

**Supplementary Figure 1 | Palmitic acid-induced accumulation of ubiquitin and p62 is dose- and time-dependent.** (**a**,**b**) HepG2 cells were treated with indicated concentrations of palmitic acid (PA) for 24 hr (**a**) and 48 hr (**b**) and analyzed by immunoblotting. Molecular weight markers are indicated in kDa.



Supplementary Figure 2 | Saturated fatty acids, but not unsaturated fatty acids, induce accumulation of p62 and LC3. (a-f) HepG2 cells were treated with BSA, PA, stearic acid (SA), oleic acid (OA) and/or docosahexaenoic acid (DHA) (500  $\mu$ M) for indicated hr (a-d) or 9 hr (e,f) and analyzed by immunoblotting. (g,h) Cells were treated with BSA (Con), rapamycin (Rap, 100 nM) or PA (500  $\mu$ M) for 9 hr. Bafilomycin (Baf, 100 nM) was treated for last 3 hr as indicated. Cell lysates were analyzed by immunoblotting (g) and quantified through densitometry (h, n = 3). All data are shown as mean  $\pm$  s.e.m. \*\*\**P* < 0.001 (Student's t test). Molecular weight markers are indicated in kDa.



Supplementary Figure 3 | The effect of palmitic acid on HepG2 cell apoptosis. (a,b) HepG2 cells were treated with 500  $\mu$ M palmitic acid (PA) for indicated hr and analyzed by TUNEL (red) and DAPI (blue) staining (a). TUNEL-positive cells were quantified (b, n = 3). Scale bar, 20  $\mu$ m. All data are shown as mean  $\pm$  s.e.m. \*\*\*P < 0.001 (Student's t test).



Supplementary Figure 4 | Palmitic acid-induced protein inclusion associates with keratin and tubulin fibers but not with ER. (a-c) HepG2 cells were treated with BSA (Con) or 500  $\mu$ M palmitic acid (PA) for 9 hr and stained with p62, pan-keratin (panKRT), tubulin (Tub) and calnexin (CNX, an ER and outer nuclear envelop membrane marker) antibodies and DAPI (blue). Boxed areas are magnified in right-most panels. Scale bars, 5  $\mu$ m.



Supplementary Figure 5 | Ceramides, oxidative stress, ER stress and JNK signaling do not mediate palmitic acid-induced p62 accumulation. (a-d) Effects of ceramide synthesis inhibitors, L-cycloserine (100  $\mu$ M) and fumonisin B1 (10  $\mu$ M) (a), antioxidants, butylated hydroxyanisole (BHA, 100  $\mu$ M) and N-acetylcysteine (NAC, 10 mM) (b), a chemical chaperone TUDCA (500  $\mu$ g/ml) (c) or a JNK inhibitor SP600125 (50  $\mu$ M) (d) on PA-induced accumulation of ubiquitinated proteins (a), p62 and LC3-II (a-d) were analyzed through immunoblotting. L-cycloserine, fumonisin B1, BHA, NAC, TUDCA and SP600125 were all treated 1 hr before 9 hr of PA treatment. (e-g) Effects of ER stress signaling inhibition on PA-induced accumulation of p62 and LC3-II were analyzed through immunoblotting. At 48 hr after infection with lentiviruses expressing GFP (Con) and dominant-negative IRE1 $\alpha$  (IRE1 $\alpha$ <sup>DN</sup>) (f) or shRNAs targeting luciferase (sh-Con), PERK (e) or ATF6 (g), cells were treated with BSA (-) or PA for 9 hr. XBP1-u, unspliced XBP1; XBP1-s, spliced XBP1; fATF6, full-length ATF6; cATF6, cleaved ATF6. Molecular weight markers are indicated in kDa.



Supplementary Figure 6 | Palmitic acid impairs autophagy through inhibition of **SERCA.** (a) HepG2 cells were treated with thapsigargin (Tg) for 9 hr and subjected to immunostaining with LAMP1 and LC3 antibodies (upper panel). Co-localization between LAMP1 and LC3 was quantified and compared to untreated (Con) cells (lower panel) (n = 4). (**b**-e) Cells were treated with DMSO (Con), Tg (1  $\mu$ M), tunicamycin (Tm, 5  $\mu$ g/ml), tert-butylhydroquinone (TBHQ, 50  $\mu$ M) or cyclopiazonic acid (CPA, 50  $\mu$ M) for 9 hr. Bafilomycin (Baf, 100 nM) was treated for last 3 hr as indicated. Cell lysates were analyzed by immunoblotting (**b**,**d**) and quantified through densitometry (**c**,**e**) (n = 3). (**f**,**g**) Cells were treated with Tg (1  $\mu$ M) or Tm (5  $\mu$ g/ml) for indicated hr and analyzed by immunoblotting. (h) Cells were transduced with adenoviruses expressing shRNA targeting luciferase (sh-Con) or SERCA2b (sh-SERCA2b). At 48 hr after transduction, cells were analyzed by immunoblotting. (i,j) Cells were transduced with control or SERCA2b-overexpresing adenoviruses. At 48 hr after transduction, cells were treated with BSA (-) or PA (500  $\mu$ M) for 9 hr and subjected to immunoblotting (i) or immunostaining (j). DNA was visualized by DAPI (blue). Boxed areas in fluorescence images are magnified in right-most panels. Scale bars, 5 µm. All data are shown as mean  $\pm$  s.e.m. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 (Student's t test). Molecular weight markers are indicated in kDa.



Supplementary Figure 7 | Palmitic acid does not affect lysosomal calcium and proton homeostasis. (a,b) HepG2 cells were either untreated (Con) or transduced with adenoviruses overexpressing SERCA2b. Endogenous and overexpressed SERCA2 proteins were visualized by immunostaining. Lysosomes were visualized by anti-LAMP1 immunostaining (a). Autophagosomes were visualized by anti-LC3 immunostaining (b). DNA was visualized by DAPI (blue). (c,d) Cells were transduced with lentiviruses expressing LAMP1-mRFP that labels lysosomes. (c) Two days after transduction, cells were treated with BSA (Con), PA (500 µM) or Tg (1 µM) for 9 hr and loaded with Oregon Green 488 BAPTA-1-dextran (OGBD), a calcium indicator that accumulates in lysosomes. OGBD's fluorescence intensity is proportional to calcium concentration in lysosome lumen<sup>1</sup>. (**d**) Two days after transduction, cells were treated with BSA, PA or bafilomycin (Baf, 100 nM) for 9 hr and loaded with LysoSensor Green (LSG), a pH indicator that labels lysosomes. LysoSensor's fluorescence intensity is proportional to proton concentration in lysosome lumen<sup>2</sup>. Bafilomycin is an inhibitor of lysosomal proton pump, therefore was used as a positive control. Boxed areas in fluorescence images are magnified in right-most panels. Scale bars, 5 µm.



Supplementary Figure 8 |  $\alpha 1_D/Ca_v 1.3$  is expressed in hepatocytes and plays a role in palmitic acid-induced p62 inclusion. (a,b) mRNA expressions of calcium channel isoforms were analyzed by qRT-PCR from livers of obese mice on HFD (a). Endpoint PCR products were analyzed by agarose gel running (b). (c) Expression of  $\alpha 1_C/Ca_v 1.2$  and  $\alpha 1_D$  proteins were examined from brain, heart, skeletal muscle (SKM) and liver lysates by immunoblotting. (d) mRNA expression of calcium channel isoforms were analyzed by qRT-PCR from HepG2 cells. (e,f) At 48 hr before PA treatment, HepG2 cells were infected with lentiviruses expressing shRNAs targeting luciferase (sh-Con) or  $\alpha 1_D$  and their insoluble fractions were subjected to immunoblotting with anti-p62, anti-ubiquitin and anti-actin antibodies (e).  $\alpha 1_D$  expression was examined from soluble fractions. Levels of p62 and ubiquitinated proteins were quantified (f) (n = 3). All data are shown as mean  $\pm$  s.e.m. \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001 (Student's t test). Molecular weight markers are indicated in kDa.



Supplementary Figure 9 | Activation of IP3 receptor, but not ryanodine receptor, resulted in modest accumulation of ubiquitinated proteins and p62. (a,b) HepG2 cells were treated with glucagon (100 nM), phenylephrine (100  $\mu$ M), vasopressin (1  $\mu$ M), suramin (400  $\mu$ M), chlorocresol (100  $\mu$ M) or PA (500  $\mu$ M) for 12 hr and analyzed by immunoblotting. Molecular weight markers are indicated in kDa.



Supplementary Figure 10 | Effects of verapamil on ER stress of mouse hepatocytes. 4 month-old C57BL/6 male mice kept on HFD for two months were subjected to daily administration of PBS (Con, n = 4) or verapamil (Ver, 25 mg/Kg body weight, i.p., n = 3) for 10 days. LFD-kept mice (n = 5) of same age were used as a negative control. (**a-c**) Levels of eIF2 $\alpha$  phosphorylation from livers were analyzed by immunoblotting (**a**) and quantified (**b**). Levels of BiP mRNA expression from livers were analyzed by qRT-PCR (**c**). All data are shown as mean  $\pm$  s.e.m. \*\*P < 0.01, \*\*\*P < 0.001 (Student's t test). Molecular weight markers are indicated in kDa.

| Fig. 1b                               | Fig. 2e                                            | Fig. 2f                                      | Fig. 3k                                                         | Fig. 4a                                                               | Fig. 5a                           |
|---------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|
| 250- Pi<br>150-<br>100-<br>75-<br>50- | 52 250 - p62<br>150 -<br>100 -<br>75 -             | 250 - <b>p62</b><br>150 -<br>100 -<br>75 -   | 250 - <b>p-CaMKII</b><br>150 -<br>100 -<br>75 -<br>50 -<br>37 - | 250 -<br>150 -<br>100 -<br>75 -                                       | 75-<br>50-<br>37-<br>25-<br>20-   |
| 37-<br>25-<br>250- <b>β-act</b>       | 50 -<br>37 -<br>25 -<br>in<br>250 - <b>β-actin</b> | 50 -<br>37 -<br>25 -<br>250 - <b>β-actin</b> | 25 -<br>CaMKII<br>250 -<br>150 -<br>100 -<br>75 -               | 50 -<br>37 -<br>250 -<br>150 -                                        | 15- <b></b>                       |
| 100-<br>75-<br>50-                    | 150 -<br>100 -<br>75 -                             | 150 -<br>100 -<br>75 -                       | 50 - <b>1000 (1000)</b><br>37 -<br>25 - <b>20 - 1000</b>        | 100 -<br>75 -<br>50 - <b>11 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - </b> | 75-<br>50-<br>37- <b></b> β-actin |
| 37-<br>25-                            | 50 -<br>37 -<br>25 -                               | 37 -<br>25 -                                 | 250 -<br>150 -<br>100 -<br>75 -<br>50 -<br>37 -                 | Fig. 4b                                                               | 25-<br>20-<br>15-                 |
|                                       |                                                    |                                              | 25 -                                                            | <b>p62</b>                                                            | 10-                               |

**Supplementary Figure 11** | **Uncropped images of blots presented in the main paper.** Red boxes indicate the cropped regions. Molecular weight markers are indicated in kDa.

## Supplementary Table 1 | Effect of calcium channel blockers on metabolic homeostasis of humans and animals.

| Compound      | Organism                                               | Metabolic effects                                                                                                                                     | Refs.                               |
|---------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Amlodipine    | Obese humans<br>Hypertensive humans<br>Obese humans    | Improved glucose tolerance<br>Increased insulin sensitivity<br>Reduced insulin resistance                                                             | 3<br>4<br>5, 6                      |
| Azelnidipine  | Hypertensive humans                                    | Improved glucose tolerance                                                                                                                            | 7                                   |
| Benidipine    | Hypertensive humans                                    | Improved insulin resistance                                                                                                                           | 8                                   |
| Cilnidipine   | Obese humans                                           | Reduced insulin resistance                                                                                                                            | 5                                   |
| Isradipine    | SHR rats                                               | Improved insulin sensitivity                                                                                                                          | 9                                   |
| Lercanidipine | CRDH rats                                              | Reduced blood glucose level                                                                                                                           | 10                                  |
| Manidipine    | T2DM humans<br>Obese humans                            | Increased insulin sensitivity<br>Reduced insulin resistance                                                                                           | 11<br>5                             |
| Nifedipine    | CHD patients with LGT<br>NASH mice on MCD              | Reduced blood glucose level<br>Reduced liver damage                                                                                                   | 12<br>13                            |
|               | Agouti-induced obese mice                              | Reduced fibrosis<br>Reduced obesity<br>Improved insulin sensitivity                                                                                   | 14                                  |
|               | SHHF obese rats<br>STZ-injected rats                   | Improved insulin response<br>Reduced hyperglycemia<br>Reduced hyperlipidemia                                                                          | 15<br>16                            |
| Nisoldipine   | STZ-injected SHR rats                                  | Reduced blood glucose level                                                                                                                           | 17                                  |
| Nitrendipine  | Obese humans                                           | Reduced insulin resistance<br>Reduced hyperinsulinemia<br>Improved glucose tolerance                                                                  | 18, 19                              |
|               | SHR rats                                               | Improved glucose tolerance                                                                                                                            | 20                                  |
| Verapamil     | T2DM humans<br>Obese humans<br>Obese <i>ob/ob</i> mice | Improved glucose tolerance<br>Reduced blood glucose level<br>Reduced blood glucose turnover<br>Reduced hyperinsulinemia<br>Improved glucose tolerance | 21, 22, 23,<br>24<br>25<br>26<br>27 |

a. Positive effects of calcium channel blockers on metabolism.

SHR, Spontaneously Hypertensive; CRDH, Cohen Rosenthal Diabetic Hypertensive; T2DM, Type 2 Diabetes Mellitus (also known as NIDDM); CHD, Coronary Heart Disease; LGT, Low Glucose Tolerance; NASH, Non-Alcoholic Steatohepatitis; MCD, Methionine-Choline-deficient Diet; SHHF, Spontaneously Hypertensive Heart Failure; STZ, streptozotocin;

| Compound         | Organism                | Metabolic effects                                                    | Refs.     |
|------------------|-------------------------|----------------------------------------------------------------------|-----------|
| CCB in general   | Hypertensive humans     | No effects on incidental diabetes                                    | 28        |
| Amlodipine       | Hypertensive humans     | No effects on blood lipid level                                      | 29        |
| Diltiazem        | Hypertensive humans     | No effects on insulin sensitivity                                    | 30        |
| Felodipine       | Hypertensive humans     | No effects on blood glucose level                                    | 31        |
|                  | T2DM humans             | No effects on blood lipid level<br>No effects on blood glucose level | 32        |
| Nicardipine      | T2DM humans             | No effects on glucose tolerance                                      | 33        |
| Ĩ                | Hypertensive humans     | No effects on blood lipid profile                                    | 34        |
| Nifedipine       | Obese <i>cp/cp</i> rats | No effects on blood glucose level                                    | 35        |
|                  |                         | Slight increase in insulin level                                     | 26        |
|                  | Dogs                    | No effects on blood glucose level                                    | 30        |
|                  |                         |                                                                      | 37        |
| Nitrendipine     | Hypertensive humans     | No effects on blood glucose level                                    | 51        |
|                  |                         |                                                                      | 38        |
| Verapamil        | Healthy humans          | No effect on glucose tolerance                                       | 50        |
|                  |                         | No effect on basal glucose level                                     | 39        |
|                  |                         | Induction of hyperglycemia                                           |           |
|                  | Healthy dogs            | Systemic insulin resistance*                                         | 40        |
|                  | Nondiabetic rats        | Induction of glucose intolerance                                     | 41        |
| CCB, Calcium C   | Channel Blocker; T2DM,  | Type II Diabetes Mellitus; *, treated w                              | ith toxic |
| concentration of | verapamil               |                                                                      |           |

## b. Neutral or negative effects of calcium channel blockers on metabolism.

| Gene                     | Forward                 | Reverse                 | Refs. |
|--------------------------|-------------------------|-------------------------|-------|
| Adiponectin              | TGTTCCTCTTAATCCTGCCCA   | CCAACCTGCACAAGTTCCCTT   | 42    |
| TNFα                     | AGGGTCTGGGCCATAGAACT    | CCACCACGCTCTTCTGTCTAC   | 43    |
| Interleukin-6            | ACCAGAGGAAATTTTCAATAGGC | GATGCACTTGCAGAAAACA     | 43    |
| mouse BiP                | GGTGCAGCAGGACATCAAGTT   | CCCACCTCCAATATCAACTTGA  | 44    |
| mouse $\alpha l_A$       | CACCGAGTTTGGGAATAACTTCA | ATTGTGCTCCGTGATTTGGAA   | 42    |
| mouse $\alpha l_B$       | AAGTGGCATCAAGGAGTCGC    | GCTAGGCGTGGCATAGAGG     | 42    |
| mouse $\alpha l_{C}$     | ATGAAAACACGAGGATGTACGTT | ACTGACGGTAGAGATGGTTGC   | 42    |
| mouse $\alpha l_D$       | AGAGGACCATGCGAACGAG     | CCTTCACCAGAAATAGGGAGTCT | 42    |
| mouse $\alpha l_E$       | GATGGAGACTCGGACCAGAG    | TGACCGTGAAACAGTTCTGCC   | 42    |
| mouse $\alpha 1_F$       | ATGTCGGAATCTGAAGTCGGG   | ACCGCCACAGTCTTGTGTTT    | 42    |
| mouse $\alpha 1_G$       | TGTCTCCGCACGGTCTGTAA    | AGATACCCAAAGCGACCATCTT  | 42    |
| mouse $\alpha 1_{\rm H}$ | GAACGTGGTTCTTTACAACGGC  | GCACATAGTTCCCAAAGGTCA   | 42    |
| mouse $\alpha l_{I}$     | GGGCGTGGCCTGTTTAGTC     | TGAGGGTCTCGGAGTGCTC     | 42    |
| mouse $\alpha 1_s$       | CAGCGGGGGGACTGTATTGC    | TGTGGCACACCTGAAGAGC     | 42    |
| mouse β-actin            | CAAAAGCCACCCCCACTCCTAAG | GCCCTGGCTGCCTCAACACCTC  | 45    |
|                          | А                       |                         |       |
| human $\alpha 1_A$       | CGCTTCGGAGACGAGATGC     | TGCGCCATTGACTGCTTGT     | 42    |
| human $\alpha l_B$       | GACAACGTCGTCCGCAAATAC   | CCCGATGAAATAGGGCTCCG    | 42    |
| human $\alpha l_C$       | GAAGCGGCAGCAATATGGGA    | TTGGTGGCGTTGGAATCATCT   | 42    |
| human $\alpha l_{D}$     | TCAGCCGAATAGCTCCAAGC    | TCGGATGGGGTTATTGAGTGA   | 42    |
| human $\alpha 1_E$       | CCATGTCCCGAAGACTGGAGA   | CCATTGCGGAGGTAAGAGC     | 42    |
| human $\alpha 1_F$       | CCATGTCCCGAAGACTGGAGA   | CCATTGCGGAGGTAAGAGC     | 42    |
| human $\alpha 1_G$       | TGTCTCCGCACGGTCTGTAA    | AAGCCGGTTCCAAGTGTCTC    | 42    |
| human $\alpha 1_H$       | ATGCTGGTAATCATGCTCAACTG | AAAAGGCGAAAATGAAGGCGT   | 42    |
| human $\alpha l_I$       | GGAGCTGATCCTCATGTCCC    | CACGGGTTGCACACCATCT     | 42    |
| human $\alpha l_s$       | TTGCCTACGGCTTCTTATTCCA  | GTTCCAGAATCACGGTGAAGAC  | 42    |
| human XBP1               | TTACGAGAGAAAAACTCATGGC  | GGGTCCAAGTTGTCCAGAATGC  | 46    |
| human                    | GCAAAGTGAAAGAAGGCATGAA  | CCATTCCTGGACCCAAAGC     | 47    |
| cyclophilin A            |                         |                         |       |

## Supplementary Table 2 | Primers used in this study

## **Supplementary References**

- 1. Christensen KA, Myers JT, Swanson JA. pH-dependent regulation of lysosomal calcium in macrophages. *J Cell Sci* **115**, 599-607 (2002).
- 2. Lin HJ, Herman P, Kang JS, Lakowicz JR. Fluorescence lifetime characterization of novel low-pH probes. *Anal Biochem* **294**, 118-125 (2001).
- 3. Beer NA, Jakubowicz DJ, Beer RM, Nestler JE. The calcium channel blocker amlodipine raises serum dehydroepiandrosterone sulfate and androstenedione, but lowers serum cortisol, in insulin-resistant obese and hypertensive men. *J Clin Endocrinol Metab* **76**, 1464-1469 (1993).
- 4. Harano Y, *et al.* Improvement of insulin sensitivity for glucose metabolism with the long-acting Ca-channel blocker amlodipine in essential hypertensive subjects. *Metabolism* **44**, 315-319 (1995).
- 5. Ueshiba H, Miyachi Y. Effects of the long-acting calcium channel blockers, amlodipine, manidipine and cilnidipine on steroid hormones and insulin resistance in hypertensive obese patients. *Intern Med* **43**, 561-565 (2004).
- Ueshiba H, Tsuboi K, Miyachi Y. Effects of amlodipine on serum levels of adrenal androgens and insulin in hypertensive men with obesity. *Horm Metab Res* 33, 167-169 (2001).
- 7. Fukao K, *et al.* Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between azelnidipine and amlodipine on glucose tolerance and endothelial function--a crossover trial (AGENT). *Cardiovasc Diabetol* **10**, 79 (2011).
- 8. Suzuki M, Kanazawa A, Hasegawa M, Harano Y. Improvement of insulin resistance in essential hypertension by long-acting Ca antagonist benidipine. *Clin Exp Hypertens* **21**, 1327-1344 (1999).
- 9. Pitre M, Gaudreault N, Santure M, Nadeau A, Bachelard H. Isradipine and insulin sensitivity in hypertensive rats. *Am J Physiol* **276**, E1038-1048 (1999).

- 10. Rosenthal T, Rosenmann E, Tomassoni D, Amenta F. Effect of lercanidipine on kidney microanatomy in Cohen-Rosenthal diabetic hypertensive rats. *J Cardiovasc Pharmacol Ther* **12**, 145-152 (2007).
- 11. Suzuki S, *et al.* Effect of manidipine and delapril on insulin sensitivity in type 2 diabetic patients with essential hypertension. *Diabetes Res Clin Pract* **33**, 43-51 (1996).
- 12. Katsenovich RA, Trigulova R, Ovchinnikov, Kostko SZ. [Effect of corinfar on the course of angina pectoris and indices of carbohydrate metabolism in relation to the type of glucose tolerance]. *Ter Arkh* **59**, 35-38 (1987).
- 13. Nakagami H, *et al.* Nifedipine prevents hepatic fibrosis in a non-alcoholic steatohepatitis model induced by an L-methionine-and choline-deficient diet. *Mol Med Rep* **5**, 37-40 (2012).
- 14. Kim JH, Mynatt RL, Moore JW, Woychik RP, Moustaid N, Zemel MB. The effects of calcium channel blockade on agouti-induced obesity. *FASEB J* **10**, 1646-1652 (1996).
- 15. Radin MJ, Chu YY, Hoepf TM, McCune SA. Treatment of obese female and male SHHF/Mcc-fa(cp) rats with antihypertensive drugs, nifedipine and enalapril: effects on body weight, fat distribution, insulin resistance and systolic pressure. *Obes Res* **1**, 433-442 (1993).
- 16. Brown RA, Lee MM, Sundareson AM, Woodbury DJ, Savage AO. Influence of calcium channel blocker treatment on the mechanical properties of diabetic rat myocardium. *Acta Diabetol* **33**, 7-14 (1996).
- 17. Kusaka-Nakamura M, Kishi K, Miyazawa A, Yagi S, Sokabe H. Antihypertensive treatment in spontaneously hypertensive rats with streptozotocin-induced diabetes mellitus. *Acta Physiol Hung* **71**, 251-269 (1988).
- Byyny RL, LoVerde M, Lloyd S, Mitchell W, Draznin B. Cytosolic calcium and insulin resistance in elderly patients with essential hypertension. *Am J Hypertens* 5, 459-464 (1992).
- 19. Beer NA, Jakubowicz DJ, Beer RM, Arocha IR, Nestler JE. Effects of nitrendipine on glucose tolerance and serum insulin and dehydroepiandrosterone

sulfate levels in insulin-resistant obese and hypertensive men. *J Clin Endocrinol Metab* **76**, 178-183 (1993).

- 20. Bursztyn M, Raz I, Mekler J, Ben-Ishay D. Nitrendipine improves glucose tolerance and deoxyglucose uptake in hypertensive rats. *Hypertension* **23**, 1051-1053 (1994).
- 21. Lyngsoe J, Sorensen M, Sjostrand H, Sengelov H, Thrane MT, Holst J. The effect of sustained release verapamil on glucose metabolism in patients with non-insulin-dependent diabetes mellitus. *Drugs* **44 Suppl 1**, 85-87 (1992).
- 22. Andersson DE, Rojdmark S. Improvement of glucose tolerance by verapamil in patients with non-insulin-dependent diabetes mellitus. *Acta Med Scand* **210**, 27-33 (1981).
- 23. Rojdmark S, Andersson DE. Influence of verapamil on human glucose tolerance. *Am J Cardiol* **57**, 39D-43D (1986).
- 24. Rojdmark S, Andersson DE. Influence of verapamil on glucose tolerance. *Acta Med Scand Suppl* **681**, 37-42 (1984).
- 25. Busch Sorensen M, Sjostrand H, Sengelov H, Tiefenthal Thrane M, Juul Holst J, Lyngsoe J. Influence of short term verapamil treatment on glucose metabolism in patients with non-insulin dependent diabetes mellitus. *Eur J Clin Pharmacol* **41**, 401-404 (1991).
- 26. Fuenmayor NT, Moreira E, de los Rios V, Cevallos JL, Cubeddu LX. Relations between fasting serum insulin, glucose, and dihydroepiandrosterone-sulfate concentrations in obese patients with hypertension: short-term effects of antihypertensive drugs. *J Cardiovasc Pharmacol* **30**, 523-527 (1997).
- 27. Xu G, Chen J, Jing G, Shalev A. Preventing beta-cell loss and diabetes with calcium channel blockers. *Diabetes* **61**, 848-856 (2012).
- 28. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. *Lancet* **369**, 201-207 (2007).

- 29. Ahaneku JE, Taylor GO, Agbedana EO, Walker O, Salako LA. Changes in lipid and lipoprotein values during a cross-over treatment of doxazosin, moduretic and amlodipine in hypertensive patients. *J Pak Med Assoc* **44**, 166-169 (1994).
- 30. Pollare T, Lithell H, Morlin C, Prantare H, Hvarfner A, Ljunghall S. Metabolic effects of diltiazem and atenolol: results from a randomized, double-blind study with parallel groups. *J Hypertens* **7**, 551-559 (1989).
- 31. Shionoiri H, *et al.* Felodipine therapy may not alter glucose and lipid metabolism in hypertensives. Felodipine Multicenter Prospective Study Group in Japan. *Hypertension* **23**, I215-219 (1994).
- 32. Gradman AH. Treatment of hypertension with felodipine in patients with concomitant diseases. *Clin Cardiol* **16**, 294-301 (1993).
- 33. Giugliano D, *et al.* Nicardipine does not cause deterioration of glucose homoeostasis in man: a placebo controlled study in elderly hypertensives with and without diabetes mellitus. *Eur J Clin Pharmacol* **43**, 39-45 (1992).
- 34. Tariq AR, Maheendran K, Kamsiah J, Christina P. Dose requirement and effect of nicardipine on lipid profile in mild to moderate essential hypertensives. *Med J Malaysia* **47**, 182-189 (1992).
- 35. Russell JC, Koeslag DG, Dolphin PJ, Amy RM. Prevention of myocardial lesions in JCR:LA-corpulent rats by nifedipine. *Arteriosclerosis* **10**, 658-664 (1990).
- 36. Ohneda A, Kobayashi T, Nihei J. Effects of Ca antagonists, nifedipine, niludipine and verapamil, on endocrine function of the pancreas. *Tohoku J Exp Med* **140**, 153-159 (1983).
- 37. Landmark K, *et al.* Nitrendipine and mefruside in elderly hypertensives: effects on blood pressure, cardiac output, cerebral blood flow and metabolic parameters. *J Hum Hypertens* **9**, 281-285 (1995).
- 38. Semple CG, Thomson JA, Beastall GH, Lorimer AR. Oral verapamil does not affect glucose tolerance in non-diabetics. *Br J Clin Pharmacol* **15**, 570-571 (1983).

- 39. Rojdmark S, Andersson DE, Hed R, Sundblad L. Effect of verapamil on glucose response to intravenous injection of glucagon and insulin in healthy subjects. *Horm Metab Res* **12**, 285-290 (1980).
- 40. Kline JA, Raymond RM, Schroeder JD, Watts JA. The diabetogenic effects of acute verapamil poisoning. *Toxicol Appl Pharmacol* **145**, 357-362 (1997).
- 41. Eng LA, Lee JC. Verapamil induces glucose intolerance in conscious, nondiabetic rats. *Res Commun Chem Pathol Pharmacol* **48**, 157-160 (1985).
- 42. Wang X, Spandidos A, Wang H, Seed B. PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. *Nucleic Acids Res* **40**, D1144-1149 (2012).
- 43. Park EJ, *et al.* Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. *Cell* **140**, 197-208 (2010).
- 44. Malhotra JD, *et al.* Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. *Proc Natl Acad Sci U S A* **105**, 18525-18530 (2008).
- 45. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. *Biochemical and biophysical research communications* **290**, 1084-1089 (2002).
- 46. Lin JH, *et al.* IRE1 signaling affects cell fate during the unfolded protein response. *Science* **318**, 944-949 (2007).
- 47. Meur G, *et al.* Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. *Diabetes* **59**, 653-661 (2010).