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ABSTRACT Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its
active form (R") in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that
trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly
distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific
R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here,
we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-
molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations.
Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffu-
sion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion
model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent
with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures
of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall ampli-

fication of the cascade at the level of the G protein.

INTRODUCTION

In retinal rod cells, absorption of a photon by the visual
G-protein-coupled receptor rhodopsin (R) initiates a
cascade of biochemical reactions that eventually generates
an electrical signal. A first stage of signal transduction
and amplification is provided by the receptor-catalyzed
nucleotide exchange in the rod G protein, transducin (G).
R and G are located in disk membranes that fill the rod outer
segment. Although R and G display fundamental similar-
ities to other receptors and heterotrimeric G.g, proteins
(1), the single-quantum detective function of the rod cell re-
quires that both proteins have specific properties, including
a very low basal activity to ensure low noise and a rapid and
efficient sequential activation of multiple copies of the G
protein by single activated molecules of the receptor. In
the dark, the catalytic activity of rhodopsin is efficiently
blocked by the covalently bound inverse agonist 11-cis-
retinal. Light-induced cis/trans retinal isomerization trig-
gers conformational changes in the receptor protein that
culminate in an equilibrium between inactive Meta I (M1)
and active Meta II (R*) intermediates (2,3). The G holopro-
tein is peripherally bound to the disk membrane by weak hy-
drophobic and ionic interactions. After the exchange of
GDP for GTP in the R*-G,g, complex, the G protein disso-
ciates and active G,-GTP (G*) binds to a cGMP phosphodi-
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esterase in a noncatalytic, stoichiometric interaction. The
active G™-phosphodiesterase complex rapidly hydrolyzes
cGMP, leading to the closure of cGMP-dependent ion chan-
nels in the plasma membrane of the rod outer segment.
Ca”"-dependent feedback leads to a delayed recovery of
the dark concentration of cGMP. At the receptor level, deac-
tivating proteins, namely, a receptor kinase and arrestin,
bind to R* to mediate its phosphorylation and to cap it
against further interaction with G. Deactivation by arrestin
takes 0.2-0.3 s, thereby enabling sufficient G-protein activa-
tion. The whole system forms a closed signal-transduction
module that transforms the input-signal photon into a tran-
sient receptor current that provides the electrical signal for
the synapse of the rod (4).

Mathematical descriptions of the photocurrent response
of retinal rod cells by a system of ordinary differential equa-
tions (ODEs) date back to the early seventies (5). Once the
visual cascade was understood as a G-protein-coupled sys-
tem, known partial steps were increasingly incorporated
into schemes of differential equations describing signal
transduction (6), eventually including downstream reactions
(7,8) and leading to a full simulation of the electrical
response.

In the dim-light working range of the rod, each disk
membrane receives only one or a few photon hits, trig-
gering the whole cascade. To study these single-photon
responses, the stochastic spatiotemporal nature of the
system had to be incorporated into the simulations. The
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well-mixed assumption of ODE methods (i.e., ODEs have
no concept of location, such as the position of the single
activated rhodopsin) rendered these approaches not useful
for our application. As a result, grid-based spatiotemporal
chemical master equations (ST-CMEs) were used (9,10),
allowing for discrete particle numbers rather than concen-
trations and a higher spatial resolution of the disk mem-
brane. However, this method relies on the well-mixed
assumption being true for small subspaces (i.e., lattice
boxes), in which the system is discretized. In a different
approach, partial differential equations (PDEs) were used
on the photoactivation cascade to achieve the same goal
of a higher spatial resolution (11-13). The PDE approach
is also useful for deriving general theoretical results, such
as first passage times in specific geometries (14-17).
However, PDEs use concentrations of molecules and are
therefore impractical when small particle numbers are
important.

Recent experimental findings oppose the scenario of a
well-mixed, free-diffusion, uniformly distributed disk mem-
brane by reporting large rhodopsin clusters (18), immobile
fractions of R (19), and special paracrystalline rhodopsin
structures called racks of dimers (20).

The specific inhomogeneous architecture of these struc-
tures on all levels of detail together with the importance
of individual molecules (a single R* triggers the cascade)
goes beyond the limits of ST-CME and PDE methods. Indi-
vidual molecules, arranged in their specific architectures,
have been used in a Monte Carlo simulation to characterize
the influence of such structures on the diffusion properties
on the disk membrane (21). That study revealed a high
impact of these structures on the diffusion but did not inves-
tigate their impact on reactions.

Such methods, which also treat reactions, are usually
referred to as particle-based reaction-diffusion simulations
(PBRD). Here, every molecule is represented individually
in continuous space and time and its diffusion and reaction
dynamics is simulated on a microscopic level. Individual
molecules can be modeled as freely diffusing, as immobile
obstacles, or in some trap potential. At the same time, reac-
tions between particles can occur only upon physical
encounter of reactive particles. In this way, complex interac-
tions between particle mobility and reaction rates, such as
inhibition of reactions due to spatial occlusion, can be
investigated.

Covering all scenarios of rhodopsin architecture on a disk
membrane requires single-particle resolution, particle diffu-
sion, a simulation geometry, particle-particle interaction
potentials, and reactions between particles. Other available
tools (22-35) covered some but not all of these require-
ments. For this reason, the new PBRD package ReaDDy
was developed (36). Using ReaDDy, we are able to test
the effect of different supramolecular arrangements of R
on molecule diffusivity and outcome of signal transduction
at the same time.
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We chose three representative cases to compare, namely,
1), the classic case, in which all particle species diffuse
freely and are uniformly distributed; 2), the precomplex
case, which is the same as case 1 but with an additional
precomplex interaction between the inactive receptor and
G (37); and 3), the rack case, where G diffuses freely
and is uniformly distributed, but a large fraction of R is
arranged in racks of dimers (20) and thereby rendered
immobile (19).

For our model, a to our knowledge new set of kinetic rates
of the G activation step was derived based on near-infrared
light-scattering experiments using native disk membranes,
as in a previous study (38). These rates give new insight
into G-protein activation kinetics, revealing that the
conformational changes leading from a receptor-G-protein
encounter complex to an active complex and the GDP
release are most probably the rate-limiting steps.

In using this set of kinetic rates in the particle-based
simulation and combining it with the experimentally known
kinetics of G-protein activation (38), we can assess the con-
sistency of different R-architectures with experimental
kinetics and give parameter ranges in which this consistency
is provided.

The salient result of our study is that the supramolecular
architecture has a surprisingly modest impact on the overall
amplification of the cascade at the level of the G protein. It
turns out that the diffusivity of the G-protein can override
the influence of receptor architecture. An important excep-
tion is the case of precomplexes between R and G, which
are only possible if they are formed very transiently. Consid-
ering the uniformity of the simulated signals, signal vari-
ability is moderate if there is only one fraction of receptor
mobility present. Signal variability is increased by different
fractions, i.e., mobile and immobile fractions of R, occur-
ring at the same time (19).

Our derived model, at present containing the first steps of
the photoactivation cascade including diffusion, crowding,
molecular architecture, and detailed Kinetics, can now serve
as a building block for larger-scale physical simulations,
e.g., of the entire signal cascade in a rod cell.

MATERIALS AND METHODS
Kinetic parameter derivation and ODE modeling

Based on the reaction scheme in Fig. 1 (Eqgs. 1-4) and the scenario (with or
without precomplexes), the kinetic reaction rates are estimated from enzy-
matic parameters obtained in a previous study (38). These experiments
were conducted at 22°C with purified disk membranes. Rhodopsin concen-
trations were [R] = 25,000 ,u.m’2 and [R*] = 5.7 um’z. G-protein activa-
tion ligand concentration was set to yield maximal G* production rates:
[GDP]° = 0 um 2 and [GTP]° = 3000 um 2.

Reaction rates were then determined by fitting the ODE model (Fig. 1 A)
to experimental traces of G}, production over time (Fig. 2 A). To verify the
results, another series of dissociation signals measured in the presence of
200 uM GTP (0 uM GDP, data taken from (38)) were simulated with
both sets of rate constants. As seen in Fig. 2 B, the resulting traces are in
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FIGURE 1 Reaction kinetics at two levels of modeling detail. (A) The
first steps of the photoactivation cascade consist of the following activation
reactions: M1/R* equilibrium (7); G-activation reactions, comprising for-
mation of R*G complex, subsequent nucleotide exchange in G, and
R*G*-complex dissociation (2); and dissociation of G* from the membrane
(3). A nonproductive RG-complex formation (4) is added for the precom-
plex case. These reactions are used for the ODE model of the cascade.
(B) Using particle-based reaction-diffusion (ReaDDy), bimolecular associ-
ation reactions have to be split into the explicitly simulated diffusional
encounter and the first-order transition from encounter complex to stable
complex. This affects the R*G- and RG complex formation in (2.2) and
(4.2) (red and blue). (C) Graphical representation of the microscopic diffu-
sion and reaction components, illustrating space exclusions, molecular
shape, and crowding. To see this figure in color, go online.

good agreement with the experimental data (see Table 1 for the derived re-
action rates and the Supporting Material for the details of rate derivation).

ReaDDy Model

The detailed spatiotemporal model was set up and simulated with the
particle-based reaction-diffusion simulation software ReaDDy, version
1.1 (36). All molecules are modeled as spherical particles. These particles
collide with each other if they get closer than the sum of their collision radii
(rc). These radii come in two types, 7 mb, for membrane internal collisions,
and r¢ 51, for the collisions of soluble parts of the molecules. A collision re-
sults in particle-particle repulsion, governed by a harmonic potential. If par-
ticles collide, such that the distance between them is smaller than the sum of
their reaction radii (r;), a reaction can be triggered. All radii are taken from
crystal structures (39-42) (see Fig. 3 A). Due to the properties of the refer-
ence experiment (38), particle diffusion is confined to a spherical surface by
applying a harmonic potential along the surface normal. The surface size
(radius, r = 120 nm, and surface area, A = 0.18 ,umz) was chosen such
that it would host on average 1 R*, 4499 R, and 450 G (see Fig. 3 B).
The Brownian dynamics are integrated with a time step of At = 20 ns. Typi-

Biophysical Journal 107(5) 1042-1053

Schéneberg et al.

A o [G]° = 5444 ym?

400 4 [GI° = 3706 ym2
o o [G]° = 2525 ym2
= - [G]° = 2160 um2
3 o [G]° = 1265 pm2
Py - [G]° = 655 ym2
~ 200 - [G]° = 273 ym™2

0 0.05 0.10 0.15 0.20 0.25

o

- [G]° = 5421 ym?2
300 q - [G]° = 2952 ym2
- [G]° = 1737 ym™2
o [G]° = 1059 pym2
200 { - [G]° = 487 pm=2
- [G]° = 287 um?2

(s'um-?)

sol

G

0 005 010 045 020 025 030
t(s)

FIGURE 2 ODE fit and modeling. (A) ODE fits (solid lines) to represen-
tative dissociation signals (circles; measuring conditions and rate constants
asin Tables 1, S1, and S2). (B) ODE modeling (solid lines) of representative
dissociation signals (200 uM GTP, 0 uM GDP; values taken from Heck and
Hofmann (38)), with rate constants as in Table 1. Note that the two sets of
rate constants (sets A and B in Table S4) yield essentially identical traces.
To see this figure in color, go online.

cally, the total simulation time is 200 ms, corresponding to 107 time steps;
on a standard CPU (Intel Xeon E5345@2.33 GHz), this would take ~400 h.
See the Supporting Material for a more detailed description of the ReaDDy
model.

Microscopic modeling of diffusion and crowding

The simulation resolves all major disc membrane proteins explicitly and
therefore, the diffusion constants used are those for a protein diffusing in
a pure lipid membrane, D,. Collisions between particles lead to crowding
effects: Depending on particle density, mobility, and size (43-46), either
normal diffusion but with a decreased diffusion constant, D, or anomalous
diffusion with a time-dependent diffusion constant, D(f), is observed on
long timescales (47,48). Published values for rhodopsin and G protein
correspond to such observed diffusion constants (19,49-54). D, is first
parametrized in the free-diffusion case by sampling and theoretical calcu-
lations (see Fig. S3 in the Supporting Material). The effect of rhodopsin
architecture is investigated by comparing Dy and D.

Microscopic reaction modeling

In mass-action kinetics, bimolecular association rates, kJ*“", incorporate
both encounter complex formation due to diffusion (with rate k.,.) and
actual complex formation (with rate ™). Since the diffusion is simulated
explicitly in the ReaDDy simulation, ™ has to be derived from k1.
This is necessary for R*G- and RG-complex formation reactions, resulting
in Egs. 2.2 and 4.2 in Fig. 1. (The other two bimolecular reactions involve

the small, cytosolic molecules GDP and GTP that diffuse orders of
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TABLE 1 Experimental parameters and derived reaction rates
Parameter Value Description
T 22°C Temperature of the experiment
[R]* 25,000 um 2 Rhodopsin density on disk vesicles
[R*], [M1]** 5.7 um~2  Activated Rhodopsin density on disk vesicles
[G]9ee 273 um?2 Initial G density in first experiment
[G]9ee 1265 um ™2 Initial G density in second experiment
[G]3*¢ 2525 um™~> Initial G density in third experiment
[G]3ee 5444 ym—> Initial G density in fourth experiment
[GDP]* 0 um™> Initial GDP concentration in experiment
[GTP]* 3000 /.Lm72 Initial GTP concentration in experiment
kMzb 35457! Rate of M1 to R* conversion of rhodopsin
kown” 14.4 57! Rate of R*-to-M1 conversion of rhodopsin
k° 0.36 um® s~ Rate of R*G-complex formation
k{“icmd 5000 s~'  Microscopic rate of R*G-complex formation
k_i® 2005~ Rate of R*G-complex dissociation
k" 600 s Rate of GDP release from R*G complex
KODP =k 5, 225 'uM! Rate of GDP uptake by R*G complex
[GDP] [GDP]
K™ =k, 265 'uM™! Rate of GTP uptake by R*G complex
[GTP]® [GTP]
k_3® 600 s~ Rate of GTP release by R*G* complex
ks® 60,000 s~ Rate of R*G* complex dissociation
k_4® 0s7! Rate of R*G* complex formation
keol® 10,000 s~ Rate of G* membrane dissociation
ko® 0s! Rate of G* membrane binding
kpre 1.67 ,u.mzs’l Rate of RG-complex formation
kl‘j‘}ie““" 108 57! Microscopic rate of R*G-complex formation
k- pre 11,200 s~ Rate of RG-complex formation

“Experimental conditions in (38).

PRates were obtained via an ODE fitting procedure of experimental data
(see methods and SI for details).

°ODE simulations start with [M1] = 5.7 ,umfz, ReaDDy simulations start
with [R*] = 5.7 um 2.

9Rate required for ReaDDy simulations only. Rate applies for the complex-
ation reaction, once the particles are closer than their reaction radii.
“Concentrations used for both ReaDDy and ODE simulations. The ODE fit
contained three additional experiments (see Table S2).

magnitude faster than do membrane-bound proteins and are therefore
considered unimolecular on our timescales). See the Supporting Material
for derivation of the microscopic reaction rates and Table 2 for the resulting
parameters.

RESULTS AND DISCUSSION
Free-diffusion model

We first derive a model assuming that both R and G are uni-
formly distributed and freely diffusing. This is the simplest
assumption for the experimental preparation described in
Heck and Hofmann (38), which used R and G on purified
membranes.

First, the diffusion constants of R and G are parametrized.
As shown in the work of Saxton (43), no percolation
threshold exists if obstacles and tracers (both being
rhodopsin in this case) diffuse at the same rate. In such
cases, the mean-squared displacement of particles, <r2>,
will start as (%) & Dy, will show anomalous diffusion for a
short period of time, and will finally display normal diffu-
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FIGURE 3 ReaDDy model. (A) Collision radii of R-type, G-type, and
RG-type particles were chosen based on crystal structures (R and R*,
bovine 1U19 and 3PQR (40); G, bovine 1GOT (41); RG, 3SN6 (42)).
Due to the different molecular shapes within and on the surface of the mem-
brane, there are two types of collision radii: ., for collisions within the
membrane and 7, s for collisions on the membrane surface (see Table 2
for radius parameters). (B) Disk-vesicle geometry with 4499 R (purple),
450 G (blue), and 1 R* (yellow) on a 0.18 um2 surface. The diffusion tra-
jectory (black line; and see inset) of R* is drawn for 2 ms. To see this figure
in color, go online.

sion with (r?)e«D (43,44,48,56-59) (see Klafter and
Sokolov (60) for an introduction to anomalous diffusion).
In our case, we operate at an occupied area fraction of
¢ = 0.35, given a rhodopsin density of 25,000 um 2. For
this scenario, a crowding factor D7, =D /Do = 0.5 was
calculated (43.61). Our model reproduces these calcula-
tions, resulting in the diffusion parameters presented in
Table 2.

Reactions in the model include the Metal-R* equilibrium
of light-activated receptor (Eq. 1), G activation reactions

Biophysical Journal 107(5) 1042—-1053
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TABLE 2 Parameters of the ReaDDy model.
Parameter Value Description
Fyesicle 120 nm Radius of the simulated vesicle
Avesicle 0.18 ,um2 Surface area of the simulated vesicle
ng™® 4499 Number of rhodopsin particles on a vesicle
ng-"" 1 Number of activated rhodopsins on a vesicle
ng," 49 Initial number of Gs for first experiment
simulation
nGa" 228 Initial number of Gs for second experiment
simulation
nG,3“"’ 454 Initial number of Gs for third experiment
simulation
nGa4" 980 Initial number of Gs for fourth experiment
simulation
FeRmb 2.1 nm Collision radius of R-type particles within
the membrane
iR’ 2.1 nm Reaction radius of R-type particles
Te Ganb 0.6 nm Collision radius of G-type particles within
the membrane
rc,G,mld 3.4 nm Collision radius of G-type particles on top
of the membrane
rr’Gd 3.0 nm Reaction radius of G-type particles
T RGmb 2.1 nm Collision radius of RG-type particles within
the membrane
Te RG.sol 3.4 nm Collision radius of RG-type particles on top
of the membrane
Kpot~ 10kJ/mol/nm> Force constant of the repulsive particle-
particle potential, Eq S8.
At 20 ns Integration timestep
DR' 1.4 um?/s Diffusion constant of R in free lipid.
D' 2.0 um?/s Diffusion constant of G in free lipid.
DLt 0.5 Crowding factor in free diffusion at
density [R].
DR.f 0.7 um?/s Apparent diffusion constant of R in the free
scenario.
D¢ | 1.2 um?/s Apparent diffusion constant of G in the free
scenario
Dty 0.26 Crowding factor in racks model at density [R].
DR 0.4 um®s  Apparent diffusion constant of R in the racks
scenario.
Dgcks' 0.8 um?*/s Apparent diffusion constant of G in the racks
scenario

“Experimental conditions (38).

®Conditions referred to as native.

“Based on crystal structure 2136 (55), see SI for detailed derivation.
9Based on crystal structure 1GOT, see SI for detailed derivation.

°See Supporting Information and Ref (36). for potential parametrization.
"Diffusion constants are based on values in (49), calculations in this work
and (43,45), see SI for details.

(Eq. 2) and G* membrane dissociation (Eq. 3). In this model,
no precomplex reaction is included (Eq. 4). To get a compre-
hensive set of reaction rates, a set of experimental G* traces
of different G concentrations (Table S2) was fitted simulta-
neously to an ODE model of the reaction scheme (Fig. 2).
Two sets of reaction rates were obtained, and both fit the
data (Table S4). The two sets are similar as to the rates of
the initial R*G complex formation and dissociation (k,
k_;) and the final G* membrane dissociation (k). Once
the R*G complex is formed, the rate-limiting step in G* pro-
duction remains ambiguous. Placing the kinetic barrier on
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GDP release or the final R*G*-complex dissociation, both
fit the experiments equally well (compare rate sets A and
B in Table S4). It is widely accepted that GDP release is
generally rate-limiting in G-protein-coupled receptor
systems for nucleotide exchange reactions (see review by
Johnston and Siderovsky (62)). We therefore select rate
set A and use it for all further investigations and micro-
scopic simulations.

The association of G and R* (by k;) is the only bimolec-
ular reaction in our model that describes protein-protein
interactions. Having parametrized all other reaction rates
and model parameters, we can perform simulations with
different values of k™, measure the resulting G, produc-
tion, and choose the k™M value that reproduces the exper-
imental G, production rate (see the Supporting Material,
especially Fig. S6, for the k.o sampling setup). We
observe that & = 5000 s~ ' matches experimental obser-
vations of 285 G ;/R*/s (for a setup of [G] = 2525 um™?),
leading to a reaction probability of 10~* upon collision,
given our chosen time discretization (see Eq. S12). The sam-
pling reveals that the reaction does not operate at its diffu-
sion limit, which is reached for & > 10° s'. In the
limit, a production of 583 + 86 G ;/R*/s is reached (see
Fig. S2). At this point, GDP release is likely to become
rate-limiting.

The microscopic model is now fully parametrized (see
Tables 1 and 2). Simulation results are validated by com-
paring the kinetics of activated G-protein production (Gg,)
with both the ODE model and experiments. We observe
that within statistical error, the model is consistent with
experimental data for all concentrations (Fig. 4 A). The
initial delay of the signals, observed in experiments, can
be fully attributed to the Metal-Meta2 equilibrium. The
variability of the individual simulation trajectories is quite
low, considering that they are consecutive single-molecule
events of one R* activating multiple G. On the investigated
timescale of 200 ms, the free-diffusion model does not
exhibit significant spatial effects such as local G depletion
around the location of R*. There is sufficient time for the
system to equilibrate locally during G activation while the
single active R* is in complex with G.

We find a mean time of 3.11 *+ 2.09 ms for the overall G
activation at physiological [G] = 2525 ,u,m_2 (Fig. 4 A).
Note that this time does not include the Metal-Meta2 equi-
librium. Decomposing the mean cycle time into individual
steps, we find that the first encounter between R* and G
occurs very rapidly (0.03 *= 0.03 ms). The bottlenecks for
G activation are the next two steps: the conformational
change required to form the reactive R*G complex
(1.31 = 1.06 ms) and the subsequent GDP release
(1.61 £ 1.82 ms). We can identify the complex formation
as a bottleneck with high confidence, since the uncertainty
of k; is small (see Estimation of reaction rates in the Sup-
porting Material). These two steps combined account for
94% of the average activation time. In the presence of
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FIGURE 4 Microscopic ReaDDy simulation of the free-diffusion sce-
nario. (A) Box-whisker plot of mean times required for individual reaction
steps in the G activation: R* hits the first free G (G hir), formation of
the first R*G complex (R*G form), first GDP release (GDP rel), first
GTP uptake (GTP up) and first G* dissociation (R*G* dis). The cumulative
time of all individual steps is depicted on the righthand side. Shown are
data from 12 simulations that ran for 10 ms. (B) Microscopic model. (i)
Model parameters. (i) Snapshot of the simulated geometry, containing
R (purple), R* (yellow), and G (blue). Diffusion of R* is depicted for
1 ms. Note that all particles are freely diffusing, similar to the trajectory
of R*. (iii) G activation over time. Compared are averages of 10 ReaDDy
simulations (blue, standard error in light blue) with the ODE model
(red) and the experimental data (black). To see this figure in color,
go online.

millimolar GTP, the following GTP uptake and complex
dissociation reactions occur on microsecond timescales
(0.14 = 0.11 ms and 0.02 = 0.01 ms).
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Let us compare our results with the free-diffusion limit.
To probe this limit, all forward reaction rates were set to in-
finity and all backward reaction rates to zero (i.e., a collision
event between R* and G immediately leads to R* and G)).
Under such conditions, we observe the initial G, produc-

tion of 10,047 + 331 G /R*/s (see Movie S1). This value

0.
is close to previous estimates (9590 G ,/R*/s after 10 ms of
the flash, calculated from Lamb and Pugh (63)). In compar-
ison, the measured activation rate is ~300 G /R*/s (38).
This emphasizes that in the free-diffusion setup, the output
of the system is entirely determined by the series of chem-
ical reactions or conformational transitions that take place

during catalysis within the R*G complex.

Existence of RG precomplexes

We next considered that inactive R and G could form a
nonproductive precomplex (see Eq. 4 in the reaction model
(Fig. 1)). Evidence for the existence of such precomplexes
has been reported in several studies (21,37,64—69), and it
has been hypothesized that they are beneficial for G activa-
tion (37). Analogous to the formation of the reactive com-
plex R* + G=R*G (Egs. 2 and 2.2), formation of the
inactive precomplex is a bimolecular reaction that needs
to be separated into its contributions of diffusional
encounter and microscopic reaction (Eq. 4.2).

In the presence of inactive precomplexes, both k{“i“" and
kg;ie““’ must be parametrized. Generation of an ensemble of
ReaDDy simulations to parametrize the two rates indepen-
dently is computationally prohibitive. Therefore, we restrict
ourselves to a limit analysis by setting both parameters to
their diffusion limit, k;“icm = kg}iec“’ = oo. This limit is equiv-
alent to setting the macroscopic association rates in the ODE
model to their Smoluchowski rate: k; = kpe = 1.67 ,umz/s
(see the Supporting Material for derivation). In the ReaDDy
model, kM = klr)‘;iecm = ® translates to a rate of 105" due
to time discretization. Apart from including the precomplex
reaction, the model setup is identical to the free-diffusion
setup.

The only remaining undetermined parameter is the pre-
complex dissociation rate, k_p., which together with the
association rate determines the precomplex binding con-
stant. We first consider using k_p,. = 0.148/s, which was
estimated from recent surface plasmon resonance measure-
ments (37). Using this rate, the G* production is virtually
zero and the kinetic model is thus inconsistent with the ki-
netic experimental data shown in Fig. 4. This is clear from
the fact that k_,.. = 0.148/s corresponds to precomplexes
with a mean lifetime of 6.76 s—a factor of 3000 longer
than the entire catalytic G activation found above. The situ-
ation is similar when the activated rhodopsin is precom-
plexed with G. Here, the first G gets activated faster, but
owing to the fact that there is less G than R available, the
system then becomes stuck while R* is waiting for a second
free G. The time to reach a target (R*) when multiple trap
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sites are around (R, to form a precomplex) has been studied
by Saxton (70), who showed that traps always increase the
mean time to reach the target, indicating that precomplexes
cannot increase the G* production rate.

Precomplexes can only be consistent with measured ki-
netics if the precomplex is not too stable. ODE fitting re-
veals that the experimental G* production could only be
reproduced with precomplex dissociation rates of at least
k_pre > 11,200/s (Fig. 5 A and Supporting Material). This
setting leads to a ratio of 20% free G to 80% RG precom-
plexes. Note that k_p,. = 11,200/s is a lower bound to the
dissociation rate; when the association rates k; and k. are
smaller than their diffusion limits, the precomplex dissocia-
tion rate must be even larger to keep the overall G* produc-
tion consistent with measured kinetics.

Existence of racks of rhodopsin dimers

Using the microscopic model, we test the molecular
mobility and G* production when R is arranged in rows of
dimers. For the construction of a putative R arrangement,
we combine experimental observations from Fotiadis et al.
(20) (racks of rhodopsin dimers) and Govardovski et al.
(19) (immobile rhodopsin fractions). Both observations
are consistent, because supramolecular R structures would
be expected to diffuse much more slowly than single free
R molecules. In our model, 80% of the R molecules are
immobilized and assigned to racks of different sizes
(i.e., governed by a distribution derived from Fotiadis
et al. (20) (see the Supporting Material), whereas individual
rhodopsins and all G proteins are freely diffusing. Note, that
diffusion of G through the racks is not possible in our simu-
lation setup.

In this geometry, a photon could activate an immobilized
R that is part of a rack or an R that is freely diffusing. Posi-
tion and mobility of the single R* in the simulation is conse-
quently modeled for these two cases (see Fig. 6 A and
Fig. S8 C).

The effects of immobile clustered obstacles on diffu-
sion have been investigated in several theoretical studies
(44,57,58,71). It was shown by Saxton (43) that a percola-
tion threshold, c,, exists when the occupied area fraction
of obstacles, ¢, exceeds 0.332. If ¢>c,, the obstacles sepa-
rate the diffusion-accessible space into smaller subspaces.
In such a scenario, the observed diffusion coefficient, D,
is distance-dependent and anomalous. In our model, the
immobile obstacles occupy an area fraction of c¢j,, = 0.277
and the diffusion-accessible space is fully connected. The
behavior of (r?) for this mixture of mobile and immobile
obstacles was found to be similar to that in the free-diffusion
case described above, leading to a crowding factor of

reks = 0.26 (45). We reproduce these ﬁndlngs in our model
and obtain DR , . = 0.42 um®s ' and DS, = 0.77 um*s .
Note that a higher R density (e.g., the local density of
50,000 ,um72 reported in Fotiadis et al. (20)) would result
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FIGURE 5 Microscopic ReaDDy simulation of the pre-complex sce-
nario. (A) Dependence of the G* production rate on the pre-complex off
rate, given that the on rate is in the diffusion limit (simulations ran for
10 ms, depicted are mean and standard error). The dashed blue line indi-
cates the experimentally found G* production rate. (B) Microscopic model:
(i) model parameters, (bold) parameters different to the free diffusion sce-
nario. (i) Snapshot of the simulated geometry, containing R (purple), R*
(vellow), G (blue) and RG-precomplex (green) particles. The diffusion of
R* is depicted for 1ms. Note that all particles are freely diffusing similar
to the trajectory of R*. (iii) G activation over time. Averages of 10 ReaDDy
simulations (blue, with standard error (light blue)) are compared with the
ODE model (red) and the experimental data (black). To see this figure in
color, go online.

in the system crossing the percolation threshold and likely
showing anomalous diffusion.

It has been shown that obstacles can increase educt
encounter rates (71). In our case, the R*G encounter rate
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lipid (Dy) and apparent diffusion constant (D),
encounter frequency, and G* production rate. (A)
In the free-diffusion case (free), R (purple), R*
(yellow), and G (blue) are all mobile. In the rack
geometry, 80% of R is set as immobile in racks
of dimers, whereas the other molecules diffuse
freely. Here, R* can be part of the mobile fraction
(racks R* free) or be part of an immobile rack
(racks R* in rack). (B and C) Dependency of Dy
(first row), D (second row), R*-G encounter rate
(third row), and G* production, given the geome-
tries in A. Note the smaller scale of the y axis
between the plots of free lipid and apparent diffu-
sion constant. In B, the Dy of the free-diffusion
case is imposed for all geometries. Consequently,
the crowding effects of the geometry can be seen
in the apparent diffusion constant and the resulting
encounter and G*-production rates. In C, the
crowding effects of the geometry are compensated
by imposing higher free-lipid-diffusion constants
on the particles (note that the diffusion of G is
set to compensate the loss of diffusion contribution
from the immobilized R in the R* in rack case). As
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was increased threefold relative to the free-diffusion case.
However, this effect was countered by slower diffusion
due to obstacle-related crowding. The two effects combined
result in a G* production only slightly higher than that for
free diffusion (Fig. 6 B, second column).

The effects are different when R* is part of an immobile
rack (Fig. 6 B, third column). Now, R* is only accessible
from one side and the R*G encounter rate is solely due to
the mobility of G, leading consequently to an approximately
fivefold decrease in encounters compared to the number
observed in free diffusion. This results in an approximately
threefold decrease in G* production. In effect, the racks
geometry led to a slight increase in G* catalysis when R*

R* free R* inrack

quency, and G* production are similar in all geom-
etries. All data shown are averages and standard
errors of six simulations per scenario. Simulation
timescales are 100 us for diffusion analysis, 1 ms
for encounter analysis, and 10 ms for G* catalysis.
To see this figure in color, go online.

racks racks

racks

racks
R* free R¥inrack

is part of the mobile fraction and to a drastic decrease
when R* is part of the immobile fraction.

In the next step, we reparametrized the free lipid diffusion
constants, Dy, of R and G such that the effective joint diffu-
sion constant of the free-diffusion case was reached
(DR + DS =19 um?s~!, see Fig. 6 C, second row).
For these cases, we observe the same encounter rates in all
three scenarios, as well as the same G* production rate. We
simulated the reparametrized rack case with the mobile R*
for 200 ms and found a very good agreement with both the
ODE model and the experimental data (Fig. 7 lower).

In summary, racks of rhodopsin dimers are also consistent
with available kinetic data when the free lipid diffusion
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FIGURE 7 Microscopic ReaDDy simulation of the racks of rhodopsin
dimers scenario. (i) Model parameters, highlighting (bold) parameters
different from the free-diffusion scenario. (if) Snapshot of the simulated
geometry, containing R (purple), R* (yellow), and G (blue). Note that
only G, monomeric R, and R* particles are freely diffusing. R oligomers
are considered immobile. (iii) G activation over time. Averages of 10
ReaDDy simulations (blue, with standard error in light blue) are compared
with the ODE model (red) and the experimental data (black). To see this
figure in color, go online.

constants are chosen to be slightly higher than the respective
values predicted by theory. The confinement conditions of
racks slightly increases G* production on short timescales
if the activated receptor is mobile. If R* is part of a rack
(i.e., it is immobile), the rack geometry decreases G* catal-
ysis substantially, a reduction that can only be compensated
by high G-diffusion constants. Although both cases, i.e., R*
mobile and R* immobile, could be made consistent with
kinetic data individually, the occurrence of both scenarios
on the same disk membrane would pose a challenge. Given
these results, fractions of mobile and immobile rhodopsin
on the same disk simultaneously would lead to a higher vari-
ance of the G* output rate, compared to the case of a homog-
enous geometry.
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CONCLUSION

We have presented a particle-based reaction-diffusion
model for light-induced, rhodopsin-mediated activation of
G-proteins. Although we have chosen rod cell phototrans-
duction as an example, for which there is a large body
of experimental data, the results should be applicable to
G-protein activation in general. The kinetic parameters of
the model were parametrized to fit observed effective diffu-
sion constants (see Pugh and Lamb (49)) and the extensive
G-activation kinetics measurements of Heck and Hofmann
(38) via an ODE model. The model was implemented in
and simulated with the particle-based reaction-diffusion
software ReaDDy (36). The free-diffusion parametrization
could quantitatively reproduce G* production during the
first 200 ms after photoactivation of R* for a set of different
initial G concentrations. The main observations for this
model are as follows. 1), Diffusional G-R* encounter is
fast, consistent with previous predictions that the typical
G* production rates (on the order of several hundred per sec-
ond) are well below the diffusion limit (which would be on
the order of 10,000/s). 2), Due to the high protein density in
the disk membrane, the mobility of R and G is reduced
compared to diffusion in a pure lipid membrane (to 0.5
Dy). 3), The conformational change required to form an
active R*G complex after R* and G encounter is a bottle-
neck, requiring a lower millisecond timescale. 4), It is likely
that GDP release from the R*G complex is the second
bottleneck of the overall catalysis. Findings 3 and 4 define
interesting targets for future investigations: With the advent
of high-throughput computing technologies, such as special-
purpose hardware (72), massive distribution computing (73—
75), and Markov state models (76—79), molecular dynamics
simulations are now able to describe processes on the milli-
second timescale in full atomistic detail. Investigation of the
detailed mechanisms of the R* + G=R*G conformational
change and the GDP release in R*G— R*G + GDP would
shed light on two steps that are important for the kinetics
of phototransduction.

We have considered the existence of a nonproductive RG
precomplex formation: R + G=RG. The existence of such
precomplexes has been suggested by others (21,37,64-69).
Here, we found that the existence of precomplexes is consis-
tent with our kinetic data if they are sufficiently transient. In
particular, the precomplex dissociation rate needs to be on
the order of 10,000 s~ 'or larger. This bound arises from
the fact that longer-lived precomplexes would arrest the sys-
tem in an inactive state dominated by the waiting time of R*
for G proteins stuck at inactive rhodopsins and would conse-
quently reduce G* production to values incompatible with
the present kinetic experimental data, a case referred to as
inhibition by substrate depletion in enzyme kinetics. The
existence of transient RG precomplexes must be compen-
sated by increasing the rates in the rate-limiting steps
described above. In particular, the conformational change
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R* + G— R*G could proceed somewhat faster, e.g., on the
100 us timescale.

Please note that under no circumstances can the existence
of precomplexes increase the production rate of G*, inde-
pendent of whether the activated R* is initially precom-
plexed with a G or not (see Saxton (70) for a theoretical
study on the effect of traps on the way to a target). If pre-
complexes exist, they may be due to side effects (since
R*G has interactions that form a stable complex, it is reason-
able that some of these interactions are also present in RG,
forming transient complexes), but precomplexes may also
play a role in the regulation of signal transduction, e.g., by
limiting the G* output.

We have also considered the situation that rhodopsin
forms rows of dimers (racks), as observed by Fotiadis
et al. (20). One rhodopsin fraction (20%) consists of individ-
ual freely diffusing particles, and the other fraction (80%) is
fixed in racks of dimers. In this model, each row of dimers is
densely packed such that G cannot diffuse through it. This
setup reduces the diffusional mobility of R and G by a factor
of 2 more strongly than in the free-diffusion case (to
0.26D,), a behavior that has already been suggested in theo-
retical studies (61). If the single R* is considered to be not
part of a rack, the encounter rate between R* and G is
increased due to confinement compared to the free-diffusion
case (also compare to Soula et al. (71)). This increase is
compensated by the decreased long-range diffusion through
racks. If R* is considered to be part of a rack, the lower
accessibility of R*, its immobility, and the decrease in
long-range diffusion together drastically decrease the
R*-G encounter frequency, as well as G* formation. Note
that our tested scenarios have an R density of 25,000
um > and are therefore below the percolation threshold
(i.e., the free diffusion space is fully connected). Higher R
densities would likely partition the disc membrane and
lead to anomalous diffusion (56,59). In summary, as has
been shown in experiments (80), the diffusion conditions
and the microscopic environment on the disk membrane
have a strong effect on the R*-G encounter frequency and
therefore on the output of the cascade.

We find that all these effects can be compensated for if the
free lipid diffusion constants (D) are adapted to the geom-
etry so as to reproduce published (49) apparent diffusion
constants. Compensation is possible even if R* is immobi-
lized completely. In this case, G-protein diffusion can
make up for the encounter events alone if it is given a
high free lipid diffusion constant (2.3Dg). Such values
might be possible (81), especially given that the slow mem-
brane diffusion is likely only affecting the relatively small
anchor of G-proteins.

Compensation is only possible for uniform conditions on
the disk membrane. In a setup in which both scenarios
coexist, i.e., fractions of free and immobile R on the disk
membrane, it is difficult to compensate for the effects of
both conditions at the same time. Such a situation could
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be experimentally detected by different G* formation rates
for different individual photon events, depending on
whether R* is freely diffusing or immobile.
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Table S1: Kinetic parameters of G activation

Parameter Kinetic definition * Value "
Vo | (forward) ¢ b ks 594+175s"
R (forward) turnover number (kz N k4) S
K¢ Michaelis constant for Gt M 2182+ 110 um™
m ky(k; + k) "
k,(k,+k,))
GTP . . 2\t 3 Ty
P — +
K. Michaelis constant for GTP k.(k, +k,) 231+ 10 pM
k
K¢ dissociation constant for Gt k__l 534+ 257 um™
1
cop | dissociation constant for k.
Ky GDP P 274 +£ 37 uM

* see (1) for derivation; for assignment of the individual rate constants see Fig. 1A and Table
1

® Values are taken from (2) and represent the experimentally obtained values corrected for the
fraction of active receptor relative to the total amount of light-activated rhodopsin.

Table S2: Initial concentrations of the reactants in ODE-fitting

Species Initial
concentration

[M1]° 5.7 pm™

[R*], 0

(G’ 273 um™ (a)

[G]] 1265 pm™ (a)

[G]’ 2525 um™ (a)

(G 5444 pm™ (a)

[G]. 655 um™

[G]. 2160 pm™

[G]. 3706 pm™

[R*G], 0

[R*G,], 0

[R*G*], 0

[G*], 0

[G*,], 0

(a) G concentrations also used for ReaDDy



Table S3: Initial estimation of selected rate constants

Rate Description Initial estimation

constant

ki Rate of R*G complex formation 0.27 pm*s™ < k; <0.36 pm’s™
k. Rate of R*G complex dissociation 145 s ' <k, <1925

k> Rate of GDP release from R*G complex | > 594 gt

k. Rate of GDP uptake by R*G complex >22uM’'s™!

ks Rate of GTP uptake by R*G complex >2.57 uM's™!

ks Rate of GTP release from R*G* complex | <594 5™

ka Rate of R*G* complex dissociation >594 57!

Table S4: Estimation of rate constants

Rate constant Set A Set B

fez 3545

kv 1445

ki 0.36 um’s™ 0.27 pm’s™

k.1 200 140

ka 600 s 60000 s
kSP"= k. [GDP] 2.6 uM’'s! [GDP] 260 uM's™ [GDP]
k™ = ks [GTP] 2.6 uM's [GTP] 5.1 uM's™ [GTP]
k3 600 s

ks 60000 s 600 s

kg 0s’

Ksol 10000 5™

k.sol 0s’

Reaction rates derived from ODE-fitting for the reaction system given in Egs. (1)-(3) in Fig.
1.

Estimation of the rate constants and ODE-model

Activation of Gt is accompanied in vitro by a complete release of the active Gta-subunit and



a partial release of the GtPy-subunit from the disk membranes. Accordingly, light-induced
activation of Gt can be monitored in real time by probing the resulting loss of mass of the
disk vesicles as a decrease of near infrared light scattering (“dissociation signal”; (2-4)). In a
previous study, kinetic parameters for the individual steps of Gt activation (Table S1) were
quantified by a rate analysis of dissociation signals titrated with Gt, GTP and GDP (2). In the
following, these kinetic parameters were used for a rough initial estimation of the individual
rate constants.

Initial estimation of k; and ky

Solving the definition equation of the turnover number Vows __Koa 594 s for k, and

* (k,+k,)

ka, respectively, yields:

o _ k5945

S1
>k, -594s7! 1)
and
-1
, = &4‘9_1 (S2)
k, —594s

The lower limit for both values is thus k> > 594 s and k4 > 594 s™'. Importantly, the two
values are mutually dependent (Eq. S1 and S2).

Initial estimation of k;

The lower limit for k; (set B in Table S4) is given by (see (2) for details):

> kcat _ Vmax _ kl k2

> =0.272 um’s™ S3
2K TR ek N &

The upper limit of k; is estimated as follows:
With the definition of KG, k.i can be substituted in Eq. (S3) by ki = ki 534 um™, yielding
after solving for k;:

B 0.272um’s™ -k,

bk -14557) &9

With k, > 594 s (see above) one obtains k; < 0.36 pum”s™ (set A in Table S4)

Initial estimation of k_;

k.,
ky
k= ki 534 pm™ (S5)

Solving the definition of K¢ === =534 um™ for k. yields



With the limiting values for k; one obtains

145" <k, <192

Initial estimation of k.,

Solving the definition of K" = :—2 =274 uM for k., yields
-2
k., = ky (S6)
274uM

With k, > 594 s one obtains

ko>22puM' s

Initial estimation of k3

Analogous to the estimation of the lower limit for k; (see above), the lower limit for 43 is
given by:

kca Vmax 1 -1
ky K,S;P = R KO =2.57uM"s

Initial estimation of k_3

A limiting value for k.3 can be obtained from the fact, that the Michaelis constant for GTP (

K ™) confine the upper limit of the dissociation constant for GTP (K ™):
Kfﬂ’=€f-s Ke" (S7)
3

Solving Eq. S7 for k. yields

k,< Kk,
and with k3 > 2.57 uM™'s™ and K "= 231 uM one obtains

k<5947

Estimation of k4, ko1 and kg0

Dissociation of G* from R* is in the visual system followed by dissociation of G* into its
subunits (GaGTP and GPy) and a subsequent quantitative dissociation of GaGTP from the
membranes. Since the overall reaction is essentially irreversible under the experimental
conditions used (2), the respective rate constants were set as given in Table S4.



Estimation of ky and k.

Values of kv and kv were calculated for 22°C and pH 7.4 with the equations provided by
(5). The resulting values (see Table S4) are consistent with published values obtained at
20°C, pH 7.0 and pH 8.0 (6) and allow to calculate the fraction of active receptor relative to
the total amount of light-activated rhodopsin (7'; see (2)):

fA=( o7

Kurtk i)
Estimation of rate constants by ODE fitting

The classic G-protein activation scheme depicted in Fig. 1A (reactions 1-3) was used to
derive a system of ordinary differential equations (ODE):

[Ml]n' = - kMz[Ml]n + k_MQ[R*]n

[R*]s = kyo[M1]y - koaio[R*]n - ki [R*10[Gln + k. [R*Gln + kR*G*],
- k—4[R*]n[G*]n

[G]' = - ki[R*]o[G]n + £ [R*G],

[R*G].'

ki[R*]n[Gla - k1[R*G]y - k2[R*G]n + k.2[GDP][R*Go]a

[R*Gola' = kJ[R*G]y - k2[GDP][R*Goln - k3[GTP][R*Go]n + k-3[R*G*],

[R*G*],' = ks[GTP][R*Goln - k3[R*G*]p - k[R*G*]a + ko[R*]o[G*]a
[G*]nv = k4[R*G*]n - k—4[R*]n[G*]n - ksol[G*]n + k—sol[G*sol]n
[G*sol]n' = ksol[G*]n + k—sol[G*sol]n

where the subscript of the variables (n = 1-7) identifies the individual dissociation signal
used in this study. All protein concentrations are given in numbers/um’, and [GDP] and
[GTP] denote the volume concentrations of the respective nucleotide. Due to the different
concentration units, [GTP] and [GDP] are treated in the following as constants.

In order to estimate the individual rate constants, data points of seven dissociation signals
were simultaneously fitted with the ODE model by applying a multiple least squares fit
procedure, i.e. the simultaneous fit of [G*, ], using one and the same set of rate constants.
Representative dissociation signals were taken from a previous study and scaled to
concentration units as described (2). The initial (t = 0) concentrations are summarized in
Table S2.

In the fit procedure (Scientist Software, MicroMath), rate constants k.4, ksol, k-so1, kn1 and ki,
respectively, were fixed to the values shown in Table S4. In order to include the constrains



given by the experimentally determined kinetic constants Vi.x/R*, K¢, K™ K¢ and K"

(Table S1), the rate constants k.;, k,, k3 and ku, respectively, were incorporated in the fit
procedure by the following equations:

k= ky 534 pm™ (see Eq. S5)

kZ

k., = see Eg. S6
) 274uM ( q )
k, 59457
k,=—2"—"— — see Eq. S2
T osoag  Ceoras)

Solving the definition of K™ =231 uM (Table S1) for ks yields

I AUSEYN)
P 231uM(k, + k,)

The two sets of rate constants (Table S4) were then obtained by ODE-fitting with k; fixed
either to its upper limit (k; = 0.36 pm’s™', set A in Table S4) or to its lower limit (k; = 0.27
um?’s’, set B in Table S4). In both cases the rate constants k, and k3 were allowed to vary
within the limits described above. Both sets of rate constants fitted the experimental data
equally well (Fig. 2 A).

In order to verify the results, another series of dissociation signals measured in the presence
of 200 uM GTP (0 uM GDP, data taken from (2)) were simulated with both sets of rate
constants. As seen in Fig. 2 B, the resulting traces are in good agreement with the
experimental data.

Since the rate of GDP uptake by the R*G complex (i.e. rate constant £.,) is not defined in the
absence of GDP, the value of k., was subsequently estimated by applying the ODE fitting
procedure to dissociation signals measured in the presence of 750 uM GDP and 2000 pM
GDP (data taken from (2)). In this case k., was allowed to vary while all other rate constants
were fixed to the values given in Table S4. The results are depicted in Fig. S1 and
summarized in Table S5.

Table S5: Validation of k.,

750 uM GDP 2000 uM GDP

SetA | kp=24pM's" | kp=2.7uM's™

SetB | k=240 uM's™ | k=270 uM''s™!
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Fig. S1 ODE-fitting of k,. ODE-fits (lines) with k., as open parameter to representative
dissociation signals (circles; taken from (2)) measured with 200 uM GTP, and 750 uM GDP
(A) or 2000 uM GDP (B). (A) Best fits (solid lines) yield k> = 2.4 uM's (rate constant set
A, Table S4) or k5 = 240 uM's™! (rate constant set B). (B) Best fits (solid lines) yield k., =
2.7 uM's™ (rate constant set A) or k, = 270 uM’'s” (rate constant set B). Dotted lines
represent simulations with rate constant set A and k5 = 2.7 uM's™ (A) or ky = 2.4 pM's™!

(B).

Pre-complex case

In the case of nonproductive complex formation between inactive receptor (R) and Gt
(reaction (4) in Fig. 1 A; pre-complex case), the ODE model was extended as follows:

[Metal],' = - k[Metal], + kap[R* ],

[R*],' = fkw[Metal], - kan[R*]n - k[R*]o[G]n + £ [R*G]n + k[ R*G*],,
- k—4[R*]n[G*]n

[G]nv = - kI[R*]n[G]n + k—] [R*G]n - kprc[R]n[G]n + k—prc[RG]n

[R*Gly' = k[R*][G]n - £1[R*G]y - k2[R*G]y + k2[GDP][R*Go]la

[R*Gol' = ko [R*Gla - ko[GDP][R*Gola - ks[GTP][R*Goln + & s[R*G*]a
[R*G*],' = ks[GTP][R*Goln - k3[R*G*]p - k[R*G*]a + ko[R*]o[G*]a
[G*]nv = k4[R*G*]n - k—4[R*]n[G*]n - ksol[G*]n + k—sol[G*sol]n

[G*sol]n' = ksol[G*]n + k—sol[G*sol]n

[R]' = = kpre[R]n[G]n + K-pre[RG]n

[RG]' = kpre[R]n[Gln - kpre[RG]n

Since the amount of RG-complex (and thus depletion of free Gt) depends on the values of k.
and k_pr., calculation of the initial concentrations of RG ([RG]’"), G ([G]"*) and R ([R]*""
) were integrated in the fit procedure:
(K7 + R +1GT )= (K7 1R +[GT ] - 4[RV[GY

2

[RGI?"* =

(G = (G, ~[RGY"™

n n n

[RI)" = [RY, ~[RG]}""

n n n



—2" (i.e. dissociation constant of the RG-complex), [R]’ = 25000 um™ and

n

were K" =
pre

[G]° as given in Table S2.

In order to obtain the limiting case, values of k.. and k; were set to the diffusion limit. To
compute this, we rely on the Smoluchowski-Equation:

kir_nax = 47T(DR + DG)(rT,R + T‘r'G).

See Table 2 for the values of the used diffusion constants and reaction radii. We obtain
k"%*=0.12um’/s. This second order rate constant can be transformed from its volume
concentration to the surface concentration necessary for our needs by the formula of (2):
[X]SD B [R]3D
[X]ZD - [R]ZD'

Experiments were conducted at [R]*® = 3uM and [R]*° = 25,000 pm™. Thus we obtain k¥
=1.67 pm?/s.

Rates kye and ki were both set to k{*** and k.. was allowed to vary in the ODE model (all
other rate constants were fixed to the values given in Table S4, Set A). The resulting fit yields
the lower limit of ke (kpre > 11200 s). Under these conditions and with native Gt
concentrations (2500 - 3000 Gt pm™), about 80 % of total Gt would be initially bound to
inactive receptors.

o [G]° = 5444 um=2
400 = [G]° = 3706 ym2

o o [G]° = 2525 pm?2
c 300 ] = [GI° = 2160 pm2
3 o [G]° = 1265 pm?2
- [G]° = 655 um-2
- [G]° =273 ym2

Fig. S2 ODE-fitting of k... ODE-fits (solid lines) with k. as open parameter to
dissociation signals (circles; measuring conditions as in Tables 1 and S2; rate constants as in
Table S4). For details see text.



Model Geometry

In the reference experiment (2), disk membranes expanded to roughly spherical vesicles after
having been extracted from the rod outer segment. Thus, we confine particle diffusion to a
spherical surface by applying a harmonic potential along the surface normal (see Supporting
Information for details). Simulating vesicle sizes found in experiment (r = 220 nm, A = 0.6
um?) is very CPU-intensive. Therefore, the size of the simulated vesicles was chosen such
that it would host one R* on average (radius r = 120nm and surface area A = 0.18 um?®). To
mimic physiological conditions, the simulated particles comprise one R*, 4,500 R and 450 G.
(See Figure 3 B for depiction).

Partice Radius Parametrization

All molecules involved in the system fall in three categories: R-type, G-type and RG-type.
The R-type comprises hodopsin (R) in its inactive Meta I form (M1) and its active Meta II
form (R*). The G-type contains G-proteins in its inactive (G) and active (G*) forms and the
RG-type spans over all complexes formed from R-type and G-type molecules. Based on the
two dimensional (2D) surface geometry of the system, all molecules are modeled as 2D disk
objects. These particles collide with each other if they get closer than the sum of their
collision radii (rc). Similarly, if the distance between reacting particles is smaller than the
sum of their reaction radii (r;), a reaction can happen. In order to parametrize these radii, we
rely on crystal structures (R: bovine, 1U19 (7), R*: bovine 3PQR (8); G: bovine, 1GOT (9),
RG: 3SN6 (10))

Rhodopsin is a transmembrane protein, approximated by a disk with collision and reaction
radii r; = r; = 2.1 nm. Note that collisions are not handled by hard space exclusions, but rather
by a soft-core interaction, therefore r. = r, does represent a nonzero reaction volume.

G is bound to disk membranes by two small lipid membrane anchors. The soluble part of the
protein is modeled disk shaped with radius r. = 34 nm, enclosing the same area as the
elliptical shape of G in the crystal with axe diameters of 9 nm x 5 nm. This is the radius with
which G proteins will collide with each other. R, on the other hand, can move beneath G,
only colliding with the membrane anchors of G. We therefore consider two types of collision
radii: 1o mp for membrane internal collisions and r. 501 for the collisions of the soluble part. The
two lipid moieties form one membrane anchor with a footprint of 73 nm’ inside the
membrane (11), resulting in a collision radius of rcmp = 0.6 nm in our model. The reaction
radius of G (r;g ) is chosen based on the distance of the N-terminal helix in G, to the
membrane anchors (5.2 nm - 5.5 nm). The anchor and some helix residues are missing in the
crystal structure that would enlarge these distances. For these reasons, we set the reaction
radius conservatively to r.g = 3 nm (assuming a 6nm distance between anchor and N-
terminal helix).

For the RG-type, we use rerGmb = 2.1 nm, i.e. radius of rhodopsin, and r¢rGso1= 3.4 nm, i.e.
radius of soluble part of G. RG-complexes do not participate in reactions with other particles
and therefore possess no reaction radius. See Fig. 2 for an illustration of the particle model
and Table 2 for a summary of the data.

Particle collisions:

During simulation, repulsive particle-particle interaction potentials prevent overlaps between
particles. The stiffness of these potentials is related to the timestep with which the dynamics



can be discretized. Too large timesteps in a given potential lead to large discretization errors
in the time integration of the equations of motion. There is a trade-off between stiff
potentials that prevent particles from overlapping and large timesteps needed to reach
biologically relevant timescales. Here, we use harmonic softcore potentials:

— 2 ;
U@ = {0.5 Kpot(r —r9)* ifr <ry ’ (S 8)
0 else

with distance r between two particles, collision distance ro and kyoe = 10 kJ/mol/nm>. The
resulting repulsion potentials have a small overlap region of around 0.8nm between full space
exclusion and no interaction, resembling the fact, that biomolecules are not solid objects and
feature certain long range interactions. See the following section for details about potential
Parametrization.

Potential Parametrization

The used softcore potentials allow a small overlap between particles. Therefore, in order to
correctly model the desired molecular radii, we have to adjust the force constant of the
repulsive term of the potential in order to arrive at a distance distribution that matches our
expected particle sizes. Given the potential, we can calculate the residence probability p(r) of
particles in a certain distance » to one another with the following equation:

p(r) = 4nr2e(_%). (S9)

We define the inner core radius r. of a particle as the region below the 25% threshold of p(r),
re = {r| p(r) = 0.25} (See Figure S1). In order to set r. to the desired particle radii given in
Table 2, we have to input slightly larger radii: 7" = . + 0.4nm.

Figure S1 displays the repulsion potential in Eq. S8 for the collision distances of R-R, R-G
and G-G, together with the residence probability p(r) (Eq. S9) for these distances. See also
Ref. (12) for details about potential parametrization.
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Figure S3: Input and resulting collision distances between particles. Collision distances
are investigated for the following pairings: R-G (black), R-R (red) and G-G (blue). Input
radii (solid vertical lines) and resulting collision radii (dashed vertical lines) are displayed in
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Potential governing particle interactions (Eq. S8). B: Residence probability of particles,
calculated from Eq. S9. C: Radial distribution function (rdf) calculated from Monte Carlo
simulation of the full sample simulation including 4500 R and 450 G particles. Depicted are
averages of 100 rdfs.
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Timestep Derivation

The time step was derived as described in Schoneberg and Noé 2013 (12): The size of At
depends on the stiffness of the used potentials. In case of the current disk vesicle model,
there are two potentials. A harmonic particle repulsion potential responsible for particle
overlap prevention and a harmonic spherical shaped geometry potential keeping the particles
on a spherical surface during the simulation. See SI Figure 2 for a depiction of the radial
distribution function (RDF) of both potentials (upper left: particle repulsion, lower left:
vesicle geometry). First a Monte Carlo simulation was performed in order to obtain an RDF
that is not affected by time step discretization errors. This standard was then compared to
BD-Simulation results of different Az. The root mean squared error of the differences
between standard and BD-simulation was computed and the largest A¢ chosen that still lead to
reasonable results.
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Figure S4: Influence of timestep choice on discretization error. Radial distribution
function (rdf) of the two types of potentials is depicted that exist in the simulation: the

pairwise repulsion potential (A) and the spherical geometry potential (B) holding the particles

at 120nm distance to the origin. The black line indicates MCMC simulations that do not

involve time discretization errors. The colored lines depict integration timestep length for the
Brownian particle dynamics. Depicted are averages from 6 simulations per scenario. A’ and
B’ depict the root mean squared error of the rdf results in MCMC compared with the

respective time discretized Brownian particle dynamics.



Diffusion Constant Parametrization

Diffusion is a phenomenological process of large particles that perform a random motion
when immersed in a solvent. Its magnitude is measured by the diffusion constant D. The
Stokes-Einstein-Equation relates D to temperature T, solvent viscosity # and the radius of the
immersed particle r., weighted by the Boltzmann-constant kz:

kT
Cennr.

(510)

The presences of other particles may slow down the effective diffusion speed, an effect
usually referred to as crowding. In monitoring the mean square displacements (msd(t) =
((xo — x¢)?)) of the particles the diffusion constant can be obtained as follows:

1 d{(xo — %))
D = >d T : (511)
D is proportional to the slope of the msd with d being the dimensionality of the diffusion
process (d = 2 in this case). In crowded systems a biphasic behavior can be observed. In the
first few timesteps, particles move along their mean free path with the microscopic diffusion
constant Dpicro. On longer timescales, particles collide with each other. This crowding slows
down the average movement, resulting in a smaller apparent diffusion constant D < D.
Dy can be derived via Eq. S10 using 7 = 100 cP at 22°C (13) as an estimate for the viscosity
of the disk membrane. (Note that this viscosity value is assumed to be the viscosity of the
lipid membrane only. Using a viscosity of a disk membrane including all proteins, Eq. S10
would result in D.) While R has a rather well-defined radius in the membrane resulting in

D::l'itchreoory = 1um?s~1, the situation is less clear for G which has a small membrane anchor
that would diffuse fast on its own (DS*"""t"¢"™Y = 3 6m2s~1) but a large soluble

. . . . . . . G,sol,theor
domain whose footprint size would give rise to a much slower diffusion of (D, Y =

0.6um?s~1) in the membrane. The latter value is most likely strongly underestimated, as the
soluble domain is mostly affected by much less viscous cytoplasm.

Depending on the experimental method used, either Dy or D is measured. The observed value
range of D of rhodopsin is [D® = 0.13 um?s - 0.73 pm?s] (14-19), being measured in
physiological systems at 22°C, mostly in amphibian rod cells and based on fluorescence
recovery after photobleaching (FRAP) experiments. The value for G protein (D¢ = 12
um?s ') is based on an estimate of the diffusion of similar proteins and is also considered a
Dmacro Value (see Ref. (20) for a review of the experiments for R and the estimate for G).
High values of D are likely to cancel any geometric effects of rhodopsin architecture while
low values of D would point out geometrical effects more prominently. To do the most fair
comparison between experimentally found structures, considering their ability to reproduce
experimentally measured kinetics, we chose the upper limit of the available diffusion
constants.

If we assume that all proteins are explicitely resolved in our simulation, given the number of
particles, their macroscopic diffusion constants D and their microscopic arrangement (i.e.

free diffusion of all particles, fractions of immobile particles e.g. racks of rhodopsin dimers,
etc), Dy values can be sampled by simulation that reproduce D under the given conditions on
long timescales (See Figure S5 and Ref (12)).
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Figure S5. Parametrization of Microscopic Diffusion Constant by Simulation. The mean
squared displacement (MSD) over time is depicted for R (red fits above black simulation
data) and G-protein (G, blue fits above black simulation data) in the standard disc vesicle
simulation. During the first timesteps, particles diffuse with Dpicro (dashed lines). On longer
time-scales, crowding slows down the particle movement (solid lines) to Dmacro. Depicted are
averages from 6 simulations.



Conversion of Reaction Rates into Reaction Probabilities

Due to time discretization in ReaDDy, all unimolecular reaction rates have to be converted in
probabilities, that the reaction has happened within each timestep, provided that the
requirements for a reaction are met. There are no requirements for unimolecular reactions.
For bimolecular reactions, the educt particle distance has to be closer than the sum of the
educt reaction radii. Rates of unimolecular reactions represent microscopic reaction rates, for
bimolecular reactions, these have first to bextracted from macroscopic bimolecular rates (see
next section). The reaction probability is obtained from the Poisson probability of finding at
least one reaction event with rate kK™ in a time window At (12):

p(At) = 1 —exp (k™m0 At) (S12)

Microscopic Rate Constant Parametrization for Bimolecular Reactions
Bimolecular reactions, e.g. the initial R*G complex formation

R*+G = R*G, (first reaction in Eq. 2)
require a modeling step for microscopic simulations. A bimolecular reaction rate in an ODE

model includes both the bimolecular rate at which the two particles form an encounter
complex by diffusion keye and the unimolecular rate at which this complex overcomes the

activation energy k™";
i kpere
R*+G = R*-G = R*G (2.2)
kEe?lC k—l

In our simulations, diffusion is modeled explicitly. I. e. particles have to come closer than the
sum of their reaction radii r, in order to attempt a reaction with rate k7““"°. In order to
parametrize the simulation to the macroscopic reaction rate k;, we must search a value for
kMO that, in conjunction with particle concentration, diffusion constants and reaction radii,
leads to the effective rate k;.

For three-dimensional diffusion, an explicit formulate exists to compute k" (21). For the
present two-dimensional system we have to rely on sampling. k™7 is the only free
parameter in the free diffusion case, and can therefore obtained by sampling G protein
activation in this geometry, using the parameters from Table 1 and Table 2. The value kuicro
= 5000s" matched best the production rate of 285 G,,/s/R*, the initial catalysis rate of the
ODE model starting with R* (instead of with M1). See Figure 4 for a depiction of the
sampling results.

This procedure is only possible for the scenarios that contain a single bimolecular reaction. In
the precomplex scenario, the RG complex formation reaction introduces a second
microscopic reaction rate k{;;igm (Eq. 4.2 in Figure 1), which renders the system
indeterminate.
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Figure S6 Parametrization of the microscopic R*+G association rate: k"™ is the single
microscopic rate in the cascade that arises from a macroscopic bimolecular reaction (R* + G

— R*QG) in the free diffusion scenario. It is parametrized by sampling, using the standard

disk vesicle geometry including reactions. The red cross indicates the number of produced
G* in the experiment at [G] = 2500/um’, starting initially with R* . The plateau at large
values of k™" indicates, that in these regions, the system is no longer limited by the
activation-complex reaction. Other steps in the reaction cascade are now rate-limiting.
Depiced are averages and standard errors of 6 simulations per k",



Time shifting method to simulate first M1 — R* transition

Instead of starting the simulation with an active receptor in Metal form, each trajectory is
started in Meta2 form (R*) that capable of activating G. The shift in time, when this initial
transition from Metal to Meta2 has happened is simulated a posteriori: For each trajectory,
an ensemble of 1000 reaction times is drawn according to probability distribution p(f) = 1 —
exp(—kunt ). Trajectories are shifted in time and averaged.
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Figure S7 Time shifting method to simulate first M1 — R* transition: A: Given the time
that has passed, what is the probability, that M1 has switched its state to R*. B: Raw G*,
production traces from simulation and their average (B’). C: Each raw trace, 1000 times time
shifted and averaged. C’: Average of C.



Rack geometry structure derivation

The geometry for the rack case simulation was derived using image analysis of the
microscopic image published by Fotiadis et al. 2003 (22). Rack structures that could be
recognized on the image free of doubt were overlayed with lines that had the thickness of an
R-dimer (Figure S8 A). The size distribution of these lines was recorded and discretized
(Figure S8 B). The resulting histogram of Rack lengths was fitted with an exponential
distribution, resulting a distribution of rack lengths /:

p = 0.261exp(—0.2611)

Thus, rack sizes were generated according to the following formula:
- |37
n, = > Pt}

where N is the total number of R molecules and the brackets denote rounding to the next-
lower integer. For the fit, the counts for rack size 0 and 1 (i.e. individual Rs and dimers) were
omitted because they could not be assigned on the image free of doubt.

Using this distribution, geometries were created, based on our assumed native conditions
(Table 1). 80% of the available R was assigned to racks and 20% of the available R to be
monomeric and freely diffusing. R* is once considered as monomeric and once as part of a
rack. See a depiction of the resulting geometries in Fig S8 C.
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FIGURE S8: Derivation of rack size distribution by image analysis and resulting geometry
(4) Microscopic image from Fotiadis et al., Nature 2003. Adapted by permission from
Macmillan Publishers Ltd: Fotiadis et al, Nature. 421: 127-128, copyright 2003. (22),
overlayed with markers for racks that could be identified individually (green). (B) Histogram
of the rack size distribution in A, based on the identified racks. (C) Resulting geometries
from the rack distribution on a disk vesicle with parameters as given in Table 1. R* is
depicted once as monomeric (/eff) and once as part of a rack (right). Note, that the density in
our models is 25,000 R pm™, as opposed to 50,000 R um™ in (22).
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