario.  It is parametrized by sampling, using the standard 
disk vesicle geometry including reactions.  The red cross indicates the number of produced 
G* in the experiment at [G] = 2500/µm2, starting initially with R* . The plateau at large 
values of 𝑘!!"#$% indicates, that in these regions, the system is no longer limited by the 
activation-complex reaction. Other steps in the reaction cascade are now rate-limiting. 
Depiced are averages and standard errors of 6 simulations per 𝑘!!"#$%. 



 
Time shifting method to simulate first M1 → R* transition 
 
Instead of starting the simulation with an active receptor in Meta1 form, each trajectory is 
started in Meta2 form (R*) that capable of activating G. The shift in time, when this initial 
transition from Meta1 to Meta2 has happened is simulated a posteriori: For each trajectory, 
an ensemble of 1000 reaction times is drawn according to probability distribution p(t) = 1 − 
exp(−kM2t ). Trajectories are shifted in time and averaged. 
 



 
 
Figure S7 Time shifting method to simulate first M1 → R* transition: A: Given the time 
that has passed, what is the probability, that M1 has switched its state to R*.  B: Raw G*sol 
production traces from simulation and their average (B’). C: Each raw trace, 1000 times time 
shifted and averaged. C’: Average of C. 



Rack geometry structure derivation 
The geometry for the rack case simulation was derived using image analysis of the 
microscopic image published by Fotiadis et al. 2003 (22).  Rack structures that could be 
recognized on the image free of doubt were overlayed with lines that had the thickness of an 
R-dimer (Figure S8 A). The size distribution of these lines was recorded and discretized 
(Figure S8 B). The resulting histogram of Rack lengths was fitted with an exponential 
distribution, resulting a distribution of rack lengths l: 
 

𝑝! ≈ 0.261 exp −0.261  𝑙                                                                                                              
 
Thus, rack sizes were generated according to the following formula:  
 

n! =
𝑁
2 𝑝! ,                                                                                                                                                         

 
where N is the total number of R molecules and the brackets denote rounding to the next-
lower integer. For the fit, the counts for rack size 0 and 1 (i.e. individual Rs and dimers) were 
omitted because they could not be assigned on the image free of doubt. 
Using this distribution, geometries were created, based on our assumed native conditions 
(Table 1). 80% of the available R was assigned to racks and 20% of the available R to be 
monomeric and freely diffusing. R* is once considered as monomeric and once as part of a 
rack. See a depiction of the resulting geometries in Fig S8 C.  
 
  



 

 
 
FIGURE S8: Derivation of rack size distribution by image analysis and resulting geometry 
(A) Microscopic image from Fotiadis et al., Nature 2003. Adapted by permission from 
Macmillan Publishers Ltd: Fotiadis et al, Nature. 421: 127–128, copyright 2003. (22), 
overlayed with markers for racks that could be identified individually (green). (B) Histogram 
of the rack size distribution in A, based on the identified racks. (C) Resulting geometries 
from the rack distribution on a disk vesicle with parameters as given in Table 1. R* is 
depicted once as monomeric (left) and once as part of a rack (right). Note, that the density in 
our models is 25,000 R µm-2, as opposed to 50,000 R µm-2 in (22). 
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