Supporting Information for:

Protonation of Nickel-Iron Hydrogenase Models Proceeds after Isomerization at Nickel

Mioy T. Huynh, David Schilter, Sharon Hammes-Schiffer, and Thomas B. Rauchfuss

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

List of Figures

Figure S1. Cyclic voltammogram of 1	4
Figure S2. Positive ion ESI mass spectrum of [2I] ⁺	5
Figure S3. ¹ H NMR spectrum of 2	5
Figure S4. ${}^{31}P{}^{1}H$ NMR spectrum of 2	6
Figure S5. ${}^{31}P{}^{1}H{}$ NMR spectrum of 2 acquired at -85 °C	6
Figure S6. FT-IR spectrum of 2.	7
Figure S7. Positive ion ESI mass spectrum of 2 revealing decarbonylation.	7
Figure S8. FT-IR spectrum of [2]BF ₄	7
Figure S9. Positive ion ESI mass spectrum of [2]BF ₄	8
Figure S10. ¹ H NMR spectrum of [2H]BF ₄	8
Figure S11. ${}^{31}P{}^{1}H{}$ NMR spectrum of [2H]BF ₄	9
Figure S12. FT-IR spectrum of [2H]BF ₄ .	9
Figure S13. Positive ion ESI mass spectrum of [2H]BF ₄	. 10
Figure S14. Cyclic voltammogram of [2H]BF ₄	. 10
Figure S15. Positive ion ESI mass spectrum of residue dissolved in CH ₃ CN after [2H]I	BF ₄
was left for 2 d in CH ₂ Cl ₂ /air	. 11
Figure S16. ² H NMR spectrum of [2D]BF ₄	. 11
Figure S17. ³¹ P{ 1 H} NMR spectrum of [2D]BF ₄	. 12
Figure S18. FT-IR spectrum of [2D]BF ₄ .	. 12
Figure S19. Positive ion ESI mass spectrum of [2D]BF ₄	. 13
Figure S20. FT-IR spectrum of [2']BF ₄	. 13
Figure S21. Positive ion ESI mass spectrum of [2']BF ₄	. 13
Figure S22. Positive ion ESI mass spectrum of [2']BF ₄ after 2 d in CH ₂ Cl ₂	. 14
Figure S23. X-band EPR spectra of [2]BF ₄ and [2']BF ₄	. 14
Figure S24: Positive ion ESI mass spectrum of [3 I] ⁺	. 15
Figure S25. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of 3	. 15
Figure S26. ¹ H NMR spectrum (CD ₂ Cl ₂ , 500 MHz) of 3	. 16
Figure S27. ${}^{31}P{}^{1}H$ NMR spectrum of 3	. 17
Figure S28. ³¹ P{ 1 H} NMR spectrum of 3 acquired at -85 °C	. 17
Figure S29. Cyclic voltammogram of 3	. 18
Figure S31. X-band EPR spectrum of [3]BF ₄	. 19
Figure S32. X-band EPR spectrum of [3]BF ₄	. 19
Figure S33. Positive ion ESI mass spectrum of [3]BF ₄	. 20
Figure S34. FT-IR spectrum of [3H]BF ₄ .	. 20
Figure S35. ¹ H NMR spectrum of [3 H]BF ₄	. 21

Figure S36. ³¹ P $\{^{1}H\}$ NMR spectrum of [3 H]BF ₄	. 21
Figure S37. Positive ion ESI mass spectrum of [3H]BF ₄	. 22
Figure S38. FT-IR spectrum of [3 ']BF ₄	. 22
Figure S39. Positive ion ESI mass spectrum of [3']BF ₄	. 23
Figure S40. X-band EPR spectrum (CH ₂ Cl ₂ /PhMe, 120 K) of [3']BF ₄ .	. 23
Figure S41. X-band EPR spectrum (CH ₂ Cl ₂ /PhMe, 290 K) of [3']BF ₄ .	. 24
Figure S42. Cyclic voltammogram of [3']BF ₄	. 24
Figure S43. UV-vis spectra of 1, 2 and 3	. 25
Figure S44. ¹ H NMR spectrum of (pdt)Ni(<i>S</i> , <i>S</i> -chiraphos)	. 25
Figure S45. ³¹ P{ ¹ H} NMR spectrum of (pdt)Ni(<i>S</i> , <i>S</i> -chiraphos)	. 26
Figure S46. Positive ion ESI mass spectrum of (pdt)Ni(S,S-chiraphos)	. 26
Figure S47. ¹ H NMR spectrum of (CO) ₃ Fe(pdt)Ni(<i>S</i> , <i>S</i> -chiraphos)	. 27
Figure S48. ³¹ P{ ¹ H} NMR spectrum of (CO) ₃ Fe(pdt)Ni(<i>S</i> , <i>S</i> -chiraphos)	. 27
Figure S49. VT ${}^{31}P{}^{1}H$ NMR of (CO) ₃ Fe(pdt)Ni(<i>S</i> , <i>S</i> -chiraphos)	. 28
Figure S50. FT-IR spectrum of (CO) ₃ Fe(pdt)Ni(S,S-chiraphos).	. 28
Figure S51. Positive ion ESI mass spectrum of (CO) ₃ Fe(pdt)Ni(S,S-chiraphos)	. 29
Figure S52. ¹ H NMR spectrum of [(CO) ₃ FeH(pdt)Ni(S,S-chiraphos)]BF ₄	. 29
Figure S53. ³¹ P{ ¹ H} NMR spectrum of $[(CO)_3FeH(pdt)Ni(S,S-chiraphos)]BF_4$ acquired	d
at room temperature and -70° C	. 30
Figure S54. FT-IR of [(CO) ₃ FeH(pdt)Ni(S,S-chiraphos)]BF ₄	. 30
Figure S55. Positive ion ESI mass spectrum of [(CO) ₃ FeH(pdt)Ni(S,S-chiraphos)]BF ₄ .	. 31
Figure S56. NBO depiction for (a) the Ni–Fe bond in 1 and (b) the Pd–Fe bond in 2	. 34
Figure S57. Isomeric and tautomeric forms of $[1H]^+$ and their corresponding free energy	gies
relative to the square-planar u-hydrido form	35
List of Tables	
Table S1. EPR Simulation Parameters for [2]BF ₄ (Two Conformers) and [2']BF ₄ ,	. 14
Table S2. Reversibility of the $[3']^{2+/+}$ Couple is Unaffected by Scan Rate.	.25
Table S3. Selected Bond Lengths (Å) and Angles (°) for 1-3. Determined Experimenta	llv
(X-ray Crystallography) and Computationally (DFT).	. 32
Table S4 Selected Bond Lengths (Å) and Angles (°) for $[1-3H]^+$ Determined	
Experimentally (X-ray Crystallography) and Computationally (DFT)	32
Table S5 Selected Bond Lengths (Å) and Angles (°) for Isomers of FeM Complexes 1	-3
with Tetrahedral or Square Planar M	32
Table S6 Calculated Reaction Free Energies (ΛG°) for Rotation from Tetrahedral to	
Square Planar Geometry at the Ni(dppe) Site in (CO) ₂ Fe(ndt)Ni(dppe) using	
Different Functionals	33
Table S7 Calculated Reaction Free Energies (ΛG°) for Rotation from Tetrahedral to	
Square Planar Geometry at the Ni(dppe) Site in (CO) ₂ Fe(ndt)Ni(dppe) using	
Different Basis Sets with the BP86 Functional	33
Table S8 Calculated Reaction Free Energies (ΛG°) for Rotation from Tetrahedral to	
Square Planar Geometry at the M(dnne) Site in 2 and 3 using Different Functional	10
Square Finnar Geometry at the M(appe) Site in 2 and 5 using Different Functiona	34
Table S9 Calculated Free Energy Barriers (ΛG^{\ddagger}) and Imaginary Frequencies of	
Transition States for Tetrahedral to Square Planar Rotation at the Ni(dnne) Site in	1
(CO) Fe(ndt)Ni(dnne)	35
	. 55

Figure S1. Cyclic voltammogram of 1. Conditions: see Experimental.

The barrier to Ni(dppe) rotation in 1 (tetrahedral \leftrightarrow square planar) was determined according to the Gutowsky-Holm relation, using previously reported data:

$$T_{\rm C} = -30^{\circ}{\rm C} = 243 \text{ K}$$

$$\Delta v = (82 \text{ ppm} - 46 \text{ ppm})(202 \text{ MHz}) = 7272 \text{ s}^{-1}$$

$$k_{\rm C} = \pi \Box \Delta v)/2^{0.5}$$

$$= 16200 \text{ s}^{-1}$$

$$\Delta G^{\dagger} = 4.58(T_{\rm C})\{10.32 + \log_{10}(T_{\rm C}/k_{\rm C})\}\text{ cal/mol}$$

$$= 4.58(243)(10.32 + \log_{10}(243/16200)) \text{ cal/mol}$$

$$\approx 9.5 \text{ kcal/mol}$$

Since the Pd(dppe) fragment in **2** was found to be dynamic even at -85 °C, we could estimate only an upper bound for ΔG^{\dagger} . Since we could not determine Δv (difference in resonant frequency for the two decoalesced ³¹P signals) for **2**, we employed the value 7272 s⁻¹ found for **1**.

 $T_{\rm C} < -85^{\circ}{\rm C} = 188 \text{ K}$ $\Delta G^{\dagger} < 4.58(188)(10.32 + \log_{10}(188/16200)) \text{ cal/mol}$ < 7.2 kcal/mol

Figure S2. Positive ion ESI mass spectrum of [2I]⁺. The simulated spectrum is presented as a dotted trace.

Figure S3. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of **2**. Resonances at 3.43 (Et₂O), 1.31 (pentane), 1.12 (Et₂O) and 0.89 ppm (pentane) are from solvent impurities.

Figure S6. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of **2**.

Figure S7. Positive ion ESI mass spectrum of 2 revealing decarbonylation.

Figure S8. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [2]BF₄.

Figure S9. Positive ion ESI mass spectrum of [2]BF₄. The simulated spectrum is presented as a dotted trace.

(Et₂O), 1.31 (pentane), 1.18 (Et₂O) and 0.89 ppm (pentane) are from solvent impurities.

Figure S12. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [2H]BF₄.

Figure S13. Positive ion ESI mass spectrum of [2H]BF₄. The simulated spectrum is presented as a dotted trace. In solution, moisture/air induces degradation of [2H]BF₄ to 2 and [(dppe)Pd(pdt)Pd(dppe)](BF₄)₂ (m/z 1203.7 [M – BF₄⁻]⁺, 558.8 [M – 2BF₄⁻]²⁺ see **Figure S15**) and [(dppe)Pd(pdt)Pd(pdt)Pd(dppe)](BF₄)₂ (m/z 663.8.7 [M – 2BF₄⁻]²⁺).

Figure S14. Cyclic voltammogram of $[\mathbf{2}H]BF_4$. The wave at 0 V is due to internal $Fc^{0/+}$. The electrochemistry of $[\mathbf{2}H]BF_4$ is complicated, an irreversible wave at -1.49 V being ascribed to a metal-centered. This event is followed by decomposition of the 1e⁻ reduced species $[\mathbf{2}H]$ (perhaps by interaction with $[\mathbf{2}H]^+$) to liberate H₂ and 2. The presence of the latter is evidenced by the appearance of a reversible wave at -0.87 V (assigned to the $[\mathbf{2}]^{0/+}$ couple) on the return scan. *Conditions*: see Experimental.

S10

Figure S15. Positive ion ESI mass spectrum of residue dissolved in CH_3CN after [2H]BF₄ was left for 2 d in CH_2Cl_2/air .

is from residual CHDCl₂.

Figure S18. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [2D]BF₄.

Figure S19. Positive ion ESI mass spectrum of [2D]BF₄. The simulated spectrum is presented as a dotted trace.

Figure S20. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [2']BF₄.

Figure S21. Positive ion ESI mass spectrum of $[2']BF_4$. The simulated spectrum is presented as a dotted trace.

S13

Figure S22. Positive ion ESI mass spectrum of [2']BF₄ after 2 d in CH₂Cl₂. The simulated spectrum is presented as a dotted trace.

Figure S23. X-band EPR spectra (CH₂Cl₂/PhMe, 110 K) of [**2**]BF₄ and [**2'**]BF₄. The simulated spectra are presented as dotted traces.

Table S1. EPR Simulation Parameters for [$[2]BF_4$ (Tw	vo Conformers)) and [2']BF4
--	---------------	----------------	------------------------

	g-factor	$A(^{31}P)/MHz$	line width /G	relative abundance	
	2.053, 2.046, 2.005	_	10, 8, 6	0.74	
	2.050, 2.032, 2.006	_	15, 10, 9	0.26	
[2']BF ₄	2.072, 2.038, 2.002	54, 61, 57	11, 9, 8	1.00	

Figure S24: Positive ion ESI mass spectrum of $[3I]^+$ generated from (pdt)Pt(dppe) and FeI₂(CO)₄. The simulated spectrum is presented as a dotted trace.

Figure S25. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of **3**.

Figure S29. Cyclic voltammogram of 3. Conditions: see Experimental.

Figure S30. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [**3**]BF₄. Manipulation of this compound should be performed quickly in order to avoid H atom abstraction to form [**3**H]BF₄ ($v_{CO} = 2081, 2022 \text{ cm}^{-1}$).

Figure S31. X-band EPR spectrum (CH₂Cl₂/PhMe, 120 K) of [3]BF₄.

Figure S32. X-band EPR spectrum ($CH_2Cl_2/PhMe$, RT) of [3]BF₄.

Figure S33. Positive ion ESI mass spectrum of [3]BF₄. The simulated spectrum is presented as a dotted trace.

Figure S34. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [3H]BF₄.

Figure S37. Positive ion ESI mass spectrum of [**3**H]BF₄. The simulated spectrum is presented as a dotted trace.

Figure S38. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [3']BF₄.

Figure S39. Positive ion ESI mass spectrum of $[3']BF_4$. The simulated spectrum is presented as a dotted trace.

Figure S40. X-band EPR spectrum (CH₂Cl₂/PhMe, 120 K) of [3']BF₄.

Figure S41. X-band EPR spectrum (CH₂Cl₂/PhMe, 290 K) of [3']BF₄.

<i>v</i> /mVs ⁻¹	$ i_{\rm pa}/i_{\rm pc} $
100	0.50
200	0.51
300	0.49
400	0.46
500	0.46
1000	0.43

Table S2. Reversibility of the $[3']^{2+/+}$ Couple is Unaffected by Scan Rate.

Figure S43. UV-vis spectra of 1 (blue), 2 (red) and 3 (green trace) (0.1 mM in CH₂Cl₂)

Figure S44. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of (pdt)Ni(*S*,*S*-chiraphos). Resonances at 3.69 (THF), 3.43 (Et₂O), 1.82 (THF), 1.31 (pentane), 1.12 (Et₂O) and 0.89 ppm (pentane) are from solvent impurities.

Figure S45. ³¹P{¹H} NMR spectrum (CD₂Cl₂, 202 MHz) of (pdt)Ni(*S*,*S*-chiraphos). The narrow linewidth (~6 Hz) indicates conformational dynamics that equivalence the otherwise distinct ³¹P sites.

Figure S46. Positive ion ESI mass spectrum of (pdt)Ni(*S*,*S*-chiraphos). The simulated spectrum is presented as a dotted trace.

0.89 ppm (pentane) are from solvent impurities.

50 ppm Figure S48. ³¹P{¹H} NMR spectrum (CD_2Cl_2 , 202 MHz) of (CO)₃Fe(pdt)Ni(S,Schiraphos). If recrystallization is not performed correctly, an orange (CO)₂Ni(S,Schiraphos) impurity is observed (53.0 ppm, $v_{\rm CO} = 2001 \text{ cm}^{-1}$). This is easily removed by recrystallization until a pale olive filtrate is obtained.

Figure S49. ³¹P{¹H} NMR (CH₂Cl₂, 202 MHz) of (CO)₃Fe(pdt)Ni(*S*,*S*-chiraphos) acquired at different temperatures.

Figure S50. FT-IR spectrum (*v*_{CO} region, CH₂Cl₂) of (CO)₃Fe(pdt)Ni(*S*,*S*-chiraphos).

Figure S51. Positive ion ESI mass spectrum of (CO)₃Fe(pdt)Ni(*S*,*S*-chiraphos). The simulated spectrum is presented as a dotted trace.

chiraphos)]BF₄. Resonances at 3.43 (Et₂O), 1.31 (pentane), 1.12 (Et₂O) and 0.89 ppm (pentane) are from solvent impurities.

Figure S54. FT-IR (v_{CO} region, CH₂Cl₂) of [(CO)₃FeH(pdt)Ni(S,S-chiraphos)]BF₄.

Figure S55. Positive ion ESI mass spectrum of [(CO)₃FeH(pdt)Ni(*S*,*S*-chiraphos)]BF₄. The simulated spectrum is presented as a dotted trace.

	(OC) ₃ Fe(p	dt)Ni(dppe)	(OC) ₃ Fe(p	dt)Pd(dppe)	(OC) ₃ Fe	(pdt)Pt(dppe)
	((1)	(2)		(3)
	expt	calc	expt	calc	expt	calc
M-Fe	2.47	2.42	2.56	2.56	n/a	2.87
$M-P^a$	2.15	2.16	2.26	2.26	n/a	2.28
$M-S^a$	2.25	2.30	2.49	2.49	n/a	2.38
Fe-S ^a	2.28	2.29	2.29	2.30	n/a	2.36
Fe-C ^a	1.80	1.80	1.80	1.77	n/a	1.75
$P-M-S^a$	117.06	114.50	128.85	135.12	n/a	176.89
S-Fe-C ^{<i>a</i>,<i>b</i>}	161.65	161.27	162.66	161.07	n/a	153.12

Table S3. Selected Bond Lengths (Å) and Angles (°) for **1-3**, Determined Experimentally (X-ray Crystallography) and Computationally (DFT).

^aThese bond distances/angles are average values. ^bValues for S-Fe-CO_{trans}.

Table S4. Selected Bond Lengths (Å) and Angles (°) for $[1-3H]^+$, Determined Experimentally (X-ray Crystallography) and Computationally (DFT).

I J <	[1 F	$\frac{1}{1}$	[2 H	[] ⁺]	3 H] ⁺
	expt	calc	expt	calc	expt	calc
M-Fe	2.61	2.64	2.85	2.92	n/a	2.97
M-H	1.64	1.87	2.17	2.19	n/a	2.23
Fe-H	1.46	1.56	1.47	1.54	n/a	1.54
$M-P^a$	2.17	2.19	2.26	2.30	n/a	2.29
$M-S^a$	2.21	2.23	2.37	2.39	n/a	2.41
$Fe-S^a$	2.32	2.34	2.34	2.35	n/a	2.36
Fe-C ^a	1.80	1.79	1.80	1.79	n/a	1.79
M-H-Fe	114.94	100.12	101.18	101.24	n/a	102.25
$P-M-S^a$	176.73	178.73	177.39	176.56	n/a	176.17
S-Fe-C ^{<i>a,b</i>}	166.35	165.99	166.53	165.75	n/a	165.24

^aThese bond distances/angles are average values. ^bValues for S-Fe-CO_{trans}.

Table S5. Selected Bond Lengths (Å) and An	ngles (°) for Isomers of FeM Complexes 1-3,
with Tetrahedral or Square Planar M.	

	(OC) ₃ Fe(pdt	t)Ni(dppe)	(OC) ₃ Fe(pdt)Pd(dppe)	(OC) ₃ Fe(pdt)Pt(dppe)
	(1))	(2)		(3)	
	Totrohodrol	Square	Totrobodrol	Square	Tatrohadral	Square
	Tetralleural	Planar	Tetraneurai	Planar	Tetraneurai	Planar
M-Fe	2.42	2.55	2.56	2.84	2.57	2.87
$M-P^a$	2.16	2.18	2.26	2.30	2.27	2.28
$M-S^a$	2.30	2.22	2.49	2.36	2.64	2.38
Fe-S ^a	2.29	2.34	2.30	2.35	2.31	2.36
Fe-C ^a	1.80	1.75	1.77	1.75	1.77	1.75
$P-M-S^a$	114.50	166.46	135.12	176.10	140.21	176.89
S-Fe-C ^{<i>a</i>,<i>b</i>}	161.27	150.87	161.07	152.602	160.23	153.12

^aThese bond distances/angles are average values. ^bValues for S-Fe-CO_{trans}.

Eurotional	Gas-opt	Sol-opt
Functional	w/ solvation ^c	w/ solvation ^d
B3P86	-0.67	-1.28
BP86	nf^e	-1.80
BP86-D2	nf^e	+3.88
B3LYP	-1.10	-2.77
BLYP	nf^e	+0.82
TPSSh	nf^e	+1.11
M06L	nf^e	+0.93
M11L	nf^e	+2.71
ωB97xD	-1.28	-2.88

Table S6. Calculated Reaction Free Energies $(\Delta G^{\circ})^a$ for Rotation from Tetrahedral to Square Planar Geometry at the Ni(dppe) Site in (CO)₃Fe(pdt)Ni(dppe) using Different Functionals.^{*b*}

^{*a*}Values given in kcal/mol for the square planar geometry relative to the tetrahedral geometry. ^{*b*}All calculations were performed using the SDD pseudopotential and associated basis set for the Fe and Ni centers, and the 6-31G* basis set for all other atoms. ^{*c*}Structures were optimized in the gas phase, and solvation free energies were calculated in CH₂Cl₂ using C-PCM. ^{*d*}Structures were optimized in CH₂Cl₂ solvent using C-PCM. ^{*e*}Minimum for the square planar geometry not found (nf).

Table S7. Calculated Reaction Free Energies $(\Delta G^{\circ})^a$ for Rotation from Tetrahedral to Square Planar Geometry at the Ni(dppe) Site in (CO)₃Fe(pdt)Ni(dppe) using Different Basis Sets with the BP86 Functional.

Eor Ni Eo	For other	Sol-opt
FOI MI, FE	atoms	w/ solvation ^b
SDD^{c}	6-31G*	-1.80
SDD^{c}	D95*	+0.29
TZVP^d	6-31G*	+4.20
TZVP^d	D95*	+1.28
TZVP^d	TZVP	+1.22

^{*a*}Values given in kcal/mol for the square planar geometry relative to the tetrahedral geometry. ^{*b*}Structures were optimized in CH₂Cl₂ solvent using C-PCM. When optimizations were performed in the gas phase, a minimum was not found for the square planar geometry. ^{*c*}SDD pseudopotential and associated basis set used for Fe and Ni. ^{*d*}No pseudopotentials were used for Fe and Ni.

u	are r fanar Geometry at the M(appe) site in 2 and 6 using Different r anetonais.					
		(OC) ₃ Fe(pdt)	Pd(dppe) (2)	$(OC)_{3}Fe(pdt)Pt(dppe)$ (3)		
	Functional	Gas-opt	Sol-opt	Gas-opt		
	Functional	w/ solvation ^c	w/ solvation ^d	w/ solvation ^c		
	B3P86	+0.99	+2.96	-30.42		
	BP86	nf^e	+1.21	-3.04^{f}		
	BP86-D2	-1.86	-0.48	-31.45		
	M06L	+0.96	+5.22	-39.11		
	ωB97xD	+1.10	+1.63	-30.83		

Table S8. Calculated Reaction Free Energies $(\Delta G^{\circ})^a$ for Rotation from Tetrahedral to Square Planar Geometry at the M(dppe) Site in **2** and **3** using Different Functionals.^b

^{*a*}Values given in kcal/mol for the square planar geometry relative to the tetrahedral geometry. ^{*b*}All calculations were done using the SDD pseudopotential and associated basis set for the Fe, Pd, and Pt centers, and the 6-31G* basis set for all other atoms. ^{*c*}Structures were optimized in the gas phase, and solvation free energies were calculated in CH₂Cl₂ using C-PCM. ^{*d*}Structures were optimized in CH₂Cl₂ solvent using C-PCM. ^{*e*}Minimum for the square planar geometry not found (nf). ^{*f*}When the structures are optimized in solution, $\Delta G^{\circ} = -26.81$ kcal/mol.

Figure S56. Depiction of natural bonding orbitals (NBO) for (a) the Ni–Fe bond in 1 and (b) the Pd–Fe bond in 2.

Figure S57. Isomeric forms of $[1H]^+$ and their free energies relative to the square-planar μ -hydride (red line). Note the high energy of the twisted Ni form (~11 kcal/mol, blue line). Even higher in energy are species in which H⁺ has attacked S (~15 – 27 kcal/mol) or Ni (~30 kcal/mol). Despite their relative instabilities, these tautomers (in particular the S-protonated species) cannot be ruled out as intermediates in $[1H]^+$ -catalyzed H⁺ reduction. This is of relevance to the [NiFe]-H₂ase catalytic cycle, in which some redox states feature protonated (terminal) Cys residues bonded to Ni.

Table S9. Calculated Fr	ee Energy Barriers	(ΔG^{\ddagger}) and Imaginary	Frequencies of
Transition States for Tet	rahedral to Square	Planar Rotation at the	e Ni(dppe) Site in
(CO) ₃ Fe(pdt)Ni(dppe)			

	$\Delta G^{\ddagger a}$	v^{b}
TS ^c	6.66	-13
TS1	4.79	-23
TS2	4.06	-52
TS3	3.18	-33

^aValues given in kcal/mol relative to the tetrahedral geometry at 298.15 K. ^bValues given in cm⁻¹, where the negative sign indicates a negative force constant or imaginary frequency. ^cThe potential energy surface was found to be extremely flat along the isomerization pathway. As a result, the single imaginary frequencies for the TSs are very small. Each TS was verified to lead to the relevant tetrahedral and square planar geometries by following the intrinsic reaction coordinate (IRC) for 4 or 5 steps in both directions and subsequently optimizing the geometries. As the imaginary frequencies may be below the numerical accuracy of the methodology, and the complete IRC was not obtained, the free energy barriers should be viewed with caution. Moreover, the observation of multiple TSs suggests a ruffled potential energy surface connecting the two isomers. Only the highest free energy barrier is reported in the main text. In the following tables are the Cartesian coordinates of all species studied herein. The geometries were optimized in the gas phase using the B3P86 functional. The SDD psuedopotential and associated basis set were used for the Fe, Ni, Pd, and Pt centers, the $6-31G^{**}$ basis set was used for the μ -H, and the $6-31G^{*}$ basis set was used for all other atoms.

Table S10. Cartesian Coordinates of the Optimized Structure of $(OC)_3$ Tetrahedral Geometry (1 – 3243 63774874 <i>F</i> .)	Fe(pdt)Ni(dppe) in
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	

atom	X	У	Z
Ni	8.847687	10.159493	2.956441
Fe	6.811047	11.448540	3.150529
Р	9.873822	10.726983	4.768762
S	8.287077	11.847037	1.434691
Ο	5.618119	10.553429	5.674070
С	11.233549	9.462947	5.015494
Н	11.998572	9.845556	5.699808
Н	10.786082	8.575265	5.475655
Р	10.428130	8.758622	2.469669
S	6.814672	9.236791	2.608478
С	11.816904	9.127506	3.647629
Н	12.555146	8.318421	3.685126
Н	12.326340	10.003656	3.228324
0	7.645944	14.023923	4.265177
0	4.384647	12.289245	1.771591
С	7.611007	11.143346	-0.116273
Н	6.648811	11.628292	-0.316916
Н	8.302058	11.463664	-0.903973
С	7.470826	9.631258	-0.154382
Н	8.452877	9.177562	0.026233
Н	7.169030	9.341802	-1.172587
С	6.454036	9.054554	0.815604
Н	6.360111	7.974582	0.651988
Н	5.462488	9.486806	0.639529
С	6.114081	10.906079	4.697399
С	7.335754	13.004232	3.824793
С	5.338715	11.968354	2.335833
С	10.875263	12.273307	4.792626
С	10.909057	13.086014	3.656181
Н	10.300240	12.825258	2.794403
С	11.717411	14.222055	3.622433
Н	11.728500	14.846504	2.733612
С	12.500015	14.555799	4.723113

Н	13.128047	15.442098	4.697873
С	12.475504	13.750366	5.861912
Н	13.083429	14.007256	6.725167
С	11.670781	12.616705	5.895788
Н	11.650190	12.002378	6.792650
С	9.042581	10.714477	6.406956
С	8.758741	11.891012	7.110490
Н	9.077337	12.850512	6.714895
С	8.065991	11.842536	8.318291
Н	7.853991	12.765544	8.850898
С	7.647346	10.621783	8.840176
Н	7.108373	10.586023	9.782600
С	7.910273	9.447018	8.138699
Н	7.571630	8.491008	8.528063
С	8.593670	9.493619	6.928179
Н	8.755201	8.571777	6.374780
С	11.289022	8.788837	0.845562
С	11.960129	7.673423	0.330734
Н	11.938197	6.730456	0.869801
С	12.650897	7.764500	-0.874891
Н	13.165143	6.891738	-1.268012
С	12.682742	8.968926	-1.574863
Н	13.221168	9.036875	-2.516136
С	12.017299	10.083321	-1.068495
Н	12.034016	11.023325	-1.613198
С	11.317996	9.993224	0.132375
Н	10.774897	10.852157	0.521713
С	10.067551	6.973898	2.716228
С	10.729370	6.177122	3.656541
Н	11.516937	6.593924	4.276566
С	10.389201	4.834083	3.816652
Н	10.911380	4.232697	4.555717
С	9.390129	4.266775	3.032513
Н	9.125856	3.220538	3.156948
С	8.726654	5.049932	2.088646
Н	7.942932	4.616263	1.473986
С	9.056789	6.391537	1.939066
Н	8.523518	6.998530	1.213197

atom	X	у	Z
Ni	11.771907	8.828739	14.674505
Fe	10.494872	9.632165	12.624243
S	12.279380	8.172914	12.645290
S	9.635970	8.229166	14.328885
Р	13.867523	9.006801	15.268319
Р	11.225085	9.970070	16.448227
Ο	8.129190	11.285588	12.987394
0	9.779559	8.944817	9.889227
0	12.225289	11.983574	12.688701
С	14.995089	9.887248	14.128952
С	15.242305	11.257973	14.261942
Н	14.789020	11.824970	15.069320
С	16.064127	11.919997	13.354465
Н	16.243794	12.984815	13.470358
С	16.645075	11.221536	12.299801
Н	17.283154	11.739335	11.589473
С	16.400254	9.857838	12.155113
Н	16.846331	9.307291	11.331917
С	15.578951	9.193405	13.060207
Н	15.392784	8.131453	12.938814
С	14.795886	7.483202	15.686926
С	16.177745	7.504491	15.915596
Н	16.735828	8.427618	15.784383
С	16.842843	6.342378	16.293711
Н	17.915101	6.366697	16.466961
С	16.136946	5.149253	16.445001
Н	16.659711	4.242520	16.736286
С	14.763812	5.119957	16.216755
Н	14.211498	4.191012	16.327491
С	14.096578	6.282924	15.837881
Η	13.026125	6.271847	15.648588
С	10.887965	8.977581	17.954495
С	10.725605	7.593445	17.848761
Н	10.759798	7.137796	16.862891
С	10.504087	6.820490	18.987416
Н	10.376195	5.745782	18.893273
С	10.442934	7.424378	20.239921
Н	10.271427	6.822026	21.127670
С	10.595836	8.806030	20.354425

Table S11. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Ni(dppe)$ in Square Planar Geometry $(1, -3243.62931132 E_h)$.

Н	10.540123	9.282195	21.329320
С	10.814916	9.578850	19.218896
Н	10.911695	10.657099	19.317743
С	9.889353	11.212079	16.411229
С	10.074607	12.399959	15.690569
Н	10.995015	12.572931	15.140368
С	9.063381	13.352173	15.639078
Н	9.217354	14.267656	15.075663
С	7.851164	13.123078	16.287975
Н	7.059032	13.864536	16.237304
С	7.652386	11.935649	16.985337
Н	6.704312	11.744196	17.479695
С	8.666043	10.982395	17.049686
Н	8.502947	10.059104	17.596123
С	11.659108	6.486793	12.267666
Н	11.134304	6.562309	11.308561
Н	12.551338	5.870673	12.112525
С	10.764162	5.837277	13.309233
Н	10.530085	4.819264	12.962654
Н	11.315600	5.734321	14.252716
С	9.460757	6.570856	13.569507
Н	8.844618	5.985482	14.261849
Н	8.898047	6.694466	12.637349
С	9.083884	10.644900	12.857115
С	10.026047	9.176997	11.001409
С	11.579542	11.011725	12.714878
С	13.935609	9.981361	16.857065
Н	13.882368	9.243912	17.666053
Н	14.891385	10.507231	16.956139
С	12.740197	10.927512	16.935598
Н	12.839187	11.752352	16.221628
Н	12.633753	11.363317	17.934828

atom	X	у	Z
Ni	-0.192720	0.214282	-0.321409
Fe	-2.499788	0.903913	0.081258
S	-0.985012	2.155929	-1.028222
S	-2.028064	-0.833463	-1.408868
Р	1.944031	0.564200	-0.541729
Р	0.248716	-1.152352	1.326836
0	-4.017273	-1.086063	1.590026
0	-4.843105	2.276285	-0.969305
0	-1.733089	2.477054	2.428853
С	2.436279	2.326417	-0.390999
С	3.155435	3.015741	-1.374494
Н	3.455074	2.509564	-2.291441
С	3.464589	4.364667	-1.206364
Н	4.003993	4.889867	-1.993415
С	3.059880	5.040007	-0.057143
Н	3.293562	6.093915	0.063016
С	2.330273	4.364286	0.923424
Н	2.006341	4.882888	1.826434
С	2.013954	3.021054	0.754396
Н	1.418977	2.511729	1.515816
С	2.928805	-0.084094	-1.949198
С	2.278030	-0.817209	-2.948012
Н	1.213428	-0.945979	-2.876695
С	2.993926	-1.382694	-4.005282
Н	2.490145	-1.903297	-4.779613
С	4.373949	-1.209848	-4.071912
Н	4.930402	-1.641046	-4.901529
С	5.039931	-0.483233	-3.072211
Н	6.122951	-0.324160	-3.126939
С	4.325000	0.072730	-2.013621
Н	4.860511	0.690705	-1.252790
С	0.766203	-2.849781	0.833512
С	1.415445	-3.703136	1.738033
Н	1.581873	-3.386561	2.764885
С	1.841385	-4.964405	1.336161
Н	2.349793	-5.614203	2.043431
С	1.615805	-5.393579	0.027569
Н	1.939626	-6.383267	-0.283138
С	0 961045	-4.558626	-0 872714

Table S12. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Ni(dppe)$ Transition State $(1, -3243.62855419 E_h)$.

Н	0.758175	-4.898741	-1.885393
С	0.540261	-3.290125	-0.473722
Н	0.007264	-2.639075	-1.162790
С	-0.773827	-1.465085	2.817037
С	-0.889133	-0.479754	3.806960
Н	-0.379699	0.472645	3.696552
С	-1.678978	-0.696462	4.931158
Н	-1.755196	0.077408	5.689817
С	-2.374528	-1.895289	5.078867
Н	-2.991434	-2.062543	5.957258
С	-2.277770	-2.873459	4.093786
Н	-2.820182	-3.808850	4.198608
С	-1.482971	-2.662025	2.969998
Н	-1.412124	-3.436067	2.212288
С	-1.373595	2.182320	-2.821260
Н	-2.372130	2.626738	-2.911113
Н	-0.660622	2.897192	-3.247612
С	-1.290990	0.861234	-3.562548
Н	-1.450822	1.067019	-4.632507
Н	-0.267274	0.474782	-3.464951
С	-2.283903	-0.197462	-3.107228
Н	-2.190004	-1.070840	-3.765038
Н	-3.311675	0.175463	-3.197366
С	-3.389626	-0.310613	1.012570
С	-3.926306	1.700613	-0.562817
С	-2.026139	1.836876	1.509226
С	2.815969	-0.247826	0.909819
Н	3.209770	-1.202669	0.544531
Н	3.664804	0.363694	1.233548
С	1.833788	-0.494813	2.049635
Н	2.246194	-1.188013	2.791316
Н	1.594302	0.438170	2.570323

atom	x	v	Z
Ni	11.771907	8.828739	14.674505
Fe	10.494872	9.632165	12.624243
S	12.279380	8.172914	12.645290
S	9.635970	8.229166	14.328885
Р	13.867523	9.006801	15.268319
Р	11.225085	9.970070	16.448227
0	8.129190	11.285588	12.987394
0	9.779559	8.944817	9.889227
0	12.225289	11.983574	12.688701
С	14.995089	9.887248	14.128952
С	15.242305	11.257973	14.261942
Н	14.789020	11.824970	15.069320
С	16.064127	11.919997	13.354465
Н	16.243794	12.984815	13.470358
С	16.645075	11.221536	12.299801
Н	17.283154	11.739335	11.589473
С	16.400254	9.857838	12.155113
Н	16.846331	9.307291	11.331917
С	15.578951	9.193405	13.060207
Н	15.392784	8.131453	12.938814
С	14.795886	7.483202	15.686926
С	16.177745	7.504491	15.915596
Н	16.735828	8.427618	15.784383
С	16.842843	6.342378	16.293711
Н	17.915101	6.366697	16.466961
С	16.136946	5.149253	16.445001
Н	16.659711	4.242520	16.736286
С	14.763812	5.119957	16.216755
Н	14.211498	4.191012	16.327491
С	14.096578	6.282924	15.837881
Н	13.026125	6.271847	15.648588
С	10.887965	8.977581	17.954495
С	10.725605	7.593445	17.848761
Н	10.759798	7.137796	16.862891
С	10.504087	6.820490	18.987416
Н	10.376195	5.745782	18.893273
С	10.442934	7.424378	20.239921
Н	10.271427	6.822026	21.127670
С	10.595836	8.806030	20.354425

Table S13. Cartesian Coordinates of the Optimized Structure of $[(OC)_3Fe(pdt)Ni(dppe)]^+$ ([1]⁺, -3243.44266981 *E*_h).

Н	10.540123	9.282195	21.329320
С	10.814916	9.578850	19.218896
Н	10.911695	10.657099	19.317743
С	9.889353	11.212079	16.411229
С	10.074607	12.399959	15.690569
Н	10.995015	12.572931	15.140368
С	9.063381	13.352173	15.639078
Н	9.217354	14.267656	15.075663
С	7.851164	13.123078	16.287975
Н	7.059032	13.864536	16.237304
С	7.652386	11.935649	16.985337
Н	6.704312	11.744196	17.479695
С	8.666043	10.982395	17.049686
Н	8.502947	10.059104	17.596123
С	11.659108	6.486793	12.267666
Н	11.134304	6.562309	11.308561
Н	12.551338	5.870673	12.112525
С	10.764162	5.837277	13.309233
Н	10.530085	4.819264	12.962654
Н	11.315600	5.734321	14.252716
С	9.460757	6.570856	13.569507
Н	8.844618	5.985482	14.261849
Н	8.898047	6.694466	12.637349
С	9.083884	10.644900	12.857115
С	10.026047	9.176997	11.001409
С	11.579542	11.011725	12.714878
С	13.935609	9.981361	16.857065
Н	13.882368	9.243912	17.666053
Н	14.891385	10.507231	16.956139
С	12.740197	10.927512	16.935598
Н	12.839187	11.752352	16.221628
Н	12.633753	11.363317	17.934828

atom	X	у	Z
Ni	11.852384	8.688197	14.881823
Fe	10.636173	9.283715	12.642104
S	12.320934	7.811054	12.859634
S	9.666981	8.313423	14.413524
Р	13.997513	9.009863	15.416213
Р	11.322068	9.875076	16.676056
Ο	8.609106	11.459123	12.852209
Ο	9.222800	7.860138	10.538905
Ο	12.350212	10.896349	10.817829
С	14.829733	10.269627	14.409011
С	15.280183	11.471871	14.974354
Н	15.158929	11.674841	16.033212
С	15.925070	12.419525	14.183833
Н	16.279690	13.341182	14.634498
С	16.129766	12.178858	12.827376
Н	16.639876	12.916547	12.215878
С	15.692036	10.983118	12.258804
Н	15.867343	10.784323	11.206041
С	15.040481	10.033984	13.039484
Н	14.726234	9.097279	12.588705
С	14.959394	7.476708	15.371777
С	16.220086	7.400002	14.768310
Н	16.653628	8.268627	14.283457
С	16.930114	6.202275	14.804924
Н	17.911134	6.147259	14.343660
С	16.391340	5.083776	15.436859
Н	16.952257	4.154814	15.465032
С	15.136104	5.156527	16.042298
Н	14.723068	4.288195	16.546345
С	14.419382	6.347036	16.008300
Н	13.448564	6.402937	16.498743
С	10.582223	8.896199	18.006557
С	10.500907	7.502700	17.896970
Н	10.833363	7.011149	16.985101
С	9.996646	6.744408	18.950115
Н	9.936716	5.663909	18.863417
С	9.568263	7.376014	20.115605
Н	9.172649	6.786384	20.936675
С	9.645894	8.764156	20.231610

Table S14. Cartesian Coordinates of the Optimized Structure of $[(OC)_3Fe(pdt)Ni(dppe)]^{2+}$ ([1]²⁺, -3243.09204890 *E*_h).

Н	9.310256	9.254421	21.139998
С	10.153695	9.526292	19.184962
Н	10.203823	10.607565	19.284526
С	10.230559	11.266074	16.276505
С	10.757335	12.392586	15.620282
Н	11.812890	12.448112	15.365849
С	9.928894	13.464002	15.303263
Н	10.343852	14.341095	14.816311
С	8.571420	13.415368	15.620913
Н	7.928499	14.256292	15.380259
С	8.039972	12.290617	16.250451
Н	6.984006	12.253517	16.499183
С	8.861524	11.214709	16.575936
Н	8.442151	10.348899	17.078733
С	11.738487	6.066982	12.954685
Н	11.243150	5.856863	12.001014
Н	12.661177	5.480341	12.979731
С	10.860677	5.716641	14.140563
Н	10.612803	4.648926	14.065638
Н	11.436770	5.833417	15.066761
С	9.554086	6.481625	14.235353
Н	8.990044	6.164535	15.117464
Н	8.915735	6.302450	13.363834
С	9.405128	10.649564	12.802900
С	9.771641	8.457729	11.340374
С	11.705457	10.281898	11.524619
С	14.007998	9.593437	17.169304
Н	13.862079	8.698493	17.785668
Н	14.988777	10.000787	17.437233
С	12.876303	10.590902	17.385640
Н	13.077724	11.543700	16.887397
Н	12.721745	10.802757	18.448750

atom	X	у	Z
Ni	8.783654	10.028306	2.863227
Fe	6.508034	10.917070	3.148014
S	7.873013	11.419506	1.411648
S	6.893654	8.655974	2.695546
Р	10.856432	9.789358	2.274304
Р	9.373793	9.662305	4.928506
0	7.031578	13.615650	4.152528
0	3.976136	11.275722	1.752155
0	5.281309	10.046259	5.654561
С	11.865046	11.212898	1.701478
С	11.303043	12.489978	1.624685
Н	10.248589	12.621295	1.846944
С	12.083867	13.581187	1.244864
Н	11.633596	14.567866	1.182673
С	13.431113	13.406151	0.944005
Н	14.038943	14.257072	0.649012
С	14.000335	12.134784	1.017403
Н	15.051104	11.992729	0.780134
С	13.222386	11.044446	1.391346
Н	13.670169	10.054666	1.431939
С	11.207570	8.522592	0.988527
С	11.246810	7.163417	1.324269
Н	11.129280	6.853577	2.359369
С	11.426548	6.193706	0.342275
Н	11.461042	5.144416	0.622212
С	11.559488	6.566506	-0.993697
Н	11.698009	5.809696	-1.760475
С	11.512819	7.914903	-1.340005
Н	11.617070	8.214902	-2.379115
С	11.337628	8.886333	-0.357829
Н	11.312914	9.935719	-0.638220
С	8.354747	8.704443	6.111618
С	7.986794	7.397168	5.762143
Н	8.289743	6.985052	4.804145
С	7.205182	6.630468	6.620337
Н	6.926600	5.620304	6.333940
С	6.772217	7.159438	7.834124
Н	6.159504	6.561034	8.502439
С	7.116751	8.462932	8.180367

Table S15. Cartesian Coordinates of the Optimized Structure of $[(OC)_3FeH(pdt)Ni(dppe)]^+$ in Square Planar Geometry $([1H]^+, -3244.06263786 E_h)$.

Н	6.770049	8.888770	9.117721
С	7.899661	9.233124	7.324574
Н	8.151080	10.251754	7.602420
С	10.053599	11.058556	5.913232
С	9.989939	12.353043	5.392348
Н	9.496958	12.510583	4.438238
С	10.550897	13.425532	6.084234
Н	10.487135	14.426528	5.667803
С	11.185492	13.211544	7.303778
Н	11.622397	14.046052	7.845210
С	11.260155	11.922328	7.831632
Н	11.754557	11.750676	8.783864
С	10.700267	10.852635	7.141061
Н	10.753944	9.854522	7.568410
С	7.347904	10.524574	-0.107683
Н	6.336132	10.875981	-0.340772
Н	8.009956	10.896776	-0.897036
С	7.398340	9.007195	-0.067839
Н	7.132450	8.641494	-1.071534
Н	8.425697	8.680055	0.130240
С	6.464355	8.361890	0.942298
Н	6.493886	7.273406	0.817710
Н	5.428543	8.679948	0.774519
С	5.810259	10.374161	4.684373
С	4.972214	11.123426	2.317094
С	6.851447	12.539128	3.771476
С	11.828041	9.201195	3.760238
Н	12.623547	8.513064	3.454527
Н	12.306048	10.092385	4.182060
С	10.890178	8.581124	4.789009
Н	10.541800	7.593674	4.466229
Н	11.382505	8.458393	5.760124
Ni	8.783654	10.028306	2.863227

atom	X	у	Z
Ni	11.827170	9.006419	14.641203
Fe	10.561795	9.145075	12.443890
Н	11.141137	10.097806	13.604115
S	12.779336	8.411936	12.415058
S	10.194505	7.622578	14.128212
Р	12.300885	8.275118	16.640506
Р	12.759428	10.897652	15.213863
0	8.179873	10.675389	13.218181
0	8.937312	7.438715	10.691307
0	11.566774	11.067552	10.459587
С	13.232191	6.705859	16.630779
С	14.585494	6.701181	16.267687
Н	15.095507	7.630803	16.029590
С	15.290938	5.503754	16.203395
Н	16.341671	5.511164	15.929606
С	14.650487	4.299684	16.492204
Н	15.202210	3.365857	16.443040
С	13.303895	4.296710	16.849141
Н	12.803866	3.361455	17.082539
С	12.594049	5.492983	16.917850
Н	11.548003	5.483271	17.209671
С	10.972841	8.027475	17.863917
С	11.311939	7.608851	19.160068
Н	12.344482	7.380525	19.411208
С	10.325183	7.469161	20.129273
Н	10.594839	7.143468	21.129354
С	8.993841	7.742525	19.815590
Н	8.224499	7.629371	20.573487
С	8.651347	8.156221	18.531696
Н	7.614918	8.363881	18.283426
С	9.637019	8.301463	17.557356
Н	9.365677	8.612558	16.554455
С	11.662558	12.047552	16.100899
С	10.286741	11.806921	16.167027
Н	9.872590	10.930830	15.677455
С	9.452175	12.682792	16.857852
Н	8.384675	12.490016	16.901123
С	9.988139	13.801440	17.489388
Н	9.338351	14.484026	18.028697

Table S16. Cartesian Coordinates of the Optimized Structure of $[(OC)_3FeH(pdt)Ni(dppe)]^+$ in Tetrahedral Geometry $([1H]^+, -3244.04345183 E_h)$.

С	11.359730	14.049108	17.428622
Н	11.778238	14.923550	17.917582
С	12.195411	13.178872	16.737559
Н	13.259643	13.392539	16.681003
С	13.590172	11.859007	13.913972
С	14.697317	11.296326	13.262346
Н	15.052293	10.306740	13.535277
С	15.335798	11.993871	12.242780
Н	16.194628	11.553332	11.745881
С	14.867868	13.247942	11.854131
Н	15.365746	13.789135	11.055322
С	13.757802	13.803617	12.485556
Н	13.387871	14.778081	12.181515
С	13.117268	13.114328	13.511871
Н	12.255722	13.557715	14.001264
С	12.724305	6.618278	12.073431
Н	12.141899	6.453447	11.160176
Н	13.759107	6.338193	11.849579
С	12.212983	5.768170	13.222399
Н	12.339392	4.709692	12.953522
Н	12.833263	5.944829	14.106323
С	10.749002	5.955782	13.578544
Н	10.482632	5.298692	14.412122
Н	10.097803	5.687596	12.738908
С	9.092211	10.064718	12.892996
С	9.631438	8.091993	11.326649
С	11.168725	10.328844	11.235823
С	13.430710	9.512938	17.470515
Н	12.796915	10.077818	18.162221
Н	14.184260	8.987683	18.065824
С	14.061856	10.454628	16.450236
Н	14.874992	9.969641	15.899434
Н	14.475262	11.348796	16.928445

atom Х v Z Pd 11.760100 8.959800 14.585700 Fe 10.734400 9.333100 12.291000 Р 11.739700 11.003200 15.608000 Р 12.809600 8.122000 16.459300 S 13.721900 9.284900 8.219700 S 12.339400 7.752100 12.581300 0 9.007700 11.635700 12.820200 9.525200 0 8.386100 9.814300 0 12.927500 10.998200 11.277000 С 12.351000 12.506900 14.757100 С 13.691200 12.553000 14.348300 Η 14.353600 11.716700 14.557600 С 14.180800 13.650500 13.649200 Η 15.223000 13.671400 13.343100 С 13.334800 14.710700 13.328200 Η 13.715900 15.564800 12.775700 С 11.996300 14.662200 13.707100 Η 11.326100 15.477700 13.449700 С 11.504500 13.568900 14.417100 Η 10.457800 13.542600 14.702700 С 10.215100 11.549800 16.473200 С 10.203700 12.690000 17.290300 Η 11.094700 13.307000 17.377200 С 9.050700 13.052800 17.978000 Η 9.052400 13.939800 18.605500 С 7.894400 12.281000 17.859000 Η 6.993700 12.566700 18.395300 С 7.896600 11.149100 17.050000 Η 6.997900 10.547600 16.947200 С 9.052000 10.782700 16.359600 Η 9.052900 9.897200 15.727900 С 12.922500 10.832600 17.044600 Η 13.942100 10.902700 16.649100 Η 12.782900 11.659300 17.749900 С 12.710700 9.484600 17.726700 Η 11.709500 9.435300 18.171300 Η 13.436400 9.328300 18.532200 С 12.122500 6.675200 17.352300 С 10.764600 6.716700 17.702100

Table S17. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Pd(dppe)$ in Tetrahedral Geometry (**2**, $-3200.63063206 E_h$).

Н	10.165900	7.586800	17.441300
С	10.169100	5.642000	18.352600
Н	9.117800	5.691700	18.622100
С	10.914000	4.499200	18.642900
Н	10.446600	3.656400	19.144100
С	12.255400	4.439500	18.276800
Н	12.839700	3.548500	18.489800
С	12.858900	5.520300	17.635900
Н	13.906200	5.461100	17.356400
С	14.612500	7.805100	16.342800
С	15.413200	7.637700	17.482200
Н	14.965200	7.654600	18.472600
С	16.783800	7.432100	17.358300
Н	17.393300	7.303100	18.248500
С	17.372100	7.391700	16.094500
Н	18.442800	7.233200	15.999000
С	16.585800	7.555500	14.957800
Н	17.038600	7.525600	13.970700
С	15.212600	7.763100	15.079600
Н	14.595000	7.898400	14.194800
С	9.262900	6.444800	13.297700
Н	8.476200	6.014900	13.927700
Н	8.939500	6.327600	12.256300
С	10.566500	5.701300	13.540700
Н	10.904700	5.886100	14.567400
Н	10.373300	4.621100	13.453600
С	11.679800	6.041300	12.566600
Н	11.365800	5.840500	11.535400
Н	12.552000	5.408800	12.765500
С	9.691600	10.731100	12.614500
С	10.003200	8.775300	10.788500
С	12.065600	10.349600	11.679400

atom	X	у	Z
Pd	11.781700	8.815800	14.693900
Fe	10.669800	9.373900	12.138700
Р	11.197000	9.938900	16.606800
Р	13.965200	9.097600	15.352900
S	9.548200	8.414200	14.003700
S	12.359900	7.847400	12.637100
0	8.558800	11.367000	12.001300
0	9.981600	8.130000	9.593400
0	12.670600	11.446800	11.682100
С	14.956100	7.591300	15.652200
С	14.291100	6.381200	15.876000
Н	13.206500	6.351400	15.799900
С	15.012800	5.229200	16.178400
Н	14.488700	4.292800	16.347600
С	16.402900	5.277000	16.251900
Н	16.966800	4.376900	16.480200
С	17.071700	6.478800	16.024800
Н	18.156100	6.517300	16.076000
С	16.353500	7.633100	15.726400
Н	16.880100	8.564600	15.538400
С	15.020600	10.137100	14.290700
С	15.482900	9.606100	13.077900
Н	15.236200	8.584700	12.804500
С	16.242400	10.389000	12.215800
Н	16.589600	9.968500	11.276800
С	16.544700	11.708000	12.547100
Н	17.131900	12.319300	11.868000
С	16.083600	12.244000	13.745800
Н	16.310600	13.273400	14.007700
С	15.323800	11.464300	14.613700
Н	14.968100	11.905000	15.540400
С	13.940800	9.923700	17.021500
Н	13.885700	9.106500	17.749900
Н	14.881000	10.455900	17.204700
С	12.724400	10.836800	17.154900
Н	12.800400	11.698600	16.481500
Н	12.617900	11.235700	18.170100
С	9.909500	11.227000	16.548900
С	9.651900	11.857400	15.327400

Table S18. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Pd(dppe)$ in Square Planar Geometry (2, -3200.61739333 E_h).

Н	10.178600	11.529900	14.433700
С	8.705700	12.876200	15.254800
Н	8.497800	13.342100	14.296600
С	8.015700	13.268800	16.398800
Н	7.272000	14.058700	16.340200
С	8.267000	12.640100	17.618000
Н	7.722600	12.940100	18.509000
С	9.207800	11.618100	17.695900
Н	9.387400	11.118500	18.644000
С	10.723600	8.861100	18.007300
С	9.714600	7.914100	17.781700
Н	9.265400	7.843200	16.793600
С	9.298200	7.073700	18.808100
Н	8.510700	6.348700	18.622900
С	9.893000	7.154500	20.066900
Н	9.572400	6.491300	20.865200
С	10.900400	8.086600	20.297300
Н	11.368200	8.155400	21.275400
С	11.311500	8.940200	19.274500
Н	12.092800	9.666100	19.479400
С	9.344000	6.646200	13.556800
Н	8.620500	6.232600	14.268700
Н	8.892300	6.622800	12.558500
С	10.609600	5.804500	13.584800
Н	11.065700	5.874600	14.581700
Н	10.326200	4.752100	13.431700
С	11.644000	6.164300	12.529600
Н	11.209100	6.081600	11.526700
Н	12.488200	5.469200	12.591700
С	9.406900	10.575700	12.053400
С	10.216300	8.567200	10.645800
С	11.889500	10.619500	11.934100

atom у Z Х Pd 11.497455 8.606819 14.929156 Fe 10.879576 8.985757 12.273784 Р 13.485564 16.075957 8.541377 Р 10.855196 10.263067 16.381954 S 9.307436 8.366440 13.962921 S 12.202461 7.300807 13.124546 0 9.129261 11.247573 11.734958 0 10.345938 7.667185 9.732455 0 13.225320 10.699588 11.966480 С 10.052027 11.770660 15.742048 С 10.701112 12.473293 14.717169 Η 11.632514 12.095837 14.302241 С 10.134048 13.629139 14.193868 Η 10.641698 14.161556 13.395284 С 8.906202 14.084445 14.672521 Η 8.457967 14.980234 14.252451 С 8.246638 13.378151 15.673602 Η 7.281835 13.719398 16.037927 С 8.814940 12.224283 16.209583 Н 8.290609 11.677353 16.986551 С 9.852098 9.724742 17.815450 С 9.720949 10.522457 18.961245 Η 10.189549 11.502230 19.005165 С 8.973825 10.077267 20.047282 Η 8.879584 10.702958 20.930334 С 8.345584 8.833264 19.999674 Η 7.762964 8.486943 20.848705 С 8.463235 8.039162 18.862441 Η 7.969748 7.072406 18.818657 С 9.214385 8.480649 17.774979 Н 9.309546 7.872979 16.878827 С 12.423418 10.880985 17.165620 Η 12.909781 11.524414 16.423641 Η 12.206074 11.498585 18.043849 С 13.303310 9.687804 17.528287 Η 12.823335 9.092318 18.313858 Η 14.282608 9.995287 17.912093 С 14.013556 6.970992 16.853607 С 13.052015 5.983952 17.093078

Table S19. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Pd(dppe)$ Transition State (2, -3200.61680041 E_h).

Н	12.030909	6.150134	16.756738
С	13.403447	4.802217	17.740715
Н	12.650683	4.039702	17.919814
С	14.719935	4.595247	18.145855
Н	14.996783	3.670436	18.644160
С	15.684659	5.572127	17.904375
Н	16.713243	5.410501	18.214488
С	15.335674	6.755995	17.261047
Н	16.093711	7.509267	17.065172
С	14.971256	9.112559	15.180132
С	15.485903	8.304064	14.156008
Н	15.011906	7.354619	13.926744
С	16.589366	8.720585	13.419841
Н	16.974010	8.086409	12.626579
Н	17.144522	11.719605	14.913323
С	15.579779	10.345365	15.441528
Н	15.200589	10.996463	16.223407
С	8.926412	6.611579	13.603961
Н	8.034156	6.369887	14.193251
Н	8.662038	6.543146	12.542208
С	10.030491	5.621616	13.938409
Н	10.318373	5.745224	14.991186
Н	9.629507	4.602350	13.830209
С	11.269092	5.723169	13.062841
Н	11.003080	5.575575	12.009591
Н	11.982147	4.940382	13.342866
С	9.836072	10.357286	11.955488
С	10.504566	8.151036	10.777608
С	12.304715	10.010247	12.152188

atom	X	у	Z
Pd	11.854982	8.736043	14.815498
Fe	10.777786	9.068406	12.064401
S	12.425307	7.598521	12.799867
S	9.625973	8.470910	13.999975
Р	14.040055	9.089183	15.468396
Р	11.237858	9.891102	16.713456
Ο	9.045323	11.434872	11.855920
Ο	9.408649	7.290846	10.092489
Ο	12.797508	10.276257	10.299961
С	14.895033	10.344663	14.470937
С	15.285161	11.582917	14.994634
Н	15.118212	11.825224	16.039603
С	15.906894	12.524049	14.177046
Н	16.209026	13.480271	14.593240
С	16.144413	12.237396	12.835609
Н	16.629443	12.972697	12.200918
С	15.761754	11.004520	12.308319
Н	15.946407	10.776075	11.263345
С	15.136887	10.062295	13.117500
Н	14.844970	9.101879	12.700381
С	15.119701	7.630092	15.527871
С	16.495562	7.724784	15.291357
Н	16.938827	8.675585	15.010991
С	17.298053	6.592898	15.408462
Н	18.364773	6.669332	15.221195
С	16.736206	5.368377	15.762558
Н	17.365976	4.488252	15.850462
С	15.365825	5.269860	15.999656
Н	14.926596	4.314885	16.272125
С	14.557589	6.395375	15.878084
Н	13.485996	6.317068	16.049452
С	10.525043	8.808034	17.988538
С	9.269577	8.232066	17.739395
Н	8.740765	8.464623	16.818478
С	8.693367	7.380654	18.675249
Н	7.715861	6.949673	18.480674
С	9.365300	7.084371	19.861061
Н	8.914105	6.417644	20.589545
С	10.612202	7.649419	20.112732

 Table S20. Cartesian Coordinates of the Optimized Structure of [(OC)₃Fe(pdt)Pd(dppe)]⁺

 $([\mathbf{2}]^+, -3200.43767846 E_h).$

Н	11.135632	7.427935	21.037839
С	11.191431	8.510321	19.182638
Н	12.159082	8.949006	19.405908
С	10.089002	11.278550	16.498073
С	10.135924	12.004375	15.300989
Н	10.810408	11.694588	14.505560
С	9.313966	13.112703	15.124545
Н	9.346640	13.665584	14.191011
С	8.439451	13.497923	16.139032
Н	7.792544	14.358544	15.998362
С	8.387795	12.777012	17.330468
Н	7.704382	13.076201	18.119332
С	9.208551	11.668004	17.514433
Н	9.158722	11.106046	18.442344
С	11.650156	5.939290	12.960028
Н	11.224426	5.694893	11.980737
Н	12.482286	5.251848	13.138781
С	10.610965	5.786002	14.057813
Н	10.286165	4.735476	14.063305
Н	11.074669	5.980470	15.033892
С	9.370140	6.650081	13.911083
Н	8.667109	6.419738	14.717131
Н	8.860295	6.447581	12.963038
С	9.725631	10.514075	11.945242
С	9.930075	8.008184	10.819933
С	12.010691	9.814646	10.997422
С	13.979130	9.713049	17.212909
Η	13.896052	8.813935	17.834109
Η	14.924516	10.196206	17.483609
С	12.781494	10.636156	17.420806
Н	12.915128	11.580259	16.880500
Н	12.637293	10.893792	18.475984

atom	X	у	Z
Pd	11.833087	8.753169	14.802254
Fe	10.807468	9.161728	12.316504
S	12.405285	7.632314	12.737285
S	9.573492	8.370425	14.014806
Р	14.039770	9.135241	15.446048
Р	11.226139	9.924011	16.718636
Ο	8.952692	11.493561	12.248211
Ο	9.500865	7.706593	10.164916
Ο	12.775390	10.567436	10.577873
С	14.882298	10.344930	14.396305
С	15.184767	11.634208	14.856043
Н	14.943775	11.939799	15.869318
С	15.829221	12.539896	14.017396
Н	16.071387	13.532331	14.384381
С	16.176273	12.168833	12.720271
Н	16.686460	12.874949	12.072617
С	15.879978	10.886619	12.257405
Н	16.164529	10.591158	11.252297
С	15.230212	9.977650	13.085408
Н	15.021330	8.974306	12.723277
С	15.030431	7.623365	15.511610
С	16.382246	7.609495	15.146098
Н	16.860291	8.505536	14.763206
С	17.120180	6.436207	15.281808
Н	18.168729	6.427585	15.001382
С	16.519906	5.281487	15.779038
Н	17.101624	4.370902	15.883222
С	15.174245	5.292684	16.148218
Н	14.710094	4.394125	16.542959
С	14.428880	6.458463	16.013533
Н	13.381025	6.466261	16.310523
С	10.564130	8.793486	17.968291
С	9.346938	8.138844	17.712043
Н	8.799905	8.342082	16.794695
С	8.816262	7.260628	18.650116
Н	7.865302	6.773902	18.456559
С	9.497573	7.014579	19.842498
Н	9.081019	6.328956	20.573721
С	10.706241	7.656753	20.100526

Table S21. Cartesian Coordinates of the Optimized Structure of $[(OC)_3Fe(pdt)Pd(dppe)]^{2+}$ ([2]²⁺, -3200.09088385 E_h).

Н	11.231851	7.476336	21.032912
С	11.240588	8.544847	19.170389
Н	12.174627	9.046064	19.403236
С	10.062853	11.283120	16.454196
С	10.360762	12.216405	15.447780
Н	11.246796	12.090859	14.826843
С	9.534115	13.316790	15.253636
Н	9.770790	14.044518	14.483545
С	8.402247	13.486687	16.052350
Н	7.756844	14.346033	15.899663
С	8.102287	12.560403	17.048264
Н	7.226280	12.697943	17.674222
С	8.928334	11.457995	17.255298
Н	8.694616	10.750100	18.043942
С	11.730759	5.938043	12.971263
Н	11.311936	5.639735	12.004162
Н	12.618068	5.321951	13.144163
С	10.734606	5.748906	14.101191
Н	10.469123	4.683182	14.129236
Н	11.213410	5.974339	15.062113
С	9.441633	6.534501	13.978624
Н	8.779887	6.296931	14.816489
Н	8.899093	6.287542	13.059841
С	9.670664	10.613724	12.293923
С	10.011408	8.314770	10.983064
С	12.034188	10.032375	11.253736
С	13.977082	9.794566	17.173734
Н	13.927454	8.909734	17.818220
Н	14.918239	10.303017	17.411490
С	12.768637	10.699069	17.380432
Н	12.875993	11.642101	16.833211
Н	12.628107	10.966506	18.433770

atom	X	У	Z
Pd	6.095431	7.186811	2.688546
Fe	8.509967	6.581939	1.171311
Н	8.285184	7.195985	2.565487
S	6.812839	5.083952	1.817382
S	6.735260	7.987850	0.534187
Р	5.657809	6.343251	4.776299
Р	5.482312	9.237899	3.537457
0	10.404242	4.925468	2.659786
0	8.942553	5.408074	-1.512579
0	10.294243	8.881756	0.916214
С	9.675240	5.568008	2.054044
С	8.756095	5.859529	-0.475858
С	9.611063	7.965641	0.996975
С	5.823327	4.727509	0.313356
Н	6.511186	4.353604	-0.452986
Н	5.169220	3.896333	0.594800
С	4.983116	5.874926	-0.225314
Н	4.275038	6.199072	0.548769
Н	4.385862	5.488315	-1.063252
С	5.756770	7.083969	-0.726277
Н	5.058862	7.824212	-1.129279
Н	6.440352	6.804761	-1.535558
С	4.061714	5.489638	4.947747
С	3.259760	5.271695	3.822663
Н	3.615401	5.592830	2.847218
С	2.020528	4.648706	3.953396
Н	1.403094	4.482683	3.075756
С	1.576609	4.239696	5.207821
Н	0.610934	3.753979	5.310395
С	2.371734	4.450751	6.334485
Н	2.027803	4.128248	7.312511
С	3.608905	5.073012	6.208595
Н	4.226216	5.218947	7.091412
С	6.938108	5.260111	5.473125
С	8.205092	5.799000	5.741604
Н	8.410463	6.849735	5.551340
С	9.218062	4.987432	6.239471
Н	10.194430	5.412631	6.450628
С	8.981556	3.630903	6.459375

Table S22. Cartesian Coordinates of the Optimized Structure of $[(OC)_3FeH(pdt)Pd(dppe)]^+$ ([**2**H]⁺, -3201.05077293 E_h).

C 7.731763 3.087203 6.175653 H 7.547299 2.029649 6.337872 C 6.710856 3.895048 5.681068 H 5.740269 3.462145 5.461229 C 5.534954 7.797021 5.922035 H 5.040966 7.499212 6.853020 H 6.555762 8.103661 6.174142 C 4.775002 8.919393 5.221364 H 4.753057 9.839835 5.814846 H 3.732193 8.626440 5.051532 C 4.192711 10.149715 2.639543 C 4.085687 11.542051 2.740187 H 4.816087 12.107447 3.311453 C 3.044769 12.205598 2.097052 H 2.966710 13.285749 2.174786 C 2.108970 11.488331 1.354382 H 1.300411 12.010762 0.852060 C 2.212426 <td< th=""><th>Н</th><th>9.774666</th><th>2.998054</th><th>6.845698</th></td<>	Н	9.774666	2.998054	6.845698
H7.5472992.0296496.337872C6.7108563.8950485.681068H5.7402693.4621455.461229C5.5349547.7970215.922035H5.0409667.4992126.853020H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517<	С	7.731763	3.087203	6.175653
C6.7108563.8950485.681068H5.7402693.4621455.461229C5.5349547.7970215.922035H5.0409667.4992126.853020H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327	Н	7.547299	2.029649	6.337872
H5.7402693.4621455.461229C5.5349547.7970215.922035H5.0409667.4992126.853020H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.61951	С	6.710856	3.895048	5.681068
C5.5349547.7970215.922035H5.0409667.4992126.853020H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	5.740269	3.462145	5.461229
H5.0409667.4992126.853020H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	5.534954	7.797021	5.922035
H6.5557628.1036616.174142C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	5.040966	7.499212	6.853020
C4.7750028.9193935.221364H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	6.555762	8.103661	6.174142
H4.7530579.8398355.814846H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	4.775002	8.919393	5.221364
H3.7321938.6264405.051532C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	4.753057	9.839835	5.814846
C4.19271110.1497152.639543C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	3.732193	8.626440	5.051532
C4.08568711.5420512.740187H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	4.192711	10.149715	2.639543
H4.81608712.1074473.311453C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	4.085687	11.542051	2.740187
C3.04476912.2055982.097052H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	4.816087	12.107447	3.311453
H2.96671013.2857492.174786C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	3.044769	12.205598	2.097052
C2.10897011.4883311.354382H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	2.966710	13.285749	2.174786
H1.30041112.0107620.852060C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	2.108970	11.488331	1.354382
C2.21242610.1023481.250623H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	1.300411	12.010762	0.852060
H1.4864149.5436290.667577C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	2.212426	10.102348	1.250623
C3.2533049.4338221.887532H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	1.486414	9.543629	0.667577
H3.3471728.3541401.797978C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	3.253304	9.433822	1.887532
C6.87005910.3941693.754245C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	3.347172	8.354140	1.797978
C7.33675610.7807995.016189H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	6.870059	10.394169	3.754245
H6.85606410.4250855.922302C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	7.336756	10.780799	5.016189
C8.42468711.6441515.127069H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	6.856064	10.425085	5.922302
H8.77546011.9420436.110562C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	8.424687	11.644151	5.127069
C9.05308712.1281073.983132H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	8.775460	11.942043	6.110562
H9.89977312.8018894.072239C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	9.053087	12.128107	3.983132
C8.59124811.7501042.722893H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	9.899773	12.801889	4.072239
H9.07585912.1281711.828045C7.50850310.8858492.605327H7.15387510.5970181.619517	С	8.591248	11.750104	2.722893
C7.50850310.8858492.605327H7.15387510.5970181.619517	Н	9.075859	12.128171	1.828045
Н 7.153875 10.597018 1.619517	С	7.508503	10.885849	2.605327
	Н	7.153875	10.597018	1.619517

atom х v Z Pt 8.738200 10.001500 3.030000 Fe 6.486600 11.248700 2.958400 Р 10.467000 8.570300 2.596300 Р 9.885500 10.704400 4.848700 S 6.779700 9.244800 1.915400 S 7.945600 12.308100 1.466800 0 5.377300 9.683000 5.171900 0 4.067900 12.278200 1.684100 0 7.161700 13.503100 4.687100 С 10.872500 12.245700 4.758900 С 10.761500 13.066200 3.632800 Η 10.063900 12.799600 2.841300 С 11.538100 14.219700 3.526200 Η 11.436900 14.852700 2.649200 С 12.430600 14.559600 4.538100 Η 13.034400 15.459000 4.453900 С 12.547700 13.745400 5.664900 Η 13.240800 14.008600 6.459100 С 11.774100 12.594900 5.775400 Η 11.862200 11.976000 6.665100 С 9.022700 10.765600 6.461200 С 8.889900 11.942800 7.204700 Η 9.326500 12.867900 6.843300 С 8.186800 11.936900 8.408100 Η 8.086900 12.859300 8.973300 С 7.612500 10.760900 8.881000 Η 7.065100 10.759700 9.819200 С 7.728600 9.586900 8.137600 Η 7.266300 8.669300 8.489800 6.931700 С 8.419500 9.590700 Η 8.466700 8.681700 6.336800 С 11.208600 9.418200 5.128200 Η 11.969900 9.797700 5.818200 Η 10.731800 8.552900 5.602400 С 11.823200 9.023100 3.789400 Η 12.536200 8.199800 3.904900 Η 12.364600 9.870400 3.352200 С 10.179300 6.793600 2.940000 С 8.872400 6.343900 3.156500

Table S23. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Pt(dppe)$ in Tetrahedral Geometry (**3**, -3192.11918792 E_h).

Н	8.052100	7.054500	3.097500
С	8.629000	5.002700	3.448600
Н	7.609500	4.666500	3.614400
С	9.686400	4.101300	3.531600
Н	9.496000	3.057000	3.763100
С	10.992700	4.540300	3.318200
Н	11.821200	3.840200	3.380800
С	11.238400	5.878000	3.024200
Н	12.260200	6.204900	2.847900
С	11.301400	8.624700	0.965600
С	11.460600	7.506300	0.141100
Н	11.107100	6.533700	0.469100
С	12.071100	7.632700	-1.105800
Н	12.186900	6.756000	-1.737000
С	12.530400	8.872300	-1.540500
Н	13.007700	8.967600	-2.511700
С	12.364400	9.994700	-0.729400
Н	12.706500	10.968700	-1.067700
С	11.744000	9.875100	0.508900
Н	11.577300	10.761700	1.116800
С	6.853900	9.342000	0.084600
Н	7.112300	8.326800	-0.236200
Н	5.822300	9.530200	-0.236800
С	7.801900	10.341400	-0.550800
Н	8.833200	10.109100	-0.260400
Н	7.733200	10.201200	-1.640500
С	7.502400	11.797100	-0.225800
Н	6.446700	12.026300	-0.416600
Н	8.094600	12.443800	-0.883000
С	5.817600	10.298800	4.302100
С	5.018000	11.869200	2.194100
С	6.893900	12.607700	4.010500

atom	X	У	Z
Pt	8.834100	9.939500	2.856100
Fe	6.332300	11.335800	2.985400
Р	9.272400	7.981900	3.931600
Р	10.852600	10.676800	3.621300
S	6.735200	9.224600	1.979000
S	8.267600	12.012600	1.849700
Ο	4.233500	10.087200	4.562100
Ο	4.523300	13.019000	1.436900
Ο	7.182900	12.857200	5.323100
С	12.090300	11.144600	2.360500
С	11.950700	10.646500	1.061000
Н	11.072400	10.053200	0.818600
С	12.917900	10.921800	0.098000
Н	12.801100	10.534800	-0.909700
С	14.026000	11.699800	0.425100
Н	14.776800	11.920400	-0.327900
С	14.168300	12.201200	1.717400
Н	15.028700	12.812300	1.973100
С	13.205600	11.925900	2.684100
Н	13.314800	12.329200	3.686500
С	10.846200	12.075500	4.791900
С	10.584400	13.362100	4.300300
Н	10.422100	13.513400	3.237500
С	10.513800	14.442600	5.171800
Н	10.304300	15.433100	4.780600
С	10.697100	14.254500	6.540000
Н	10.635000	15.099500	7.218700
С	10.950500	12.979300	7.036000
Н	11.088800	12.825100	8.101700
С	11.023600	11.893600	6.167600
Н	11.215600	10.906100	6.575900
С	11.665800	9.258600	4.507800
Н	12.221200	8.715700	3.735600
Н	12.397600	9.627600	5.233400
С	10.619200	8.352000	5.148600
Н	10.112500	8.854800	5.979400
Н	11.057900	7.433900	5.552300
С	7.959300	7.211200	4.932600
С	6.949100	8.029000	5.448800

Table S24. Cartesian Coordinates of the Optimized Structure of $(OC)_3Fe(pdt)Pt(dppe)$ in Square Planar Geometry (**3**, -3192.15744694 E_h).

Н	6.934600	9.085900	5.191800
С	5.956900	7.482300	6.257800
Н	5.164200	8.121300	6.632800
С	5.971300	6.122000	6.555100
Н	5.192600	5.695000	7.180200
С	6.975600	5.303700	6.040300
Н	6.981900	4.241200	6.264800
С	7.967200	5.842700	5.226900
Н	8.737900	5.198900	4.813000
С	9.903800	6.635300	2.866700
С	9.152400	6.300500	1.731700
Н	8.242400	6.855200	1.516600
С	9.571200	5.276400	0.890300
Н	8.977300	5.020900	0.018100
С	10.752500	4.585500	1.159100
Н	11.082900	3.792200	0.495500
С	11.508000	4.916800	2.279200
Н	12.428900	4.383300	2.494500
С	11.083800	5.933500	3.133800
Н	11.684100	6.169400	4.007000
С	6.684500	9.545100	0.170700
Н	6.625900	8.562800	-0.309500
Н	5.745100	10.074700	-0.019900
С	7.860400	10.316300	-0.403900
Н	8.788800	9.784000	-0.160600
Н	7.764300	10.320100	-1.499300
С	7.975300	11.759400	0.057900
Н	7.061600	12.314700	-0.180700
Н	8.811200	12.244300	-0.455900
С	5.074400	10.588600	3.938500
С	5.249200	12.297900	1.989700
С	6.895200	12.207700	4.400600

atom	X	у	Z
Pt	11.863461	8.743407	14.836427
Fe	10.766466	9.085595	12.071662
S	12.422215	7.610947	12.796310
S	9.624758	8.456885	14.010101
Р	14.041834	9.102312	15.470268
Р	11.242029	9.887200	16.726569
0	9.009464	11.434779	11.877478
0	9.415015	7.319646	10.077916
0	12.777940	10.333251	10.324910
С	14.905411	10.344611	14.463995
С	15.285654	11.590259	14.976124
Н	15.105002	11.845497	16.015317
С	15.913423	12.522663	14.153308
Н	16.207478	13.485067	14.559629
С	16.166967	12.218765	12.818996
Н	16.656993	12.946659	12.180377
С	15.794065	10.978044	12.303645
Н	15.991970	10.736836	11.264440
С	15.163119	10.044487	13.117710
Н	14.878395	9.078206	12.710224
С	15.108712	7.634832	15.530625
С	16.487425	7.724210	15.310297
Н	16.937915	8.673441	15.037555
С	17.282996	6.588268	15.432427
Н	18.351605	6.659771	15.257119
С	16.711179	5.365636	15.775998
Н	17.335471	4.482559	15.867982
С	15.338068	5.272935	15.997841
Н	14.891819	4.319609	16.262712
С	14.536246	6.402453	15.871785
Н	13.462934	6.332475	16.031406
С	10.529708	8.808128	18.004955
С	9.275541	8.229506	17.757606
Н	8.745945	8.457760	16.836483
С	8.701992	7.379660	18.696271
Н	7.725853	6.945825	18.503820
С	9.375069	7.088953	19.882618
Н	8.925763	6.423769	20.613017
С	10.620515	7.657254	20.132283

Table S25. Cartesian Coordinates of the Optimized Structure of $[(OC)_3Fe(pdt)Pt(dppe)]^+$ ([**3**]⁺, -3191.97670157 *E*_h).

Н	11.144484	7.439464	21.057385
С	11.197337	8.516502	19.199301
Н	12.164279	8.957276	19.419635
С	10.088690	11.268752	16.502533
С	10.133765	11.988862	15.302132
Н	10.808426	11.673527	14.509799
С	9.310323	13.095429	15.122730
Н	9.340575	13.644296	14.187284
С	8.438002	13.484627	16.137361
Н	7.790644	14.343967	15.994271
С	8.389479	12.769734	17.332229
Н	7.707592	13.072060	18.120559
С	9.211252	11.662265	17.519516
Н	9.163715	11.104318	18.449546
С	11.652298	5.945611	12.928522
Н	11.234742	5.718296	11.942578
Н	12.487319	5.261020	13.098978
С	10.611443	5.771617	14.020427
Н	10.287612	4.721976	14.005264
Н	11.074905	5.949393	14.998445
С	9.370000	6.636453	13.893968
Н	8.672019	6.395298	14.700022
Н	8.853246	6.454130	12.946544
С	9.700263	10.521538	11.961951
С	9.929148	8.031319	10.816087
С	11.994468	9.855787	11.015063
С	13.987589	9.731714	17.210900
Н	13.921084	8.833328	17.833626
Н	14.929544	10.225839	17.468834
С	12.781585	10.641842	17.427294
Н	12.901197	11.588773	16.890399
Н	12.637675	10.892784	18.482951

atom	X	у	Z
Pt	11.816103	8.719779	14.817908
Fe	10.716523	9.376754	12.453897
S	12.262769	7.734196	12.647644
S	9.511846	8.426952	14.108502
Р	14.050086	9.033625	15.404095
Р	11.280344	9.943206	16.714104
Ο	8.951676	11.760526	12.722386
Ο	9.288697	8.246361	10.182101
Ο	12.688235	10.922353	10.846741
С	14.939080	10.184049	14.325481
С	15.309713	11.463647	14.761262
Н	15.089283	11.798753	15.769872
С	15.999864	12.318656	13.905681
Н	16.294755	13.303514	14.254024
С	16.325836	11.905234	12.616106
Н	16.871521	12.571239	11.955035
С	15.964295	10.630958	12.178430
Н	16.233364	10.301357	11.179707
С	15.269755	9.772398	13.023656
Н	15.011704	8.774064	12.680699
С	14.985324	7.489227	15.488863
С	16.355094	7.451581	15.198632
Н	16.872227	8.342751	14.856948
С	17.059134	6.260141	15.352018
Н	18.120978	6.232632	15.128785
С	16.407093	5.110211	15.792166
Н	16.962238	4.184846	15.910150
С	15.043513	5.144481	16.084908
Н	14.538631	4.248626	16.432912
С	14.332283	6.329447	15.933136
Н	13.269875	6.356986	16.169998
С	10.694990	8.910261	18.078119
С	10.581620	7.523013	17.923756
Н	10.810066	7.067258	16.962085
С	10.172046	6.730996	18.993241
Н	10.084351	5.655856	18.871469
С	9.872171	7.322018	20.218492
Н	9.551270	6.705733	21.052514
С	9.978546	8.704271	20.377395

Table S26. Cartesian Coordinates of the Optimized Structure of $[(OC)_3Fe(pdt)Pt(dppe)]^{2+}$ ([**3**]²⁺, -3191.58941051 *E*_h).

Н	9.739347	9.162735	21.331710
С	10.388427	9.500639	19.313859
Н	10.453686	10.577720	19.445649
С	10.084791	11.273668	16.441500
С	10.488602	12.485267	15.857595
Н	11.524932	12.655442	15.579038
С	9.557928	13.495639	15.639948
Н	9.877494	14.438374	15.206826
С	8.220822	13.301627	15.986194
Н	7.498325	14.094693	15.820466
С	7.812116	12.093998	16.549370
Н	6.772387	11.943829	16.822502
С	8.736910	11.079057	16.777228
Н	8.413311	10.147854	17.232118
С	11.505855	6.058315	12.676961
Н	11.030793	5.919993	11.699902
Н	12.362765	5.379704	12.719742
С	10.550557	5.766068	13.818793
Н	10.234147	4.718445	13.723443
Н	11.086308	5.843169	14.772662
С	9.293610	6.615388	13.862963
Н	8.660113	6.307941	14.700279
Н	8.696699	6.505686	12.951203
С	9.638613	10.858585	12.643741
С	9.846612	8.729604	11.051005
С	11.945578	10.328316	11.469549
С	14.010408	9.736476	17.113751
Н	13.891288	8.876500	17.783605
Н	14.977855	10.190560	17.354540
С	12.857526	10.719659	17.288697
Н	13.020614	11.633019	16.708795
Н	12.745801	11.014027	18.337790

s of the Optimized Structure of , $-3192.54469861 E_h$).			
X	У	Z	
11.834508	8.781878	14.817795	
10.689583	9.345467	12.140051	
11.464302	10.214107	13.153090	
12.297473	7.722497	12.707935	
9.561309	8.574193	14.059110	
14.022670	9.039734	15.446924	
11.276640	9.906334	16.726502	
8.911424	11.666102	12.135742	
9.210437	7.661298	10.204367	

Fe	10.689583	9.345467	12.140051
Н	11.464302	10.214107	13.153090
S	12.297473	7.722497	12.707935
S	9.561309	8.574193	14.059110
Р	14.022670	9.039734	15.446924
Р	11.276640	9.906334	16.726502
0	8.911424	11.666102	12.135742
0	9.210437	7.661298	10.204367
0	12.641080	10.506653	10.300964
С	14.964209	10.213792	14.423773
С	15.393289	11.454946	14.907906
Н	15.206440	11.747688	15.936543
С	16.080430	12.333954	14.073059
Н	16.412747	13.292593	14.459808
С	16.345655	11.981219	12.753042
Н	16.882712	12.666940	12.104837
С	15.924995	10.744367	12.265294
Н	16.133835	10.463417	11.237655
С	15.235652	9.864530	13.092140
Н	14.913482	8.901616	12.704625
С	15.024897	7.527987	15.538492
С	16.419946	7.579761	15.432764
Н	16.919525	8.522093	15.227773
С	17.169964	6.416510	15.580218
Н	18.251432	6.459764	15.494200
С	16.536400	5.201615	15.833692
Н	17.125544	4.296341	15.945284
С	15.147801	5.145763	15.939307
Н	14.653573	4.198345	16.132654
С	14.391945	6.304370	15.789035
Н	13.307469	6.267989	15.857518
С	10.701638	8.870913	18.105387
С	10.492434	7.501157	17.914967
Н	10.657246	7.074316	16.929380
С	10.082208	6.699646	18.978045
Н	9.921905	5.636853	18.823615
С	9.879549	7.261457	20.235606
Н	9.560536	6.636924	21.064570

Table S27. Cartesian Coordinates of cture of $[(OC)_3FeH(pdt)Pt(dppe)]^+$ $([\mathbf{3}H]^+, -3$

atom

Pt

С	10.084663	8.627032	20.433029
Н	9.923878	9.066425	21.412772
С	10.494254	9.430930	19.374794
Н	10.636784	10.496313	19.537691
С	10.079207	11.256421	16.516141
С	10.426773	12.337547	15.692874
Н	11.396143	12.366793	15.200852
С	9.524279	13.373821	15.483205
Н	9.801613	14.210203	14.848962
С	8.264317	13.333888	16.079733
Н	7.559547	14.142625	15.912228
С	7.907887	12.253950	16.882271
Н	6.924434	12.215861	17.340677
С	8.809241	11.214742	17.101288
Н	8.521875	10.375750	17.726799
С	11.449250	6.094900	12.692434
Н	10.997732	5.974080	11.701779
Н	12.251300	5.355428	12.777731
С	10.428129	5.866181	13.794560
Н	10.060243	4.834673	13.700652
Н	10.932439	5.939324	14.766751
С	9.220645	6.789730	13.789594
Н	8.540782	6.505409	14.598809
Н	8.661289	6.703665	12.851736
С	9.596978	10.749095	12.113318
С	9.783017	8.298277	10.965896
С	11.857184	10.047769	10.999224
С	13.994979	9.718385	17.170324
Н	13.867204	8.849428	17.826507
Н	14.959725	10.169572	17.425414
С	12.835303	10.694635	17.348523
Н	12.992309	11.611712	16.770418
Н	12.714522	10.983079	18.397900