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Transcriptome Sequencing of a Large Human Family
Identifies the Impact of Rare Noncoding Variants

Xin Li,1,* Alexis Battle,2,3,5 Konrad J. Karczewski,2 Zach Zappala,2 David A. Knowles,3 Kevin S. Smith,1

Kim R. Kukurba,2 Eric Wu,1 Noah Simon,4 and Stephen B. Montgomery1,2,3,*

Recent and rapid human population growth has led to an excess of rare genetic variants that are expected to contribute to an individual’s

genetic burden of disease risk. To date, much of the focus has been on rare protein-coding variants, for which potential impact can be

estimated from the genetic code, but determining the impact of rare noncoding variants has been more challenging. To improve our

understanding of such variants, we combined high-quality genome sequencing and RNA sequencing data from a 17-individual,

three-generation family to contrast expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) within this fam-

ily to eQTLs and sQTLs within a population sample. Using this design, we found that eQTLs and sQTLs with large effects in the family

were enrichedwith rare regulatory and splicing variants (minor allele frequency< 0.01). Theywere alsomore likely to influence essential

genes and genes involved in complex disease. In addition, we tested the capacity of diverse noncoding annotation to predict the impact

of rare noncoding variants. We found that distance to the transcription start site, evolutionary constraint, and epigenetic annotation

were considerably more informative for predicting the impact of rare variants than for predicting the impact of common variants. These

results highlight that rare noncoding variants are important contributors to individual gene-expression profiles and further demonstrate

a significant capability for genomic annotation to predict the impact of rare noncoding variants.
Introduction

Studies using deep and population-scale sequencing have

reported large numbers of rare variants (minor allele fre-

quency [MAF] < 1%) present as a consequence of recent

and rapidhumanpopulation expansion.1–6However, inter-

preting the impact of rare variation remains an ongoing

challenge. Several exome sequencing studies have sug-

gested that rare variants are of broad importance with the

finding that they represent the majority of potentially

deleterious and damaging protein-coding alleles2 and can

contribute to complex disease risk.7–11 In contrast, popula-

tion-genetic models have indicated that rare alleles are un-

likely to be large overall contributors to heritable variation

for many complex diseases.12 Indeed, large population

studies of rare variants in autoimmune disorders have so

far found negligible impact,13 and analyses of personal

genomes have reported multiple rare and protein-code-

disrupting sites in presumably healthy individuals.14,15

Further compounding the challenge of understanding the

impact of rare variation has been that most studies have

focusedononlyprotein-codingalleleswhose interpretation

is facilitated by the genetic code. For rare variants in non-

coding regions, there is no analogous code to aid in the pre-

diction of their impact even though these regions harbor

considerable complex-disease-associated variation16,17 and

most likely contain an abundance of important rare alleles.

Currently, genetic studies of gene expression provide a

systematic means of identifying functional noncoding
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variants; such studies have identified noncoding variants

associated with gene expression, splicing, and allele-spe-

cific expression (ASE).18–20 However, insight into the

impact of rare noncoding variants has been limited.

Few studies have had the advantage of full genome

sequencing data and, even when these data are available,

they have only assayed unrelated individuals, providing

limited power to describe rare-variant effects.18,21,22 To

overcome this challenge and provide more systematic

insight into the impact of rare noncoding variants, we

coupled high-quality genomes with transcriptomes

within a large family (n ¼ 17 individuals). The advantage

of this design is that the large number of children (n ¼ 11)

provides high-confidence rare variants established

through both deep sequencing and Mendelian segrega-

tion as well as sufficient power to test for cis-expression

quantitative trait loci (eQTLs) present within a single hu-

man family. Furthermore, eQTLs from the family can

be compared to eQTLs from a cell-type- and ethnicity-

matched population sample recently reported by the

Geuvadis Consortium,18 providing the unique ability to

identify large genetic effects specific to the family and

test their relationship to rare variants.23 Indeed, we report

that rare regulatory variants are enriched near genes that

exhibit large-effect cis-eQTLs for gene expression, splicing,

and ASE within the family. Furthermore, the family eQTL

genes are more evolutionarily constrained than compara-

ble eQTL genes in the population, and several of the genes

have established relationships with complex disease,
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indicating a potential for rare variants to further influence

genetic risk.

In addition, as genome-interpretation approaches are

becoming increasingly informed by diverse noncoding

genome annotation,24–26 genome and transcriptome anal-

ysis within a single large family provides unique insight

into the predictive power of diverse noncoding annotation

for rare variants. In our study, we demonstrated that the

combination of variant location, epigenomic information,

and evolutionary constraint is considerably more infor-

mative for predicting the impact of rare noncoding vari-

ants than for predicting the impact of common variants.

Likewise, we observed equivalent increases in predictive

strength for rare splicing variants. This suggests that many

rare noncoding variants are likely to be interpretable via

existing noncoding annotation and supports their more

routine integration in rare-variant association studies.
Material and Methods

Cell Culture and RNA Sequencing
Epstein-Barr-virus-transformed peripheral blood B lymphocytes

(catalog no. XC01463) from families from the CEU population

(Utah residents with ancestry from northern and western Europe

from the CEPH collection) were purchased from the Coriell Insti-

tute and grown in RPMI 1640 supplemented with 10% fetal calf

serum and penicillin and streptomycin in humidified 5% CO2 at

a concentration of ~1 3 106 cells/ml. Total RNA was isolated

with Trizol. RNA quality was assessed with the Agilent Bioanalyzer

2100, and RNA integrity numbers above 9 were used for cDNA

production. One microgram of total RNA was used for isolating

polyA-purified mRNA and subsequently used for cDNA-library

construction with the Illumina TruSeq RNA Preparation Kit.

Strand specificity was performed with 2’-deoxyuridine 5’-triphos-

phate during second-strand synthesis.27 All samples were indexed

with Illumina adapters and sequenced with an Illumina HiS-

canSQ. We subsequently sequenced each cDNA library on an

Illumina HiSeq to obtain 30 million 75 bp paired-end reads per

individual. We performed RNA sequencing (RNA-seq) for all 17 in-

dividuals (all three generations); however, for eQTL association,

we only used the 11 children, and for ASE analysis, we used the

two parents and 11 children. All RNA-seq data for all 17 individ-

uals are freely available at the Gene Expression Omnibus under

accession number GSE56961.
Quantification of Gene Expression, Splicing, and ASE
We used Tophat and Cufflinks to obtain gene-expression levels

from RNA-seq. We used Tophat to map RNA reads to the human

reference genome (UCSC Genome Browser, hg19) and Cufflinks

to quantify transcript-expression levels. Gene-expression levels

were the sum of transcript-expression levels. Gencode28 v.12

was used as the input annotation for Cufflinks. We calculated

transcript ratios to quantify alternative splicing patterns. Gene-

expression and transcript-ratio data for Geuvadis samples were

downloaded from the Geuvadis website; we used quantified

gene-level reads per kilobase per million both before (for assessing

effect sizes) and after (for eQTL mapping) normalization via prob-

abilistic estimation of expression residuals.29 We assessed ASE by

counting RNA read depth at heterozygous sites. We performed
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multiple quality-control steps to reduce known technical artifacts

(see Figure S2). We obtained read counts at each heterozygous

site by using SAMtools30 mpileup and our own ASE pipeline based

on a binomial test modified for reference-mapping bias with a

filter for observing at least five reads for each allele and aminimum

read depth of 203 per site.21,31 To assess the quality of ASE esti-

mates, we compared ASE correlation between double-IBD (iden-

tical-by-descent) siblings, half-IBD siblings, and non-IBD siblings.

Indeed, we observed an expected increase in correlation between

degree of IBD and allelic ratio measured across all sites (Figures

S28–S30).

Whole-Genome Sequencing Data
Whole-genome sequencing data for the family were downloaded

from the Complete Genomics website. Family members were orig-

inally sequenced to an average genome-wide coverage of 803. We

used variants called by the Complete Genomics Analysis Pipeline

(v.2.0.0). We performed an additional filtering step testing for

Mendelian inconsistency to obtain a high-confidence set of vari-

ants, and we eventually retained 5,546,682 out of the original

6,181,281 SNPs. We further compared our selected variants to

those assessed by long-fragment read (LFR) technology (N50s

400–1,500 kb).32 LFR has a claimed error rate of 1 in 10 Mb. Our

comparison showed that variant concordance between the 803

shotgun-sequencing approach and LFR technology was 99.91%

to 99.95% (Table S2). In addition, the same family was also

sequenced to 503 by Illumina Platinum Genomes, and the geno-

typing concordance with Complete Genomics was found to be

99.62% to 99.83% (Table S4).

Haplotyping and Verification by Long-Fragment

Sequencing
We inferred recombination positions and haplotypes of the family

by using our software tool Ped-IBD.33 Haplotype blocks are defined

by recombination positions. We identified a total of 813 recombi-

nation positions over 22 chromosomes. Haplotype blocks range in

size from 0.02 to 12 Mb (90% interval) and have a median length

of 1.65 Mb.We further confirmed haplotyping results with molec-

ular haplotypes from the LFR technology in three individuals

(NA12877, NA12885, and NA12886; Table S3). The comparison

showed that phasing was 99.84% to 99.92% concordant between

inferred and molecular haplotypes.

Linkage Mapping of cis-eQTLs in the Family
We used linear regression to evaluate correlation of gene-expres-

sion levels within local haplotype blocks. We measured effect

size by using the regression slope, b, and the coefficient of determi-

nation, R2. The linear model we used considers additive effects of

two haplotype blocks. More specifically, for each block, the two

parental haplotypes of each child are encoded with two covariates,

p and m. The maternal haplotype mi of child i, for example, is

either 0 or 1, depending on which of the two possible maternal

alleles is present. Then, an expression trait is regressed as the sum-

mation of effects of two parental haplotypes, Ti ~ m þ bjpi þ bkmi,

where Ti is the trait of individual i, the effects of two parental al-

leles k and j are expressed by bj and bk, and m is the intercept.

Each sibling has two choices of parental haplotypes on each

side—p,m˛{0,1}—to yield four total combinations. Gene expres-

sion Ti uses log2(FPKM [fragments per kilobase per million]

values). For splicing quantifications, we used relative transcript

abundances, which we calculated by dividing the FPKM of each
er 4, 2014



isoform by the FPKM of the whole gene (see Table S5). For cis-

eQTLs, we only tested the local haplotypes containing the genes,

which is sufficient for includingmost cis-eQTL signals (Figures S3–

S5). Furthermore, we confirmed gene-expression levels and eQTL

effect sizes with existing microarray data on the same family

(Figures S6 and S7).
Comparison of cis-eQTL Effect Sizes between

Population and Family
To compare cis-eQTL effect sizes, b, between the population and

family, we sought to first correct for the overestimation of effect

sizes (such discoveries exhibit characteristic regression to the

mean). To address this in the population eQTLs, we divided the

European-descended Geuvadis samples (n ¼ 373) in half and par-

titioned them into discovery (n ¼ 180) and replication (n ¼ 193)

panels. Within the discovery panel, we identified the strongest

cis-associated variant per gene (by p value and within the same in-

terval tested in the family). This allowed us to use the replication

panel to more accurately measure the effect size of each cis-eQTL

variant. However, to account for the difference in sample sizes be-

tween the replication panel (n ¼ 193) and the family (n ¼ 11), we

further sought to estimate how much variance in effect-size mea-

surements (b) could be obtained from sampling 11 people in the

population at random. In this way we controlled for chance obser-

vations of larger effect sizes for some genes in the family. To

achieve this, we repeatedly subsampled (100 times) 11 individuals

from the replication panel while maintaining the exact same ge-

notypes of the best associated variant between the subsample

and the family. Figure S8 illustrates this subsample scheme. Effect

sizes were then measured with the same regression formula,

Ti ~ m þ bjp þ bkm, for both the family and the subsample; note

that two regressors, p and m, match segregating patterns of both

the haplotypes of the family and the best SNP of the population

subsample. We note that estimation of b in the population was

highly correlated independently of the use of a one- or two-regres-

sor model (Figure S9). This allowed us to create a distribution of

measured effect sizes that would be expected from randomly

measuring the same number of individuals and genotypes in

both the family and the population. Using this approach, we iden-

tified empirical p values representing how often measured effect

sizes in the family were greater than that of the best associated

SNP in the population. We also repeated this analysis by using

fit (R2) given that we observed differences in the distribution of

raw b values between the family and population and also observed

higher variance in gene expression in Geuvadis overall (see

Figure S17).

We analyzed several features that could result in over- or under-

estimation of effect-size measurements between the family and

population (see Figures S17–S19). First, because effect-size mea-

surements can be influenced by differences in quantification

pipelines, we repeated the experiment by using different quantifi-

cation approaches (Tophat þ Cufflinks and GEM34 þ Flux Capac-

itor;31 Figures S13 and S14). Second, effect sizes in the population

could potentially be underestimated if the best associated SNP in

the discovery panel is not causal given that subsequent effect-

size measurements, in the replication panel, might not accurately

measure the largest effect. To address this, we examined different

discovery-panel sizes (Table S6 and Figure S15) and different

criteria (Figure S16) for selecting the best SNP from the population.

In addition, we observed through permutation that levels of noise

in measurements of effect size (b) were different between the fam-
The American
ily and the population (Figure S17). To better gauge confidence

intervals (CIs) of family effect sizes, we estimated the degree of

inflation through permutation and adjusted effect-size CIs by

scaling. These adjusted CIs were only applied to comparisons of

b values and are denoted by CIadjusted (see Figure S17–S19). For

the main manuscript, we report only unadjusted CIs. Further-

more, without using subsampling or permutation, we also directly

compared effect sizes with Welch’s t test by applying analytic

estimation of SEs of b. As a correctness check of the subsampling

method, we compared and verified that analytic p values by

Welch’s t test and empirical p values by subsampling were concor-

dant (Figure S19).

We applied the same subsampling method to identify large-ef-

fect splicing quantitative trait loci (sQTLs) and ASE. To compare

ASE between the family and population, we focused on a subset

of genes that had substantial data for the measurement and

comparison of allelic ratios (n ¼ 1,777 genes). For a gene to be

included, allelic ratios at a single site had to be measurable for

at least five siblings and at least 30 population samples. We tested

each gene once and excluded genes that were not tested for

eQTLs, such as pseudogenes or genes within high-complexity re-

gions (human leukocyte antigen and immunoglobulin loci). For a

site to be considered measurable, it needed to be covered by a

minimum of 20 reads with at least five reads for each allele. We

then took the maximum allelic ratio in the family and compared

it with the maximum allelic ratio found in 1,000 subsamples of

the Geuvadis; each subsample was matched to the number of

heterozygous individuals found in the family for that site.

This approach generated an empirical p value that we used to

assess whether an ASE effect in the family was greater than

that in the population. To account for ASE biases caused by

differing read depths between the family and population, we

downsampled (hypergeometric) Geuvadis reads by a factor of

1.97—we calculated this scaling factor by measuring the average

level of read-depth differences between Geuvadis and family sam-

ples at those selected heterozygous sites for each gene. To exclude

the possibility that large-effect ASE was due to technical artifacts

such as mapping biases or sequencing errors, we also looked at

ASE for the second-largest-effect siblings and IBD siblings

(Figure S25).
Variant Annotation
We obtained annotations (missense, synonymous, regulatory, and

splice region) by using the Variant Effect Predictor tool,35 which

queries annotation from the Ensembl website. ENCODE transcrip-

tion factor (TF) binding and DNase I hypersensitivity peaks were

obtained from RegulomeDB.24 Conservation scores obtained

from PhyloP36 (phyloP100way) software were downloaded from

the UCSC Genome Browser. Motif-disrupting sites were down-

loaded from HaploReg (v.2).37 Variant allele frequency was based

on phase 1 of the 1000 Genomes Project38 as calculated across

European populations.
Conservation and Network Annotation
We examined the conservation of family eQTL genes between hu-

mans and chimpanzees (Pan Troglodytes) by using the dN/dS ratios;

dNmeasures the rate of amino acid substitutions, and dSmeasures

the background rate of neutral DNA subsitutions.39 The dN and dS

values were obtained from BioMart40 (Ensembl v.70), and the dN/

dS ratios were computed. dN/dS is negatively correlated with the

conservation status of a gene, so higher dN/dS ratios indicate
Journal of Human Genetics 95, 245–256, September 4, 2014 247
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Figure 1. Large-Effect eQTLs and ASE in the Family
(A) Large-effect cis-eQTLs. Effect sizes are shown as b, the regression slope. The distribution of family effect sizes (black) is compared to
the distribution of population effect sizes (gray).We show cis-eQTL genes for which family effect sizes are greater than 95% of population
effect sizes. Here, we only plot the distribution of paternal effect sizes (maternal effects have a very similar distribution).
(B) Large-effect ASE genes. ASE effect sizes were assessed by allelic imbalance (0 is balanced, and 0.5 is monoallelic expression).We picked
the maximum ASE effect out of 11 siblings and compared it to the maximum ASE effect out of the subsampled population. Plotted are
family ASE effects greater than 95% of population ASE effects. To exclude outlier effects, we further tested this for the second-strongest
ASE effect in the siblings (Figure S22).
lower conservation of a gene.We also compared centrality of eQTL

genes by using the protein-protein interaction (PPI) network as

another indication of the biological importance of the affected

genes.19 We computed connectivity of family and population

eQTL genes in the PPI network. The PPI network was integrated

from BioGRID,41 the Molecular Interaction database,42 the Hu-

man Protein Reference Database,43 and IntAct,44 all data obtained

from the GeneMANIA45 data repository (downloaded on January

4, 2012).

Rare-Variant Enrichment Analyses
To control for site discovery and genotyping differences between

the population (1000 Genomes Project) and family (Complete Ge-

nomics) genomes, we performed enrichment analyses only for

variants in the family genomes. Using these data, we calculated

enrichment of rare variants at large-effect-size genes by dividing

the proportion of large-effect-size genes with a rare variant by

the proportion of all tested genes with a rare variant.
Results

We set out to develop an improved understanding of the

impact and interpretability of rare noncoding variants.

Our approach involved combining high-quality genomes

and transcriptomes within a single large family to identify

cis-eQTLs and compare these to cis-eQTLs discovered in a

large population sample. Through the use of RNA-seq

data, we were also able to conduct comparable analyses

for alternative splicing and ASE. Our analyses focused on

the enrichment of rare and potentially regulatory variants

in large-effect eQTLs and sQTLs in the family, and we

sought to identify the properties of genes that exhibit

such effects. Furthermore, we investigated the degree to

which family transcriptome data enable the detection of
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noncoding annotation relevant to interpreting rare non-

coding variants genome-wide.
Family Transcriptome Sequencing Identifies

Large-Effect cis-eQTLs

Wehypothesized that rare variants acting either alone or in

combination with common variants can cause an eQTL to

exhibit a larger effect size in the family than in the popula-

tion. To identify such cases, we applied a ranking scheme in

which we compared gene-expression cis-eQTLs between

the family and the population to find genes that exhibited

larger effect sizes within the family (see Material and

Methods). At CI > 0.95 (or empirical p value < 0.05), we

found that 319 (including both paternal and maternal

b measurements) of the 7,341 genes we tested had effect

sizes exceeding that of the best population cis-eQTL SNP

(false-discovery rate [FDR] ¼ 7,341 3 0.05 3 2 / 319 > 1;

Figure 1A). Using comparisons of b, we did not find more

relatively large-effect eQTLs than we would expect by

chance; however, we identified that this FDR is likely over-

conservative primarily because of differences in noise be-

tween the family and population (see Figures S17–S19),

and we therefore also discuss less conservative estimates

of FDR (see Figures S17–S19). It is important to note that

FDR here measures whether there are more large effects in

the family than in the population; however, ranking

relative effect sizes by empirical p values is biologically

meaningful whether there is an excess or a depletion.

Such relative effects overlap (to a degree) genes measured

only by absolute effect size in the family; for instance,

when comparing genes at the 95% percentile for absolute

b versus relative b, we observed an overlap of 52%

(Figure S12). However, we chose to use in all subsequent
er 4, 2014
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Figure 2. Enrichment of Rare Variants in Large-Effect eQTLs
(A) Enrichment of rare and potentially regulatory variants near the TSS of large-effect (b) cis-eQTL genes. Variants are restricted to those
with aMAF< 0.01, within ENCODE TF binding and DNase I hypersensitivity peaks, and with a PhyloP score> 1.We observed increased
enrichment of rare regulatory variants near the TSS of larger-effect-size genes in the family.
(B) Enrichment of potentially regulatory variants depends on allele frequency and relative effect sizes. We ranked genes (x axis) on the
basis of how often their effect sizes in the family were greater than their effect sizes in the population subsamples, which is also 1 � their
empirical p values (see Material and Methods). Variants are restricted to those within <100 kb of the TSS, within ENCODE TF binding
and DNase I hypersensitivity peaks, and with a PhyloP score > 1. We observed that variant enrichment was dependent on whether the
variant was rare (blue) or not (gray). We calculated enrichment by dividing the proportion of genes with such an annotated rare variant
in each effect-size bin by the proportion of genes with an annotated rare variant across all effect-size bins.
(C) Conservation scores and allele frequency predict genes with a larger effect in the family than in the population. We restricted to var-
iants within <100 kb of the TSS, within ENCODE TF binding and DNase I hypersensitivity peaks, and with different PhyloP thresholds.
Proportions were computed by p1 statistics on permutation-based p values of family effect larger than population effect. We observed
that rare and highly conserved variants overlapping epigenomic data (light blue) were highly predictive of a larger effect in the family
than in the population.
analyses the ranking of genes according to their relative ef-

fect sizes instead of absolute effect sizes becausewe hypoth-

esized that the former might better inform family-specific

effects. By instead measuring fit (R2), we identified 577 cis-

eQTLs that had a better fit in the family than the best pop-

ulation-level cis-eQTL variant (CI > 0.95; FDR ¼ 7,341 3

0.05 / 577 ¼ 63%; Figure S10). Among those genes that

exhibited the largest effect sizes and fits in the family

(both at a CI > 0.95), there was a significant overlap of

36.4% (Figure S11). To exclude the possibility of technical

factors underlying effect-size differences, we repeated the

analysis by using different quantification pipelines (Figures

S13 and S14), population discovery-panel sizes (Table S6),

and alternative methods for choosing the best SNP

(Figure S16); we observed no significant difference in the

discovery set of large-effect genes or on further downstream

analyses (see Material and Methods).

We also identified genes that exhibited larger ASE effects

in the family than in the population. We found that 223 of

the 1,777 genes we tested had larger ASE effect sizes in the

family (CI > 0.95, FDR ¼ 1,777 3 0.05 / 223 ¼ 40%;

Figure 1B; Figure S25). We expected that on an individual

basis, the family and population would actually have the

same distribution of ASE effect sizes (no excess of large ef-

fects, FDR ¼ 1). We controlled for some initially observed

excess in the family by matching read depths via down-

sampling; however, this did not address all the excess in

the family, and unknown factors still remained. We ex-

pected that any excess, however, would only add noise to

subsequent rare-variant enrichment analyses, and we

further validated large ASE effects by using evidence from
The American
IBD siblings (Figure S25). In addition, we applied ASE to

support discoveries of cis-eQTLs in the family; by strati-

fying their degree of effect size relative to those in the

population, we detected a proportionally increased enrich-

ment of detectable ASE (significant ASE sites defined as

allelic imbalance > 0.05, binomial test p value < 0.05;

Figure S21). This relationship supports a potential regula-

tory role of rare variants because it indicates that large-ef-

fect cis-eQTLs in the family might be the consequence of

heterozygous variants that manifest in ASE. This idea is

further supported by our observation of a direct and simple

linear relationship between cis-eQTL effect size among

children and ASE effect size among parents (Figure S20).

Large-Effect cis-eQTLs in the Family Are Enriched

with Rare Variants

We hypothesized that rare noncoding variants might be

responsible for a considerable proportion of the large-ef-

fect-size cis-eQTLs in the family. Taking advantage of full

genome data in the family, we assessed the enrichment

of rare and potentially regulatory variants near the tran-

scription start site (TSS) of genes with different magnitudes

of relative effect sizes between the family and the popula-

tion. Here, we used PhyloP to define potentially regulatory

variants on the basis of ENCODE TF peaks, DNase I hyper-

sensitivity peaks, and evolutionarily constrained regions

across 99 vertebrate genomes; we will later further explore

the relative importance of each of these annotations. We

observed enrichment of rare and potentially regulatory

noncoding variants in genes that had the largest effect

sizes (CI> 0.95 and CI> 0.80; Figure 2A). This relationship
Journal of Human Genetics 95, 245–256, September 4, 2014 249
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Figure 3. Large-Effect eQTLs Influence Essential Genes
(A) dN/dS ratio comparing large-effect family cis-eQTLs to population cis-eQTLs. We selected family eQTLs on the basis of their effect
sizes relative to population eQTL effect sizes and plotted the distributions of dN/dS ratios. As a comparison, we show the distribution
of dN/dS ratios for the most significant cis-eQTL genes identified only in the population (373 unrelated European individuals from
the Geuvadis study) given different p value cutoffs. This is further compared to family-level genes that have rare and potentially regu-
latory variants (within 5 kb of the TSS, within ENCODE TF binding and DNase I hypersensitivity peaks, and with a PhyloP score> 1).We
observed that for large-effect cis-eQTLs and family-level genes with a rare variant, a higher proportion were more conserved (described as
the percentage of genes with a dN/dS < 0.3; lower dN/dS ratios indicate higher conservation).
(B) Comparison of centrality in the PPI network between large-effect cis-eQTLs in the family and population cis-eQTLs. Centrality is
measured by the number of interacting proteins (degrees). Different groups of genes are defined in the same way as in (A). We show pro-
portions of high-connectivity (hub) genes (degree> 10; higher degrees indicate more essential genes) among these groups. We observed
that the proportion of high-connectivity genes was greatest for large-effect cis-eQTLs and family-level genes with a rare variant. This sug-
gests that common regulatory variants are less likely to occur at conserved genes. In contrast, family-specific eQTL effects, because they
arise from rare variants, can affect conserved genes.
was most pronounced within the first 5 kb close to the TSS

and decayed as a function of distance. It was also related to

the degree to which the family effect was larger than that

detected in the population across the full distribution of

measured effects (Figure 2B). Likewise, we tested both

large-effect cis-eQTLs by fit (R2) and large-effect ASE genes

and observed similar strong enrichment of rare and poten-

tially regulatory variants (Figures S23 and S25C).

We also evaluated the utility of known regulatory annota-

tions in predicting eQTLs for rare variants. Comparing an-

notated rare variants with all rare variants, we observed

strong enrichment (up to a 2-fold increase near the TSS) of

annotated variants, indicating that annotation is highly

informative in predicting eQTLs (Figure S22). Furthermore,

weobserved that theenrichmentwashigher in family-based

eQTLs than in population eQTLs as a function of effect size

(Figure S24). To test the contribution of different annota-

tions to a large effect in the family, we further stratified by

MAF and strength of evolutionary constraint. We observed

that variants with lower MAF and with increasing degree

of evolutionary constraintwere themost informative factors

indicative of large cis-eQTL effects in the family (Figure 2C).

Large-Effect cis-eQTLs in the Family Influence

Essential Genes

It has been previously reported that cis-eQTLs based

on population studies are depleted among essential
250 The American Journal of Human Genetics 95, 245–256, Septemb
genes.19 We hypothesized that if rare variation was

indeed responsible for large-effect cis-eQTLs in the family,

reduced impact of purifying selection on rare variants

would result in family eQTLs disproportionately affec-

ting essential genes. We tested this hypothesis in two

ways: defining gene essentiality by (1) its degree of

evolutionary constraint and (2) its centrality within

a PPI network. To assess evolutionary constraint, we

used dN/dS ratios between humans and chimps to

compare large-effect cis-eQTL genes in the family to cis-

eQTL genes in the population. We observed that large-

effect cis-eQTL genes in the family had significantly

higher conservation status than population cis-eQTL

genes (Figure 3A). This was even more pronounced for

genes with a rare and potentially regulatory variant

within 5 kb of the TSS. By contrast, cis-eQTL genes in

the population were less constrained for increasingly

stringent p values.

We next applied PPI networks with the premise that

genes that are more central in the network or have more

connections to other genes are more essential than less

connected ones. We found significantly higher connectiv-

ity for large-effect cis-eQTL genes in the family than for cis-

eQTL genes in the population (Figure 3B). Furthermore,

this contrast became stronger when we focused only on

those genes that also contained a proximal rare and poten-

tially regulatory variant (Figure 3B).
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Figure 4. Large-Effect sQTLs in the Family
(A) Enrichment of rare variants at large-effect sQTL genes. We ranked genes (x axis) on the basis of how often their effect sizes in the
family were greater than their effect sizes in the population subsamples (see Material and Methods). We restricted to variants within
30 bp of splice sites and with a PhyloP score > 1. As for cis-eQTLs (in Figure 2B), we observed that enrichment was dependent on allele
frequency. We calculated enrichment by dividing the proportion of genes with such an annotated rare variant in each effect-size bin by
the proportion of genes with an annotated rare variant across all effect-size bins.
(B) Conservation scores, the distance to splice site, and allele frequency predict genes with a larger effect in the family than in the pop-
ulation. We observed that rare and conserved variants near splice sites (light blue) were highly predictive of a larger splicing effect in the
family than in the population.
Family Transcriptome Sequencing Identifies

Large-Effect sQTLs

By comparing cis-sQTLs between the family and the pop-

ulation, we also ranked genes with larger relative effect

sizes (measured as R2) in the family than in the pop-

ulation (n ¼ 726, >95% population, n ¼ 5,622 genes;

FDR ¼ 39%). Differences in isoform-quantification pipe-

lines probably overestimate the excess number of large-ef-

fect sQTLs because there is also more noise in isoform

quantification in the population. However, as for large-

effect eQTLs, we also observed enrichment of rare and

potentially functional variants for large-effect sQTL genes

in the family (Figure 4A). Furthermore, by stratifying

on allele frequency, distance to splice sites, and evolu-

tionary-constraint thresholds, we found that large-effect

sQTLs in the family were much better predicted by

rare variants than by common variants, especially for

conserved regions near splice sites (Figure 4B). In addition

to observing large effect sizes, we also found that sQTLs

could exhibit very high heritabilities, nearly as high

as those for Mendelian traits (examples in Figures S26

and S27).

Large-Effect cis-eQTLs in the Family Might Further

Modify Complex-Disease-Associated Genes

There has been considerable interest in whether rare vari-

ants modify risk of complex disease.46,47 Although we

were unable to directly test disease associations within

this family because of the anonymity of the individuals,

we sought to quantify the number of genome-wide associ-

ation study (GWAS) genes in which cis-eQTLs exhibited
The American
larger effects in the family than in the population. We

identified 315 GWAS genes in which the known GWAS

variant was an eQTL in the population (at an FDR of

5%), suggesting a regulatory basis to disease pathogenesis.

Of these genes, we identified 65 with a larger-effect cis-

eQTL in the family (>80th percentile). Of those, 17 (Table

S9) were not polymorphic for the known GWAS SNP in

the family, and two had a rare and potentially regulatory

variant (within <100 kb of the TSS, within an ENCODE

TF binding and DNase I hypersensitivity peak, and with a

PhyloP score > 0) influencing genes implicated in body

mass index, hypertension, and obesity. In addition, regard-

less of relative effect sizes of eQTLs between the family and

population, we identified four GWAS genes (Table S10) in

which the known GWAS SNP was an eQTL in the popula-

tion and that had a rare and potentially regulatory variant

(within<100 kb of the TSS, within an ENCODE TF binding

and DNase I hypersensitivity peak, and with a PhyloP

score > 3) in the family according to strong predictor vari-

ables. Although increased risk in this family is not known,

the presence of rare and potentially regulatory variants in

complex-disease-associated genes whose expression is

implicated in disease pathogenesis suggests that complex

traits and genes should be further studied with rare-variant

association tests.

Functional Noncoding Annotations Are Informative

of the Impact of Rare Noncoding Variants

Genome and transcriptome data from a single large family

allowed us to test the utility of various noncoding anno-

tations for predicting the impact of noncoding variants
Journal of Human Genetics 95, 245–256, September 4, 2014 251



on expression. Here, our goal was to identify those anno-

tations that could inform a functional variant from

genome sequence alone. We chose to include the

following as potentially informative annotations:

ENCODE TF binding, DNase I hypersensitivity peaks,

evolutionary constraint, motif disruption as computed

by HaploReg, and distance to the TSS. We identified that

each noncoding annotation was more informative for pre-

dicting the impact of rare variants than the impact of com-

mon variants on expression (Figure 5A; Table S7).

We observed that evolutionary constraint and distance

to the TSS were the most informative for rare variants,

and they further increased their utility with increasing

strength of constraint and shorter distances, respectively.

One potential concern we identified is that we might be

only predicting a gene’s ability to harbor an eQTL such

that having a rare variant possessing specific annotation

might indirectly inform genes tolerant of arbitrary func-

tional variants (both common and rare). However, when

assessing whether genes containing different annotations

for rare variants were also more likely to have common

eQTLs in the population, we saw no significant difference

(Figure 5A, right panel). This demonstrates that particular

species of rare noncoding variants might be interpretable

from genome sequence data alone provided that there

is sufficiently high-confidence genotyping of those rare

variants. Furthermore, provided increasing availability

of genome-interpretation methods, this method offers

a means of determining and calibrating the efficacy of

different approaches.

Through finer stratification of allele frequency, we were

able to observe the degree to which genome annotation

influenced predictions of cis-eQTLs. We observed that

predictions of eQTLs were most informative for poten-

tially regulatory variants when those variants were rare

(Figure 5B). This was also the case for sQTLs: predictor vari-

ables such as evolutionary constraint and distance to splice

sites were the most informative factors for predicting a

sQTL when a variant was rare (Figure 5C).
Discussion

Our study combined high-quality genome sequencing

and RNA-seq data for a 17 member, three-generation fam-

ily, enabling us to investigate the role and interpretability

of rare noncoding variants. In contrast to low-pass ap-

proaches, high-quality full-coverage genome sequencing

and patterns of Mendelian segregation provided the abil-

ity to more confidently identify and genotype rare vari-

ants within the family. More importantly, the large num-

ber of children provided us with the ability to detect

eQTLs caused by rare variants specific to the family. In

contrast, the power of a design that includes many small

families or trios would be reduced by the overall heteroge-

neity of causal rare variants in each family. A further

advantage is that with matched cell type and population,
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we were able to compare family eQTLs to population

eQTLs reported by the Geuvadis Consortium.18 We iden-

tified genes that exhibit larger eQTL effect sizes in the

family than in the population and demonstrated that

these family-specific eQTLs are enriched with rare regula-

tory variants, influence more evolutionarily constrained

and central genes, and are potential contributors to risk

of complex disease.

One limitation of the study is that we did not observe

many more large-effect eQTLs in the family than expected

by chance; high FDRs were observed for all categories of

large-effect eQTLs. This could suggest that there is not an

overabundance of large-effect eQTLs specific to the family.

It might also simply reflect limited power or imperfect

comparison of effect sizes between cohorts, given that we

explored by varying quantification pipelines, discovery-

panel sizes, and methodologies for selecting testable vari-

ants. However, the enriched properties we identified for

large-effect family eQTLs appear to be robust to such limi-

tations, and we highlight that although there might not be

a strong excess of large-effect eQTLs, the relative degree of

effect between the family and population conveys mean-

ingful properties of family eQTLs. For instance, as the de-

gree of effect size increased in the family relative to the

population, we observed an increasing enrichment of

rare and potentially regulatory variants. Furthermore,

such large-effect eQTLs in the family exhibited increasing

enrichment in ASE, implicating a heterozygous causal

variant. Additionally, the enrichment of family eQTLs

among constrained and central genes was most extreme

for the subset of genes in which a rare and potentially reg-

ulatory variant could be identified. These observations fit

with population-genetic expectation given that rare vari-

ants can influence more essential genes because of a

reduced impact of purifying selection. Furthermore, this

is in contrast to the general properties of population

eQTL genes; for increasing effect sizes, they have previ-

ously been shown to be less constrained and less cen-

tral.19 Taken together, these results implicate an important

role of rare regulatory variants in large-effect eQTLs in the

family.

We compared, in addition to gene expression, ASE and

alternative splicing between the family and the popula-

tion. As with gene expression, we observed enrichment

in rare variants for large-effect ASE and sQTLs in the family.

Furthermore, we observed that evolutionary constraint

and distance to splice sites for rare splicing variants was

significantly informative of large splicing effects in the

family.With both large-effect eQTLs and large-effect sQTLs

predicted by rare variants, this study highlights existing

potential for routine integration of these variants in rare-

variant association tests.

Ultimately, a principal goal in genome interpretation

is to develop the ability to predict the impact of all vari-

ants, including those that are rare or novel. In our study,

we were able to test the importance of diverse noncoding

annotations for predicting the impact of noncoding
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Figure 5. Predicting Rare and Common eQTLs
(A) Utility of diverse noncoding annotation for predicting rare and common eQTLs. We considered the enrichment in eQTLs (measured
with the p1 statistic) for rare (MAF < 0.01) and common (MAF > 0.01) variants overlapping the following different functional annota-
tions: ENCODE TF binding and DNase I hypersensitivity peaks, distance to TSS, PhyloP conservation scores, and motif disruption (score
change > 10); annotations were added one at a time. We found that these functional annotations were significantly more powerful for
detecting an eQTL when intersecting rare variants rather than common variants. Furthermore, on the right, we demonstrate that none
of the genes possessing rare variants overlapping the different categories of annotation were disproportionally enriched in their ability to
also be eQTLs in the population. A full matrix summarizing intersections of these annotations is provided in Table S7.
(B) Conservation scores and allele frequency predict genes with an eQTL. We restricted to variants within 100 kb of the TSS, within
ENCODE TF binding and DNase I hypersensitivity peaks, and with different PhyloP scores and allele frequencies to assess each variant
class’s enrichment in eQTLs. We observed that highly conserved and rare variants were strongly predictive of an eQTL.
(C) Conservation scores, the distance to splice site, and allele frequency predict genes with a sQTL.We considered different thresholds on
distance to splice sites, PhyloP conservation scores, and allele frequencies. We observed that rare and conserved variants near splice sites
(light blue) were highly predictive of a sQTL.
variants on gene expression. For rare variants, we identi-

fied that evolutionary constraint coupled with distance

to the TSS and epigenomic information was highly
The American
informative in predicting eQTLs. For common variants,

such annotations did not provide comparable predic-

tive power. The likely reason for this difference is that
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common variants, regardless of genomic annotation,

are very likely to be neutral, whereas rare variants have

a higher prior likelihood of functional impact that can

be further informed by genomic annotation. Given

that no previous analyses have had access to high-quality

genomes and transcriptomes in a single large human

family, this study provides data to support a much-

needed framework for frequency-independent evalua-

tion of genome interpretation for noncoding variants

and suggests that the impact of many rare and causal

noncoding variants might be easier to predict than

expected.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes Phase 1 Analysis Results, ftp://ftp-trace.ncbi.nih.

gov/1000genomes/ftp/phase1/analysis_results/

Complete Genomics, 69 Genomes Data, http://www.

completegenomics.com/public-data/69-Genomes/

Ensembl Genome Browser, http://www.ensembl.org

Ensembl Variant Effect Predictor, http://www.ensembl.org/info/

docs/tools/vep/

GeneMANIA, http://www.genemania.org/

Geuvadis Data Browser, http://www.ebi.ac.uk/Tools/geuvadis-das/

Geuvadis RNA sequencing project, http://www.geuvadis.org/web/

geuvadis/RNAseq-project

GWAS catalog, http://www.genome.gov/admin/gwascatalog.txt

HaploReg, http://www.broadinstitute.org/mammals/haploreg

Illumina Platinum Genomes, whole-genome sequencing data,

http://www.illumina.com/platinumgenomes/

LFR data for family members, ftp://ftp2.completegenomics.com/

PhyloP conservation scoring, http://hgdownload.cse.ucsc.edu/

goldenpath/hg19/phyloP100way/

RegulomeDB, http://regulomedb.org/

UCSC Genome Browser, http://genome.ucsc.edu
Accession Numbers

The Gene Expression Omnibus accession number for the

RNA-seq data of all 17 individuals reported in this paper is

GSE56961.
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Figure S1. Family structure.  

Four grandparents, two parents and eleven children. All family members are RNA-sequenced.  
Whole genome DNA-sequencing data of all family members were generated by Complete 
Genomics.  Whole genome sequencing was also performed again by both Illumina Platinum 
Genomes and Complete Genomics Long Fragment Read1 technology. All three sets of genome 
sequencing data are compared to confirm genotyping correctness (Table S2, Table S3, Table 
S4). 
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Figure S2. Flowchart of genotype calling and RNA-Seq quality control steps.  

Genotyping data were confirmed across three sequencing platforms (Table S2, Table S3, Table 
S4) to guarantee correctness especially at rare variants. We further filtered variants by stringent 
Mendelian consistency throughout the whole family. RNA/DNA concordance was checked at 
heterozygous sites to avoid sample mixture/swap.  
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Figure S3. Haplotype / identity-by-descent (IBD) inference.  

Distribution of recombination breakpoints. Red: maternal recombinations, Blue: paternal 
recombinations. We inferred 813 recombination positions in CEU family 1463. We partition 
chromosomes into haplotypes according to these recombination positions. 

 

  



 

Figure S4. Histogram of haplotype lengths.  

Haplotype blocks are defined by recombination positions as shown in Figure S3. Majority of 
haplotype blocks are long enough to include the most intensive cis-regulatory regions of a gene 
(100kb near TSS). The median haplotype length is 1.65Mb, and 90% of haplotype blocks range 
from 0.02Mb to 12Mb. 
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Figure S5. Distribution cis-eQTL and cis-sQTL variants near a gene: Local haplotype 
blocks have the largest number of eQTL (left) or sQTL (right) effects.  

Compared with three nearby blocks, local haplotypes shows substantially larger number of 
eQTL / sQTL effects, compared to up and downstream haplotype blocks. We tested the local 
haplotype block containing each gene and three nearby haplotype blocks for eQTL linkage. As 
we expected, local haplotypes that contain the tested gene show the largest number of eQTL 
associations compared with nearby blocks. Local haplotypes also show largest number of sQTL 
associations compared with nearby blocks. The result suggests that most cis-acting expression 
or splicing QTL variants are located in the local haplotype blocks.  

 

 



 

Figure S6. Comparison of eQTL discovery between RNA-Seq and microarray.  

We tested eQTLs within the same family quantified in published microarray studies2 (only seven 
of the siblings are available from this microarray data). We measured the number of eQTLs from 
RNA-Seq data that can also be detected using microarray. Blue numbers are total number of 
eQTL genes detected by RNA-Seq passing that FDR cutoff, red numbers are number of genes 
also showing eQTL effects by microarray as indicated by π1

3. We can observe that given more 
stringent FDRs that the two approaches give more concordant discoveries. Furthermore, both 
eQTL discoveries (Figure S6) and effect sizes (Figure S7) show concordant patterns between 
the two studies. 
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Figure S7. Concordance of eQTL effect sizes (β) between RNA-Seq and microarray.  

(A) Paternal effect sizes. (B) Maternal effect sizes. We report effect sizes of eQTL as measured 
from RNA-Seq data or microarray data. Sign of effect size indicates whether the paternal 
haplotype of a parent (father or mother) increases or decreases expression in children. Red 
numbers are medians of each box. Effect sizes measured between microarray and RNA-Seq 
quantification are modestly concordant. 
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Figure S8. Identifying large-effect cis-eQTL genes in family compared to population  

Effect sizes measured in the family are compared to those measured in genotype-matched 
population subsamples. We have two 𝛽s for both the family and the population data to avoid 
effect size inflation due to more regressors in the family than the population. We use the same 
regression to measure effect sizes for both the family and the population data: 𝑇!~𝜇 + 𝛽!𝑝 +
𝛽!𝑚, 𝑝,𝑚 are two regressors indicating paternal and maternal haplotypes in the family. We can 
use the same regression formula because genotypes are matched exactly between family and 
population subsample at the best associated SNP, so the two regressors 𝑝,𝑚 match 
segregating patterns of the best SNP in both the family and the population subsample. If we 
assume only the best SNP is functioning in both the family and the population samples, 𝛽! ,𝛽! 
are expected to be the same between the family and the population subsample. For population 
heterozygotes (with identical, unphased SNP genotypes) the maternal and paternal alleles are 
assigned arbitrarily from the two possible options, as needed, to match family genotypes. 
However this extra information does not influence the measure of effect sizes on either side.  

 Subsequently, large-effect outlier genes are identified by comparing effect size (β or R2) 
of genes in the family to those in the population. Effect sizes (β) can be directly compared using 
analytical tests (Welch’s t). However, to explore the behavior of effect sizes under different 



sample sizes, we applied a subsampling approach among the population individuals to re-
generate the expected effect size distribution of the best associated SNP among 11 individuals. 

 In specific, the best eQTL SNP is discovered in a separate 180-individual discovery 
panel to avoid bias of multiple selections (a phenomenon otherwise known as regression to the 
mean or winner’s curse). Effect sizes of genes in the population are then assessed by 
subsampling the same number (N=11) of individuals from the 193-individual replication panel (of 
373 Geuvadis European samples) to account for potential biases due to different sample sizes.  
β or R2 are regression slope and coefficient of determination (fit) measured by linear regression. 
The method is illustrated in Figure S8. We then generated the population effect size distribution 
by subsampling down to 11 matched individuals multiple (100) times from the population data. 
For each gene, we generated an empirical p-value of observing a larger effect in the family, by 
counting how often the effect size in the family is larger than those from the population 
subsamples. We estimated the total number of genes exceeding population effect sizes using 
the 𝜋! statistic, based on empirical p-values of all genes. The estimated  𝜋! for large-effect cis-
eQTLs is 0.0611 (for eQTLs selected by R2). For β effect size estimates, we noticed there is 
difference in noise levels between the population and the family estimates which result in a p-
value distribution significantly skewed towards 1; we discuss an adjustment for such differences 
in Figure S17, Figure S18 and Figure S19.  

 We do not use β and only use R2 when comparing splicing QTL effect sizes, since the 
estimation noise of β is too large for transcript ratios in Geuvadis data. The estimated  𝜋! for 
large-effect cis-sQTL is 0.0749.  
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Figure S9. Effect size measured by the one-regressor and the two-regressor model.  

For the family, in order to measure the effect of the whole haplotype, we need to use a two-
regressor model. For the population subsample, however we chose to use the same two-
regressor model to avoid possible effect size (β or R2) inflation caused by the use of more 
regressors. This makes a fairest comparison between the family and the population subsample 
as they are now measured on exactly the same model with the same number of regressors, and 
effect sizes differences are truly due to biological factors specific to the family instead of 
different regression methods.  

 In order to match the regressors of the family, we actually implicitly phased the SNP of 
the population subsample according to the family (Figure S8), this information is arbitrary for the 
population subsample however this arbitrary splitting of one regressor into two regressors does 
not actually influence the measure of effect sizes. The two regressors, p and m, which indicate 
transmissions from either parents are statistically independent of each other or, in terms of 
linear relationships, orthogonal: 𝑝 ⊥ 𝑚, 𝐸 𝑝 ∙𝑚 = 0, therefore each will capture their own effect 
without interfering with one another. Figure S9 shows the comparison of the actual effect sizes 
measured by the one-regressor and two-regressor models, which verifies that the two-regressor 
model unbiasedly captures the same effect sizes (𝛽) as the one-regressor model.  

 Panel A shows effect sizes measured using the mean from 100 subsamples out of the 
population.  Using the one-regressor model, we simply regress on a single SNP (considering 
00, 01, 10, 11 to be 0, 1, 1, 2). Using the two-regressor model, we regress on both the paternal 
haplotype and the maternal haplotype. Here, we show the effect size β measured on the 
paternal haplotype, oriented according to the SNP’s phase on the father (to match the sign of 
the SNP β). Panel B shows the QQ plot of effect sizes comparing effect sizes (absolute values) 
measured by the one-regressor and the two-regressor models. However, the dispersion 
(𝑣𝑎𝑟(𝛽)) of a two-regressor model is expected to be substantially larger and is a reason why we 
emphasize the usage of the same model between the family and the population.  
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Figure S10. Large-effect family cis-eQTL genes.  

Effect sizes are compared to population by fit (R2) of linear regression. Shown are family eQTL 
genes (blue) with effect sizes greater than the 0.99 quantile (empirical p-value < 0.01) of 
population effect sizes (grey).  The magnitude of the outlier proportion has been extended on 
the top to illustrate the range of effect sizes for measured large-effect cis-eQTLs. 
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Figure S11. Overlap of β and fit (R2) effect size outliers.  

(A) There are 319 β outlier genes and 577 fit outlier genes with effect sizes greater than 95% 
quantile (empirical p-value < 0.05) of the population. The overlap is 116 genes. The overlap is 
statistically significant by Fisher’s exact test, indicating shared effects they are capturing. (B) 
After adjustment of confidence intervals of β (described in Figure S17-Figure S19), there are 
558 β outlier genes with effect sizes greater than 99% CIadjusted of the population. The overlap 
with 577 (> 95% CI) fit outlier genes is 166 genes.    
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Figure S12. Large relative β vs. absolute β.  

We tested the properties of large-effect genes compared to the population to see whether the 
comparison to the population adds additional information to the ranking of genes. Figure S12 
shows that large absolute β are not necessarily highly ranked in the relative scale and vice 
versa. This does indicate that we are gaining novel information by ranking genes according to 
their relative effect sizes (empirical p-values) instead of just ranking them by their absolute β. 
(A) Ranks of absolute β, compared to ranks of relative β. Relative β is the empirical p-values 
comparing the family with the population effect sizes. Absolute β is just the original effect size β 
yielded by the linear regression. (B) Zoom-in of upper right rectangle of (A). The two lines 
indicate the top 5% and 20% of genes. The figure shows that by comparing to the population, 
the ranks of genes are not the same as simply ranking the genes by their original β. Of the top 
5% of genes by each metric, the overlap is 52%. (C) Ranks of family absolute β compared to 
ranks of population absolute β. Family effect sizes and population effect sizes are not correlated 
in general.  
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Figure S13. Effect of different quantification pipelines: comparisons of effect size β 
between Tophat + Cufflinks and GEM + Flux pipelines.  

Effect sizes are highly correlated between two quantification methods. Here we plot only 
paternal side β, maternal side β patterns are very similar. Discovery of large effect size genes (> 
95 CI of population, paternal side only) are: 165 genes by Tophat + Cufflinks (red), 125 genes 
by GEM + Flux (blue) and 90 genes of their intersection (green). Geuvadis expression values 
were based on a different quantification pipeline than used in the family data. To exclude the 
possibility that large-effect eQTL genes are due to technical differences between the family and 
population data, we compared discovery of large effect genes and enrichment of rare variants in 
the family using the same pipeline (GEM + Flux) as Geuvadis. For the family data, the effect 
size estimates are highly correlated between two pipelines. We observe a similar discovery set 
of large effect genes and also similar patterns of rare variant enrichment as Tophat + Cufflinks 
pipeline (Figure S13, Figure S14). The confidence intervals used for β effect sizes in Figure 
S13-Figure S16 are raw (if not otherwise specified), without further adjustment (described in 
Figure S17-Figure S19). 
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Figure S14. Enrichment of rare variants at large effect size β.   

The enrichment pattern is similar when using GEM + Flux (A) pipeline compared to Tophat + 
cufflinks pipeline (B) and (C). X-axes in (A) and (B) are raw CIs, (C) is adjusted CI. We ranked 
effect sizes of genes based on 1 – their empirical p-values: how often their effect sizes in the 
family are larger than effect sizes among the population subsamples. The distribution of effect 
sizes in the population was generated by repeatedly subsampling 11 individuals from the 
population. Rare variants are defined as those with MAF < 0.01, within Encode TF binding + 
DNase peaks and PhyloP score > 1. Enrichment is defined as proportions of genes with such 
an annotated rare variant in each effect size bin divided by proportions of genes with such an 
annotated rare variant across all effect size bins.  
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Figure S15. Influence of discovery sample sizes in tagging causal SNPs.  

As we are using whole genomes for both the family and the population data, we have the ability 
to test all SNPs including the causal SNP in our association models. However, a general rule of 
statistics indicates that the power to capture the true largest effect or causal SNP in the 
population also depends on sample sizes. A small discovery panel may result in poor choice of 
SNP and deflation of effect sizes in the population, which can potentially over-estimate the 
number of large effect genes in the family. We analyze how sample sizes of the population 
discovery panel influence our identification of large effect genes in the family. We observe 
continuously increasing number of large effect eQTLs discovered in the population given larger 
sample sizes (Figure S15A), which indicates that large sample sizes do increase chance of 
tagging a true causal SNP. We consider this a very important effect suggesting the necessity of 
large sample sizes to accurately measure effect sizes. However, given our particular 
application, as largest effect genes are likely to saturate first, increasing sample sizes does not 
have a significant influence on our discovery of family large effect genes (Table S6).  The 
enrichment of rare variants at large-effect genes is also comparable given different discovery 
panel sizes (Figure S15B). 

 (A) Number of large effect genes discovered in the population given larger sample sizes. 
Best SNPs are discovered in the discovery panel of varied size. We re-measured the effect 
sizes of those SNP in the replication panel. There are increased numbers of large effect SNPs 
discovered given a larger discovery panel size. Note that y-axis is piled inversely, with largest 
effect sizes stacked at the bottom. (B) Enrichment of rare variants at large effect family genes 
given different population discovery panel sizes. We ranked effect sizes of genes based on 1 - 
their empirical p-values: how often effect sizes in the family are larger than those of the 
population subsamples. Rare variants are defined as those with MAF < 0.01, within Encode TF 
binding + DNase peaks and PhyloP score > 1. Enrichment is defined as proportions of genes 
with such an annotated rare variant in each effect size bin divided by proportions of genes with 
such an annotated rare variant across all effect size bins.  
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Figure S16. Influence of different criteria in selecting best SNP: smallest p-value or 
largest effect size.  

X axis: re-measured β in replication panel if SNP is selected by best P value in the discovery 
panel. Y axis: re-measured β if SNP is selected by best β in the discovery panel. Shown here 
are 904 genes with a best SNP < 1e-5 in discovery panel. For each gene, we choose a best β 
among all SNPs within 10 * p-value of the best SNP.  203, 196 and 505 are genes with X > Y, X 
< Y and X = Y.  

 For each gene, we select the best SNP based on p-value in the discovery panel. 
However, this SNP is not necessarily truly the largest effect SNP as p-value is an indicator of 
best fit (R2) instead of largest β, such that we may possibly miss a secondary effect SNP with 
larger β. To test the possibility that we miss larger effect SNPs and under-estimate the effect 
sizes in the population, we analyzed the differences of choosing the best SNP by p-value or β. 
For each gene, we first find a best SNP with smallest p-value, we then pick another SNP of 
largest β (could be the same one) among all SNPs with a p-value no more than an order of 
magnitude less significant than that of the best p-value, we then re-measure their effect sizes in 
the replication set. We observe that approximately half of the time, the best p-value and best β 
SNP is the same SNP. Further, even when they are not the same SNP, the measured effect 
size in the replication set is very similar. This suggests that most effect size differences near the 
best SNP is due to random noise, the existence of a secondary effect SNP with even larger 
effect size is not significant.  
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Figure S17. Adjustment of effect size empirical p-values: comparison of effect size 
confidence intervals (noise levels) between the family and the population.  

(A) QQ plot of standard deviation of measured effect size 𝛽, comparing the family and the 
population. Data are permuted such that 𝐸 𝛽 = 0, 𝑠𝑡𝑑 𝛽  measures the noise levels of 
measures of 𝛽. Population (Geuvadis) samples are quantified using GEM + Flux pipeline. 
Family data are quantified using both GEM + Flux and Tophat + Cufflinks pipelines respectively. 
Standard deviation of 𝛽 is significantly larger in the population no matter which pipeline is used 
in family. (B) QQ plot of analytical estimation of standard error of 𝛽: 𝑆!, comparing the family 

and the population. 𝑆! is computed by !
!!!!

!!!

!!!!
, where 𝜀! is the residuals in linear 

regression 𝑇!~𝜇 + 𝛽!𝑝 + 𝛽!𝑚 + 𝜀!, 𝑥 is either 𝑝 or 𝑚. 

 The degree of noise in estimated β is different between the population and the family 
even if we match the sample size and quantification methods. The noise in estimated effect 
sizes is significantly smaller in the family than in the population. This difference reflects both the 
fact that family members are more homogeneous (sharing more covariates such as genetic, 
environment, lifestyles and etc., thus having tighter fit to the regression slopes) and also the 
possible existence of other technical factors, which we cannot tell apart.   

 The discovery of such differences is actually biologically informative, however our 
subsampling scheme is not intended to reflect and calibrate the noise of effect size estimates of 
the family members. Therefore, regardless of the source of these differences, they have 
undesirably shifted the empirical p-values (see comparisons to analytic p-values Figure S18A 
and C, Figure S19A).  

 Here, we explored two methods to adjust different noise levels between effect size 
estimations, which yield empirical p-values closer to analytical p-values and less conservative 
estimates of FDR. However as there is not a robust way to precisely calculate this FDR, we 



leave the over-conservative empirical p-values unadjusted for all main analyses.  It is important 
to note that “FDR” here measures overall excess (FDR < 1) of large effect sizes between the 
family and the population, it does not mean that the ordering of effect sizes (empirical p-values) 
are all due to random chance regardless of the outcome of this FDR. Though we did not 
estimate an accurate FDR here, the relative ranks of genes according to their effect sizes 
compared to the population (empirical p-values) are not affected, which are still valid and 
biologically meaningful.   

 To correct for additional noise in population subsamples, we measured the standard 
deviation of 𝛽 of randomly permuted data (𝛽 = 0) in both the family and population. We 
estimated that the standard deviation of 𝛽 estimates of the family is 0.55 times the size of that of 
the population: 𝑠𝑡𝑑 𝛽family = 0.55 ∗   𝑠𝑡𝑑 𝛽population  (Figure S17A). Such difference will make the 
confidence intervals which are measured from subsampled population to be larger than the 
actual noise of β estimates in the family. To adjust for such differences, we narrowed the 
empirical distribution of a gene by moving each subsampled effect size in the population 
towards their mean: 𝛽!"#$%&'" = 𝛽 + 0.55 ∗ 𝛽 − 𝛽 . This adjustment shrinks the distribution of 
population effect sizes (and consequently reduces the empirical p-values) but retains the 
estimates of 𝛽 of that gene from the population. After adjustment, the distribution of empirical p-
values testing whether the family effect size is bigger than the subsampled population is more 
uniform (Figure S18).  As the adjustment of confidence intervals mainly influences calculation of 
the FDR, the enrichment pattern of rare variants was very similar under the adjusted confidence 
intervals (comparing Figure S14, B and C).  

 Alternatively, we also directly estimated analytic standard errors (confidence intervals) of 
𝛽 without using permutation. Assuming residuals are normally distributed, from linear model 

theory the standard error of 𝛽 is estimated (MLE) by  !
!!!!

!!!

!!!!
, where 𝜀! is the residuals in 

linear regression 𝑇!~𝜇 + 𝛽!𝑝 + 𝛽!𝑚 + 𝜀!, 𝑥 is either 𝑝 or 𝑚. We compared the difference of 
standard errors of 𝛽 between the family and the population subsamples (Figure S17B). The 
estimated global difference of the standard error of 𝛽 follows 𝑆!family = 0.55 ∗ 𝑆!population. The 
scaling factor is very similar to that inferred by permutation. 

 Here, both standard error tuning methods make the assumption that the noise in the 
family for each gene is approximately a constant scaling factor less than the noise in the 
population. The tuning factor is obtained by matching ranks (U statistic of Wilcoxon rank-sum 
test) of two distributions of standard errors of 𝛽, until the test is not significant.  
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Figure S18. Adjustment of effect size empirical p-values: distribution of p-values of 
family versus population effect sizes.  

Empirical p-values generated by subsampling: (A) before noise adjustment and (B) after noise 
adjustment. For each gene, we compute how often (1 – empirical p-values) the family effect size 
are larger than the effect sizes of the population subsamples. Distribution of effect sizes in the 
population is generated by subsampling 100 times from the population. After adjustment of their 
different noise levels, empirical p-values are more evenly distributed. (C) Welch’s t-test p-
values. Welch’s t-test is performed by directly using a t-test between two regression slopes (two 
𝛽’s), with standard errors estimated analytically.  

 We computed the straightforward analytical p-values (Welch’s t-test) without using any 
subsampling (single-SNP regression over whole replication panel), which provide a bottom-line 
theoretical control of the empirical p-values. The adjusted empirical p-values lie much closer to 
theoretical p-values than the raw empirical p-values. Here, we can simply use a pure analytic 
test to compare regression slopes 𝛽family and 𝛽population without either subsampling or 

permutation by applying Welch’s t test: 
!!"#$%&!!population

!!!"#$%&

!
! !!!"!#$%&'"(

!. Under normality assumption of 

regression residuals, this test statistic follows t distribution, the standard errors are analytic 

estimations from regression residuals:  𝑆!!"#$%& =
!
!!!!

!!!

!!!!
, 𝑆!!"!#$%&'"( =

!
!!!!

!!!

!"!!!"#!!
, 

degree of freedom is 
!!!"#$%&

!
! !!!"!#$%&'"(

! !

!!!"#$%&

!
!!!! ! !!!"!#$%&'"(

!
!"!!!"#!!

, 373-180 = 193 is the size of 

replication panel where effect size of the best associated SNP is re-measured.  

 FDRadjusted of those large effect genes at a given empirical p-value (1 – CIadjusted) cutoff is 
calculated as (total number of genes * p-value cutoff) / number of discoveries. At p-value < 0.01 
(CIadjusted > 0.99), there are 558 larger effect β in the family compared to the population, 
FDRadjusted =  7341 * 0.01 * 2 / 558 ~ 0.26 (* 2 because we combined paternal and maternal 
discoveries). It is important to note that while our reported FDR is conservative, the adjusted 
FDR may be permissive if the differences in the variance reflect meaningful biological 
differences. By Welch’s t-test, there are 320 larger effect β (p-value < 0.01) in the family 
compared to the population, FDR =  7341 * 0.01 * 2 / 320 ~ 0.46. We conclude that there is 



definitely a significant excess of large effect cis-eQTLs in the family than in the population, 
however as there is not yet a very robust estimation of this proportion, we choose to state the 
conservative FDR in the main text.  

 It is also important to note that this “FDR” measures whether there is overall excess of 
large effect genes in the family. The ranking of empirical p-values which reflects the positioning 
of effect sizes in a population spectrum is still biologically meaningful regardless of this excess. 
The downstream analysis based on rankings of effect sizes does not rely on this estimation of 
FDR. 
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Figure S19. Adjustment of effect size empirical p-values: comparisons of empirical p-
value and Welch’s t-test.  

Unadjusted empirical p-values (A) are significantly conservative than Welch’s t-test, while 
adjusted p-values (B) are more optimistic than Welch’s t-test. Here we only show empirical p-
values and Welch’s p-values measuring the difference of the paternal side 𝛽! in the family and 
single-regressor 𝛽population of the population, the maternal side is similar.  

 As effect size (β) can be directly compared using analytical tests, to gain a theoretical 
control of the correctness of the subsampling scheme, we performed the conventional analytical 
test (Welch’s t) to compare effect sizes. Here, population β is just a one-regressor (the best 
SNP) straightforward measurement of effect sizes over the whole replication panel without 
subsampling or implicit phasing. The analytical test can be used to gauge the overall soundness 
of empirical p-values. Comparing Welch’s t-test with subsampling + permutation (empirical p-
value) based test, these three p-values are mostly concordant with each other, however the 
empirical p-values are more conservative than Welch’s t test before adjustment but more 
optimistic than Welch’s t test after adjustment (Figure S19).  
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Figure S20. Correlation of eQTL effect size β and ASE effect size (allelic imbalance).  

(A) Paternal β and allelic imbalance in father. (B) Maternal β and allelic imbalance in mother. 
ASE effect sizes in the parents and cis-eQTL effect sizes among the children should have a 
simple linear relationship. We computed correlation between ASE (quantified by allelic 
imbalance) in the parents and eQTL effect sizes (quantified by linear regression β) among the 
children. Indeed, we observed a linear relationship between ASE effect sizes in the parents and 
eQTL effect sizes among the children. In other words, the difference between two homologous 
alleles in a parent will exhibit as between-individual differences among the children, as expected 
by Mendelian segregation.  For example, expression level difference between two homologous 
alleles (ASE) of the parent NA12878 (a1,a2): a1 – a2 is proportional to expression level 
differences between her offspring (a1,*) – (a2, *) depending on which haplotype they inherit.  
We observed that when a haplotype is highly expressed in a parent as indicated by ASE, 
children inheriting that haplotype also have higher expression levels. ASE effect size at a 
heterozygous site is represented by  (paternal reads – maternal reads)/(paternal reads + 
maternal reads), i.e., 2 * (paternal allelic imbalance – 0.5). cis-eQTL effect size is defined as the 
difference of gene expression levels between children inheriting different haplotypes (which is 
simply 𝛽 of linear regression: 𝑇!~𝜇 + 𝛽!𝑝 + 𝛽!𝑚).  We can observe that 𝛽 is linearly determined 
by allelic imbalances.  
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Figure S21. Enrichment of ASE effects at large-effect genes.  

To further confirm that identified large-effect genes are potentially due to rare and heterozygous 
variants instead of technical artefacts, we assessed enrichment of ASE effects for large-effect 
eQTLs. ASE effects are evaluated in both parents of the family.  In theory, large-effect eQTLs 
among siblings should also exhibit as ASE effects among at least one of the parents. For both β 
and fit, we observed increasing incidence of ASE effects at larger effect eQTLs.  (A) Enrichment 
of ASE at large-effect (measured by β) genes. ASE effects (measured upon two parents) are 
defined by those passing binomial test p-value < 0.01 and allelic imbalance > 0.05. (B) 
Enrichment of ASE at large-effect (measured by R2) genes.  We ranked effect sizes of genes in 
the family based on the how often (x-axis, 1 – empirical p-values) their measured effect in the 
family was greater than in the population subsamples. Enrichment is defined as the proportion 
of genes exhibiting ASE in each effect size bin divided by the proportion of genes exhibiting 
ASE across all effect size bins. We only consider genes testable for ASE, i.e., with 
heterozygous sites in RNA covered regions.  
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Figure S22. Rare regulatory variants contributing to large-effect eQTLs: enrichment of 
rare variants near the TSS of large-effect (β) cis-eQTL genes, comparing annotated and 
all rare variants.  

We examined enrichment of rare variants near the transcription start site (TSS) of eQTL genes. 
Allele frequencies are based on the Phase 1 release of the 1000 Genomes Project European 
populations. We narrowed variants by multiple functional annotations such as conservation 
score (PhyloP) and regulatory features from annotations in RegulomeDB4 indicating Encode5 TF 
binding and DNaseI hypersensitivity peaks.  

 We observed an increasing enrichment of rare variants at larger effect size genes. 
Likewise, given a rare variant in an annotated regulatory region, we also see a significantly 
increased proportion of large effect genes. The enrichment is stronger in the immediately 
proximity of the TSS but also spreads across the 100kb regions. The enrichment is also much 
stronger among annotated regulatory sites than all other sites. Enrichment is defined as 
proportions of genes with such an annotated rare variant in each effect size bin divided by 
proportions of genes with such an annotated rare variant across all effect size bins.  

 (A) 319 genes CI > 0.95. (B) 558 genes CIadjusted > 0.99. The plot shows enrichment for 
all rare variants (MAF < 0.01, 100kb near TSS) and annotated rare variants (MAF < 0.01, 100kb 
near TSS, within Encode TF binding and DNaseI hypersensitivity peaks and with PhyloP 
score > 1). We observed increased enrichment of rare variants near the TSS of larger family 
effect size genes. Enrichment is stronger for annotated rare variants.  
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Figure S23. Rare regulatory variants contributing to large-effect eQTLs.  

(A) Enrichment of rare variants at large-effect genes. Effect sizes are measured by fit (R2) and 
binned by comparing to population effect sizes.  We ranked genes according to their effect sizes 
in the family as percentile (x-axis, 1 – empirical p-values) in the population. Rare variants are 
defined as those of MAF < 0.01, Encode TF + DNase peak, PhyloP > 1 and within 100kb near 
TSS. (B) Utility of rare variants in predicting a larger effect in family than population. Enrichment 
is defined as proportions of genes with such an annotated rare variant in each effect size bin 
divided by proportions of genes with such an annotated rare variant across all effect size bins. 
(R2). Rare variants are restricted to those in Encode TF + DNase peaks and different PhyloP 
score cutoffs. We estimate the proportion of family effects larger than population effects using 
𝜋! statistics. 𝜋! is estimated from empirical p-values of whether a family effect size is larger than 
population by counting the number of times a family effect size is greater than subsampled 
population. 
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Figure S24. Enrichment of rare regulatory at large effect genes.  

One might ask whether enrichment of rare variants is a general property of large-effect eQTL 
genes regardless of whether they are family specific or not (due to potentially larger number of 
regulatory elements near those genes). To explore such possibilities, we evaluated enrichment 
of rare regulatory variants at three categories of genes: genes whose effect sizes are larger in 
the family than in the population, genes whose effect sizes are large in the family regardless of 
whether they are larger than the population and genes whose effect sizes are large in the 
population. Here we consider three types of genes: genes with larger effect in the family than 
the population (red), genes with large-effect in the family regardless of effect sizes in the 
population (green) and genes with large effects in the population (blue). We consider the top 5% 
of the genes in each category. We only observe enrichment in the former two categories. This 
indicates that enrichment of rare variants is only at those family-specific large effect genes, it is 
not due to general enrichment of regulatory elements near large-effect genes. 
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Figure S25. Identification of large ASE effect.  

Genes are chosen where largest ASE effect sibling is > 95% quantile of population ASE effects. 
We checked ASE effects at a second largest effect sibling and IBD siblings to further confirm 
those large effects. (A) Here we show distribution of effect sizes (percentile as compared to 
population, 1 – empirical p-values) of second largest ASE effect sibling at outlier genes. (B) ASE 
effect size (allelic imbalance) between largest effect sibling and its double-IBD (identical-by-
descent) sibling. (C) Enrichment of rare regulatory variants near TSS at those genes where both 
the first and second largest effect sibs are significantly larger than population. At each TSS 
cutoff, enrichment is defined as the proportion of large ASE effect genes with an annotated rare 
variant divided by proportions of genes with an annotated rare variant for all genes which are 
testable for ASE. 

 As ASE effects are evaluated at individual heterozygous sites, we wanted to exclude the 
possibility that large-effect ASE is due to technical artifacts such as mapping biases or 
sequencing errors. To achieve this, we looked at ASE for the second largest effect sibling. Our 
rationale being that the second sibling would be less likely to be a coincidental artifact than the 
first. We observe that the ASE effect at the second largest sibling is also significantly enriched 
for larger effect sizes (Figure S25A). Furthermore, we also looked at an identical-by-descent 
sibling of the maximum effect sibling. We observe that large effects are repeated at the IBD 
sibling (Figure S25B). When looking at genes with both first and second largest ASE effects 
greater than population, we observed strong enrichment of rare variants at those genes (Figure 
S25C). 

 ASE discovery. The following are additional notes on discovering large ASE effects and 
its FDR. We applied a similar method to identify large-effect ASE in the family. We use allelic 
ratio as a measure for ASE. Large-effect ASE genes are detected by comparing maximum 
allelic imbalance among 11 siblings and ASE in subsampled population data. We subsampled 
11 individuals from the population (373 European individuals from Geuvadis data) and take the 
maximum allelic imbalance. We calculated empirical p-values of family effect sizes according to 
the effect size distribution of the population subsamples. To account for the differences in read 
depths between the family and population data, we further down-sampled the population data 
by a ratio of 1.97.  



 We discover 223 large effect genes at CI > 0.95 (with empirical p-value < 0.05), which 
yields an FDR = 1777 * 0.05 / 223 = 40%. We do not expect to see more large ASE genes in 
the family than in a population subsample. Unlike eQTLs, there is equivalent statistical power in 
the family and a population subsample to detect ASE effects either arising from rare or common 
variants. The excessive number of large effect genes mainly reflects read depth differences 
(lower read depth leads to larger allelic imbalance) between two datasets we have not yet 
corrected out. We are trying to correct out this factor by using a uniform down-sampling factor of 
1.97 which reflects the global read depth difference between two datasets. However as there 
are substantial variability of read depth between individuals and sites, this global correction 
cannot remove all the technical differences.   

 It is very important to mention that by theory FDR for ASE should be inherently 1. 
However this “FDR” is a measurement of the excess of large ASE in the family compared to the 
population (which should be zero), it does not mean that large effect sizes are out of random 
chance. Empirical p-values here are not just random noises; they have biological meanings 
individually, reflecting the positioning of ASE effect sizes of one individual among the natural 
spectrum of all individuals. Therefore, the ranking of those genes by their empirical p-values are 
still biologically meaningful regardless of whether there is overall excess of larger effect sizes. 
As our purpose is not to estimate whether there is excess or not but to obtain an ordering of 
genes by their relative ASE effect sizes, it is therefore critical to emphasize the meaning of this 
FDR here.  
 

 

  

  



0

0.2

0.4

0.6

0.8

1

IFI44L

1+3 2+3 1+4 2+4

	  

	  

N
A1

28
82

N
A1

28
84

N
A1

28
80

N
A1

28
83

N
A1

28
86

N
A1

28
93

N
A1

28
87

N
A1

28
79

N
A1

28
81

N
A1

28
85

N
A1

28
88

chr	  1:	  79086256	  -‐	  79094636

chr	  1:	  79086256	  -‐	  79093591

3 	  	  	  4

NA12877 NA12878

Pr
op

or
tio

ns
	  o
f	  j
un

ct
io
ns

1 	  	  	  2

 

Figure S26. Mendelian segregation of alternative splicing patterns. 

Alternative splicing patterns determined by haplotype groups. 1,2,3,4 are paternal grandfather, 
grandmother and maternal grandfather and grandmother haplotypes. We observed that 
transcript ratios can exhibit as Mendelian segregation in the family. We use JunctionsTK 
(junction toolkit, a tool developed by our group) to quantify such segregation patterns using 
splicing reads. JunctionsTK uses reads spanning splice junctions from junctions.bed files 
produced by TopHat. It calculates proportions of junction reads from one donor exon to different 
acceptors (or different donors to a same acceptor). Compared to transcript abundance reported 
by Cufflinks, splice junction reads, as they are specific to each alternative transcript, more 
directly inform alternative splicing differences between individuals. The figure shows 
segregation of splicing junction usage of these genes by different ancestral haplotypes. We 
show differentially expressed transcripts among four groups of siblings (depending on which two 
grandparental alleles are inherited), each group is divided by vertical bars. Here, the y-axis 
shows proportional usage of each junction site, from the same donor exon to different acceptor 
exons (or different donors to a same acceptor). We can observe usage of splicing junctions is 
highly consistent within same ancestral haplotypes, while distinct between different ancestral 
haplotypes. 
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Figure S27. Examples of alternative splicing patterns determined by haplotype groups.  

1, 2, 3 and 4 are paternal grandfather, grandmother and maternal grandfather and grandmother 
haplotypes, respectively.  Explanations of segregation patterns are provided in Figure S26. 
Additional information about those genes is provided in Table S8. 
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Figure S28. ASE heritability analysis. 

Method of measuring heritability in family. IBD means Identical-by-descent, descending from the 
same ancestral haplotype. Sib1 and Sib2 are double-IBD siblings as they share both 
haplotypes. Sib1 and Sib3 are half-IBD as they share only one haplotype. Sib1 and Sib4 are 
non-IBD as they share neither of their haplotypes. We use each child as a reference and 
calculated the correlation of allelic ratios with their double-IBD, half-IBD and non-IBD siblings. 
We repeat this for each of 11 children. 
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Figure S29. Allelic ratio correlation with siblings, using NA12879 as reference.  

The figure shows measured correlation for each experiment. (A) Double-IBD, (B) half-IBD and 
(C) non-IBD are defined as sharing both, only one or neither haplotypes. To reduce random 
sampling noise, the result is based on sites of depths greater than 100. 

 

 

  



 

Figure S30. Allelic ratio correlation between different types of siblings.  

From left to right, measured correlation between double-IBD, half-IBD and non-IBD siblings 
using each sibling as reference. Median correlation coefficients for double-IBD, half-IBD and 
non-IBD siblings are 0.58, 0.48, and 0.42 respectively. 

  



Supplemental Tables 

 

  Total segregating SNPs MAF in 1000 Genomes European 

    ≤ 0.05 ≤ 0.01 

CEU family 2,936,403 345,232 11.76% 91,882 3.13% 

Table S1. Number of variants segregating in the family.   

Segregating variants among children are those variants that are heterozygous in at least one of 
the parents and both alleles are transmitted to the children. We define rare variants as variants 
with minor allele frequency below 0.01 (or otherwise specified in the paper) in the Phase 1 
release of the 1000 Genomes Project European populations. As calling of rare variants is 
especially susceptible to genotyping errors, we use stringent Mendelian constraints to reduce 
these errors. We require all called variants to be completely consistent along the IBD 
inheritance across the whole family. 
  



 

 NA12877 NA12885 NA12886 NA12891 NA12892 
Sites genotyped in  
both LFR and 
original 
sequencing 

1835141 1711513 1754935 1716804 1763045 

Concordant sites 
% concordant 

1834123 
0.999445 

1710681 
0.999514 

1753403 
0.999127 

1716076 
0.999576 

1762294 
0.999574 

Table S2. Genotypes confirmed with Complete Genomics Long Fragment Read1 (LFR). 

Comparison of genotypes between original Complete Genomics sequencing and LFR 
technology. We have five individuals in the family that were sequenced again using LFR 
technology which can generate molecular haplotypes. LFR can place 92% of heterozygous SNP 
into long ~500kb contigs. It has very high genotyping accuracy, with an error rate of 1 in 10Mb. 
Genotypes used in this study were found to be more than 99.9% concordant between original 
sequencing data and LFR data. Further, we confirmed called genotypes with both new 
sequencing data from both Complete Genomics Long Fragment Read1 technology and from 
Illumina Platinum Genomes (Table S4). 
  



 

 NA12877 NA12885 NA12886 
Total 
phased het 
sites 

PEDIBD 1913154 1903914 1922039 

LFR 1876780 1747734 1795687 

 

Overlap 1834122 1710681 1753402 
Phase 
concordant 
% concordant 

1831234 
0.998425 

1709182 
0.999124 

1752028 
0.999216 

Table S3. Phasing confirmed with molecular haplotype by LFR.  

Comparison of inferred haplotypes by Ped-IBD and molecular haplotypes generated by LFR 
technology. Phasing results are confirmed to be 99.9% concordant with molecular haplotypes 
generated by LFR technology. 

  



 

  

Variant sites 
genotyped by 
Complete 
Genomics 

Variant sites 
genotyped by 
Illumina 

Genotyped by 
both 

Concordance 

NA12889 3232336 2862355 2703495 0.9983 

NA12890 3237426 2798769 2672122 0.9981 

NA12891 3216575 2816832 2678531 0.9982 

NA12892 3231991 2869083 2711768 0.9983 

NA12877 3228441 2828846 2681250 0.9976 

NA12878 3220524 2802242 2667261 0.9979 

NA12879 3220425 2796242 2662748 0.9977 

NA12880 3231151 2806653 2670442 0.9980 

NA12881 3236471 2802998 2670859 0.9979 

NA12882 3270994 2825547 2684441 0.9881 

NA12883 3234742 2796940 2667074 0.9982 

NA12884 3226121 2785306 2653732 0.9966 

NA12885 3233256 2781640 2657075 0.9982 

NA12886 3202270 2847260 2668380 0.9961 

NA12887 3209866 2825088 2672224 0.9972 

NA12888 3234370 2816855 2675737 0.9977 

NA12889 3245741 2825098 2686108 0.9976 

Table S4. Genotypes confirmed with Illumina Platinum Genomes.  

Comparison of genotypes between Illumina Platinum Genomes and Complete Genomics 
sequencing data. The same CEU family samples were also sequenced by Illumina as part of 
Illumina Platinum Genomes.  All 17 members were sequenced to 50x depth on a HiSeq 2000 
system. We compared genotypes called by Complete Genomics and Illumina (passing genotype 
filter and quality score = 99). On average, Complete Genomics data cover more sites than 
Illumina and include the majority (> 95%) of Illumina sites. Genotype concordance between the 
two platforms at overlapping sites ranged from 0.9966 to 0.9983 across individuals.  



  Tested genes Number of eQTL genes 

eQTL genes 8,974 genes 

π1=0.078 ~698 

FDR < 
50% 

274 

sQTL genes 7,954 genes 

π1=0.079 ~624 

FDR < 
50% 

261 

Table S5. Linkage analysis of cis-eQTL: summary of eQTL and sQTL genes identified in 
the family.  

Total number of eQTL genes π1
3 and numbers of genes below FDR 0.5. Numbers of haplotypes 

blocks holding these eQTL or sQTL genes are also listed.  

 Gene expression quantification. We used the Tophat/Cufflinks to quantify expression 
levels of whole genes and each transcript from RNA-Seq data (Figure S2). We performed eQTL 
discovery using linear regression of gene expression levels with local haplotype blocks. We 
identified cis expression QTLs (cis-eQTLs) by restricting association to the haplotype block that 
contains the tested gene. We only considered protein-coding genes, and to minimize possible 
technical artifacts in quantification we also exclude all pseudogenes, all immunoglobulin and 
HLA genes where there is an increased potential for mapping biases and sequencing errors. 
We required an average FPKM greater than 2 and at least 3 individuals with FPKM greater than 
1 for a gene to be tested. Setting this threshold, we tested 8,974 genes for eQTLs. For cis-
splicing QTLs (sQTLs), we additionally require each gene to have two or more quantified 
alternative transcripts (N=7,954 genes).   

 eQTL and sQTL discoveries. To detect eQTLs in the family, we used a two-variable 
(paternal and maternal haplotypes) linear regression to test for gene expression ~ haplotype 
association.  For each haplotype block, the two parental haplotypes of each child are encoded 
using two variables, p and m.  The maternal haplotype mi of a child i, for example, is either 0 or 
1, depending on which of the two possible maternal alleles is present. Then, an expression trait 
is regressed as the summation of effects of two parental haplotypes, 𝑇!~𝜇 + 𝛽!𝑝! + 𝛽!𝑚!, where 
𝑇! is the trait of individual 𝑖, the effects of two parental alleles 𝑘 and 𝑗 are expressed by 𝛽!  and 
𝛽! and 𝜇 is the intercept. For sQTL, we selected the most significant p-value among all 
transcripts for each gene. P-values are further adjusted using permutation as described below.  

 Empirical p-values were generated using permutation by swapping phenotypes across 
individuals. We performed 10000 permutations at each gene and computed p-values by 
counting how many times permuted p-values fell below the nominal p-value.  

 To quantify effects for common variants, we used linear regression to test common 
variants among 373 unrelated European individuals from Geuvadis study6. To ensure 



discoveries in the population were relevant to the family, we only test variants which were also 
polymorphic in the family. 
  



 

Sample size 50 100 150 200 250 

50 312 257 243 247 252 

100 257 321 243 245 254 

150 243 243 308 241 245 

200 247 245 241 315 249 

250 252 254 245 249 366 

Table S6. Effect of different discovery panel sizes: number of large effect β genes given 
different discovery panel sizes.   

On the diagonal are numbers of genes with family effect sizes > 95% CI population effect sizes.  
Off diagonal cells show their intersections. 

  



MAF 
Distance 
to TSS 

TF 
binding 
+ 
DNase 
peak 

PhyloP 
score Motif # of genes 

% eQTL 
in family 

% eQTL in 
population 

        < 0.01 100 kb - - - 7912 0.0858 0.1662 

< 0.01 100 kb Yes - - 3123 0.0990 0.1775 

< 0.01 100 kb Yes > 1 - 367 0.4577 0.1759 

< 0.01 100 kb Yes > 1 Yes 135 0.5627 0.2049 

        < 0.01 5 kb - - - 1525 0.1099 0.1807 

< 0.01 5 kb Yes - - 386 0.1815 0.1743 

< 0.01 5 kb Yes > 1 - 41 0.5151 0.1622 

< 0.01 5 kb Yes > 1 Yes 17 0.8999 0.2000 

        < 0.01 100 kb - - - 7912 0.0869 0.1284 

< 0.01 100 kb Yes - - 3123 0.0968 0.1371 

< 0.01 100 kb Yes > 3 - 88 0.8303 0.1688 

< 0.01 100 kb Yes > 3 Yes 30 0.9528 0.2400 

        > 0.01 100 kb - - - 8312 0.0785 0.1647 

> 0.01 100 kb Yes - - 8186 0.0757 0.1652 

> 0.01 100 kb Yes > 1 - 6110 0.0820 0.1676 

> 0.01 100 kb Yes > 1 Yes 2456 0.0965 0.1688 

        > 0.01 5 kb - - - 7525 0.0801 0.1684 

> 0.01 5 kb Yes - - 6092 0.0941 0.1755 

> 0.01 5 kb Yes > 1 - 1359 0.1676 0.1833 



> 0.01 5 kb Yes > 1 Yes 413 0.1616 0.1777 

        > 0.01 100 kb - - - 8312 0.0781 0.1647 

> 0.01 100 kb Yes - - 8186 0.0762 0.1652 

> 0.01 100 kb Yes > 3 - 1542 0.1012 0.1717 

> 0.01 100 kb Yes > 3 Yes 457 0.1504 0.1762 

Table S7. Prediction of eQTLs at rare variants given annotation: proportion of genes 
being an eQTL given a regulatory variant near TSS.   

We assessed the utility of different variant annotations in predicting eQTLs. We incrementally 
add annotations for minor allele frequency, distance to TSS, transcription factor binding, DNase 
sites, conservation score and transcription factor motif.   

 We selected those annotations which are previously found to be informative in predicting 
eQTLs: distance to TSS, transcription factor binding, DNaseI sites, conservation and 
transcription factor motifs. Encode transcription factor binding and DNaseI hypersensitivity 
peaks were obtained from RegulomeDB database4. Conservation scores using PhyloP7 
(phyloP100way) software were downloaded from the UCSC genome browser 
(genome.ucsc.edu). Motif disrupting sites were downloaded from HaploReg database (v2)8. 

  



Gene name transcript ratio p-value 
splice junction p-
value function 

NDUFS5 0.0030 2.51E-09 neurological disorders 

IFI44L 0.0020 1.33E-08 response to viral infection 

IFI16 0.0010 1.91E-06 response to viral infection 

FCRLA 0.0001 9.30E-05 B-cell development 

Table S8. Examples of sQTL genes.  

These genes are identified as sQTL genes by both transcript ratios and splice junction read 
ratios. Transcript ratio p-values are based on quantification of transcript abundances by 
Cufflinks, splice junction p-values are based on quantification of splice junction reads by 
JunctionTK. Two methods are in general concordant with each other. Segregating patterns of 
those genes are illustrated in Figure S26 and Figure S27.  



GENE GWA SNP ID* chr bps 

Distance of 
nearest rare 
regulatory 
variant to 
TSS (bps) 

Trait 

B4GALT1  rs10813960-T 9 33180362  - Urate levels 

 BAK1  rs210134-A 6 33540209  - Platelet counts 

PHTF2  rs12234571-C 7 77549906  - Obesity-related traits 

 BAK1 rs9469457-A 6 33489882  - Obesity-related traits 

TCFL5  rs17854409-G 20 61491494  - Obesity-related traits 

 TRAF3IP2 rs3851228-T 6 111848191 123850 Inflammatory bowel disease 

PHTF2  rs848452-? 7 77596812  - Dental caries 

EPB41L5  rs13401620-A 2 120513133  - Breast size 

 BAK1  rs210142-C 6 33546837  - Chronic lymphocytic leukemia 

 INSIG1  rs10263087-C 7 154970469 49137 
Formal thought disorder in 
schizophrenia 

 BAK1  rs210134-G 6 33540209  - Mean platelet volume 

 BAK1  rs210134-G 6 33540209  - Platelet counts 

 ENTPD6 rs1044573-A 20 25206654 128236 Allergic rhinitis 

 ABHD12 rs7267979-G 20 25298087  - 
Liver enzyme levels (alkaline 
phosphatase) 

PLCL2 rs9821630-G 3 16970938  - Multiple sclerosis 

ZKSCAN5  rs11761528-T 7 99118801  - 
Dehydroepiandrosterone 
sulphate levels 

PLCL2 rs1372072-A 3 16955259  - Primary biliary cirrhosis 

 TRAF3IP2  rs33980500-T 6 111913262 123850 Psoriasis 

 TRAF3IP2  rs33980500-T 6 111913262 123850 Psoriatic arthritis 

 TRAF3IP2  rs240993-A 6 111673714 123850 Psoriasis 

PRMT7 rs7197653-C 16 68383047  - Magnesium levels 

DHCR7  rs12785878-? 11 71167449 158269 Vitamin D insufficiency 



NADSYN1  rs12785878-? 11 71167449 158510 Vitamin D insufficiency 

 CST3  rs911119-? 20 23612737 6080 Chronic kidney disease 

PHTF2 rs6465825-C 7 77416439  - Chronic kidney disease 

ALDH7A1  rs13182402-G 5 125918148  - Osteoporosis 

 BAK1  rs210138-G 6 33542538  - Testicular germ cell tumor 

 IL16 rs7172689-? 15 81533695  - Inattentive symptoms 

*Identified as an eQTL in6, but not polymorphic in family 

Table S9. Family-specific cis-eQTL modifying complex trait genes.  

We assessed the number of GWA loci which were influenced by large-effect family eQTLs. 
Here, we identified family-specific eQTL for genes in the NHGRI GWA catalog17.  We tested all 
those GWA SNPs in Geuvadis data and select those which are eQTLs (π1

3~ 0.3, 315 genes at 
an FDR < 0.05). We then sub-selected those where the associated GWA SNP was not 
polymorphic in the family, so the GWA SNP is not causing the eQTL in the family, and another 
regulatory variant for the same gene is likely to be present.  This highlights the potential for rare 
regulatory variants manifesting as family-specific eQTLs to be modifying important complex 
disease associated genes. The table lists examples of large-effect (CI > 0.80) family eQTL that 
influence GWA genes. The GWA SNP for the trait is determined to be an eQTL SNP (FDR 0.05) 
but not polymorphic in the family. Rare regulatory variants are defined as those within Encode 
TF binding + DNase peaks, MAF < 0.01 and PhyloP > 0, within 200kb near TSS.   



GENE GWA SNP 
ID 

chr bps Distance of 
nearest rare 
regulatory variant 
to TSS (bps) 

Trait 

IRF5 rs12531711-G 7 128617466 50878 Primary biliary cirrhosis 
IRF5 rs10488631-C 7 128594183 50878 Primary biliary cirrhosis 
IRF5 rs10488631-C 7 128594183 50878 Rheumatoid arthritis 
IRF5 rs729302-A 7 128568960 50878 Systemic lupus erythematosus 
IRF5 rs12531711-G 7 128617466 50878 Systemic lupus erythematosus 
IRF5 rs10488631-C 7 128594183 50878 Systemic lupus erythematosus 
IRF5 rs4728142-A 7 128573967 50878 Systemic lupus erythematosus 
IRF5 rs12537284-A 7 128717906 50878 Systemic lupus erythematosus 
IRF5 rs10488631-C 7 128594183 50878 Systemic lupus erythematosus 
IRF5 rs10488631-C 7 128594183 50878 Systemic sclerosis 
IRF5 rs4728142-A 7 128573967 50878 Ulcerative colitis 
IRF5 rs4728142-A 7 128573967 50878 Ulcerative colitis 
NAPRT1 rs2290416-? 8 144657600 46423 Attention deficit hyperactivity 

disorder 
NT5E rs494562-G 6 86117129 40975 Metabolic traits 
TCF7 rs756699-A 5 133446575 63462 Multiple sclerosis 

Table S10. Examples of rare regulatory variants influencing GWA genes.  

The GWA SNP for the trait is determined to be an eQTL SNP (FDR 0.05). Rare regulatory 
variants are defined as those within Encode TF binding + DNase peaks, MAF < 0.01 and 
PhyloP > 3, within 200kb near TSS.  
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