
Data Set for Markov State Model Construction

A kinetic model of the permeation of ATP through VDAC was constructed using
a Markov State Model (MSM) built from 453 independent simulations each lasting
40–130 ns (40 µs aggregate simulation time). These independent simulations were
initiated from a non-equilibrium distribution of starting conformations, selected from
either:

1. An equilibrated model of the pre-refined crystallographic ATP-bound VDAC
structure.

2. Conformations selected from temperature-accelerated MD simulations.

3. Initial analysis of earlier simulations using adaptive sampling methods [1, 2, 3].

4. Heuristic measures used to identify poorly sampled regions of conformational
space.

Each starting conformation was assigned a seed number, and its velocities were
drawn from the Boltzmann distribution at 303K to ensure divergent trajectories,
even when starting from the same initial coordinates. Coordinates were saved every
4 ps, yielding over 10 million conformations. The length of the channel traversed
by individual simulations along the z-axis and the total coverage of the channel are
shown in Supplementary Fig. 4.

ATP placement with Temperature-Accelerated Molecular Dynamics. Our initial
simulations revealed that ATP remained tightly associated with the N-terminal he-
lix when simulations were initiated from a pre-refined co-crystal. Therefore, we used
temperature-accelerated molecular dynamics (TAMD) [4] to rapidly sample alterna-
tive conformations of ATP throughout the channel, starting from this state. Previ-
ously, TAMD was successfully used to generate a broad coverage of conformational
space for other biomolecular systems [5, 6]. Briefly, TAMD involves simulating the
full molecular system (channel, ATP, etc.) at room temperature, T = 303K, using
the standard molecular force field described in the Online Methods, while the ATP is
coupled to a high temperature bath T̄ = 5T . The coupling occurs by harmonically
restraining the the center-of-mass (COM) of the phosphate tail of the ATP and the
COM of the purine ring to a fictitious particle that evolves according to Langevin
dynamics at T̄ . Thus, as the fictitious particle aggressively explores phase space, it
applies a force on the ATP molecule in the true system causing it to escape from
local energy minima. For a full theoretical description of this method please see to
Ref. [4].
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We carried out two 25 ns TAMD simulations starting from the pre-refined co-
crystal state. The extended system in the collective coordinates space was simulated

with a 50 kcal/mol·Å2
coupling constant and a damping coefficient of 250 ps−1. The

ATP rapidly moved from its starting conformation and sampled a large volume of
the channel escaping to both baths. Importantly, the channel root-mean-squared
deviation (RMSD) was indistinguishable from our standard non-TAMD simulations.
Snapshots from these simulations were clustered, and 40 distinct ATP configurations
were selected to equilibrate and initiate conventional MD production runs to be used
in the Markov State Model construction; however, no dynamics from the TAMD
simulations were actually used in the construction of the MSM.

Markov State Model Coupled to a Continuum Bath

The MSMBuilder2 software [7, 8] was used to construct a Markov State Model of
ATP permeation through mVDAC1 using the following protocol:

1. Cluster molecular dynamics trajectories using a hybrid k-centers k-mediods
algorithm.

2. Restrict clusters to those inside of the channel that form the maximal ergodic
subset of states.

3. Estimate transition and count matrices using a maximum likelihood reversible
estimator.

4. Couple atomistic MSM to a continuum bath of ATP.

Snapshots from all trajectories were aligned to the β-barrel of the mVDAC1 apo
structure, and then clustering was carried out on the ATP coordinates using the
RMSD between ATP molecules as a metric. The channel, including the N-terminal
tail, remained quite stable during all simulations, and based on this observation,
we chose not to include the protein degrees of freedom in the state space. We first
subsampled the data set by a factor of 500 (2 ns separation between trajectory
snapshots), and clustering with a cut-off radius of 6.5 Å resulted in 836 states, each
defined by a representative ‘generator’ ATP conformation. The remaining snapshots
were then assigned to these initial states.

In order to efficiently focus our computational efforts on ATP movement in the
channel, we chose to initiate more ATP simulations in the pore than in aqueous
solution. This leads to a poor estimate of the influx of ATP into the channel from
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solution due to incomplete sampling. To overcome this issue and accurately capture
ATP movement into and out of the channel, we developed a method for coupling an
atomistic MSM to a continuum description of free ATP diffusion in solution. First,
we defined the channel pore as a cylinder running from z = -18 Å to +20 Å. All states
whose COM fell outside the channel were lumped into a single state corresponding
to the empty channel. The empty channel is labeled state N , and states in the pore
are labeled 1 through N − 1.

Next, the dynamical trajectories were projected onto the state space, and we
constructed the count matrix Cij(τ), whose elements correspond to the number of
observed transitions of ATP from state i to state j after a lag time, τ . Once an initial
count matrix at a given τ was constructed, states were trimmed from the MSM to
produce a maximal ergodic subset of states [8, 9]. These ergodically trimmed MSMs
typically had 200 states. From the count matrix, we used a maximum likelihood
reversible estimator (MLE) to obtained the transition probability matrix, Pij(τ) [8]:

P =


P1,1 P1,2 · · · P1,N−1 P1,N

P2,1 P2,2 · · · P2,N−1 P2,N
...

...
. . .

...
...

PN−1,1 PN−1,2 · · · PN−1,N−1 PN−1,N
PN,1 PN,2 · · · PN−1,N PN,N

 , (1)

The element Pij(τ) is the conditional probability that the system is in state j at time
t+ τ given that it was in state i at time t. More generally, the transition probability
matrix determines the time evolution of the system according to:

p(t+ τ) = p(t)P , (2)

where p(t) is a vector representing the probability of each state in the MSM at
time t and p(t+τ) is the distribution after a time τ . The MLE algorithm ensures
that equilibrium dynamics generated from P (τ) obey detailed balance. The MSM is
coupled to a continuum bath through elements Pi,N (ATP transitions to bath), PN,i

(ATP transitions into the channel), and PN,N (self transitions for empty channel),
which must all be considered carefully.

PN,i: ATP transitions into the empty channel. First, we consider the elements of
PN,i that involve ATP entering the empty channel. Let the total flux of ATP into the
channel from the upper bath (A) be JA, and the total flux into the empty channel
from the lower bath (B) is JB. We use Fick’s law [10] to estimate this flux assuming
that the channel presents a flat surface of radius R to solution:
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J = 4πRcDATP , (3)

where c is the concentration of ATP in bath A or B and DATP is the diffusion coeffi-
cient of ATP in water, 20 Å

2
/ns [11]. There are NA upper boundary states that can

exchange with bath A, and NB lower boundary states that can exchange with bath
B. Assuming that the incoming flux is equally distributed among all boundary states,
the incoming rate into any state adjacent to bath A is JA/NA, and the incoming rate
for states adjacent to bath B is JB/NB. For our analysis, we assume that all states
within 4 Å of the upper boundary of the MSM can exchange with bath A and all
states within 4 Å of the lower MSM boundary can exchange with bath B. The rate
(number per unit time) of entry for ATP into state i from bath A is then ρN

JA
NA

,
where ρN is the probability that the channel is empty so that an incoming ATP can
be received in state i. Finally, the one step probability value is PN,i:

PN,i =
4πRcADATP

NA

τ, (4)

where τ must be sufficiently small such that PN,i is less than 1. In practice, PN,i is
on the order of 1%, since our MSM is constructed at a lag time that is much smaller
than the mean time for ATP entry into the channel. We see here that the incoming
flux has an explicit dependence on the concentration of ATP in bath A, and the flux
into states adjacent to bath B have a similar concentration dependence.

PN,N : self transitions of the empty channel. The requirement that the row ele-
ments normalize to 1 determines the value of the self transition probability for the
empty channel:

PN,N = 1 −

∑
{i}A

JA
NA

+
∑
{i}B

JB
NB

 τ = 1 − (JA + JB)τ. (5)

Pi,N : ATP transitions out of the channel. Next, we consider the elements Pi,N

that involve ATP exiting the channel, leaving it empty. Since we initiated many sim-
ulations from within the pore domain, we observed tens of thousands of exit events
out of the channel. Therefore, we believe that Pi,N elements in Eq. 1 determined
directly from the MLE step in MSMBuilder2 are a good estimate of this state de-
pendent jump probability. To test this assumption, we computed the average jump
probability out of the channel, where we averaged Pi,N over all states in 2 Å windows
along the z axis. The analysis revealed a smooth decrease in the jump probability as
the states penetrate deeper into the channel from either the upper or lower face of
the channel, which is expected since it is harder to escape the channel the deeper the
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penetration. ATP in states near the upper bath never escape to the lower bath, and
states near the lower bath never exhibit transitions to the upper bath. Also, states
at the upper face of the channel have a nearly 50% probability of jumping out of the
channel, which is intuitive if the ATP is only weakly interacting with the pore at the
edge of the channel. At the lower mouth, which is closer to the N-terminal helix,
the probability of exiting the channel is smaller, which reflects that these states are
still under some electrostatic influence of the pore, which we described in an earlier
manuscript [12]. Based on these results, we believe that we have sampled these exit
transitions well.

Stationary State Distribution and Implied Timescales

The left eigenvalues and eigenvectors of P (τ) are related to the natural relaxation
timescales and transitions between states in the MSM, respectively. For an ergodic
and irreducible Markov State Model, there is a single eigenvector with an eigenvalue
of 1:

πP (τ) = π, (6)

where π is the stationary distribution vector plotted in Fig. 3 of the main text. This
vector determines the equilibrium probability of finding ATP in a given state.

The relaxation times, or implied timescales, t̂, are computed from the eigenvalues
as follows:

t̂i = − τ

lnλi(τ)
, (7)

where λi(τ) is the ith eigenvalue of P (τ). In general, the implied timescales plateau
and become constant at long lag times in which the model obeys Markovian dynam-
ics. To determine an appropriate lag time to construct our MSM, we computed the
implied timescales for τ ranging from 0 to 40 ns, and plotted the 50 slowest transi-
tions in Supplementary Fig. 3. The resulting spectrum is well behaved, and based
on the asymptotic behavior, we chose a lag time of 5 ns to construct our MSM for
all subsequent analysis. This MSM has 210 states.

Calculation of the Mean First Passage Times

The mean first passage time (MFPT) from state i to state j, mi,j, is defined as
the average time taken to reach state j for the first time given that the system was
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initially in state i. The MFPT between two states can be determined by solving the
following linear system of equations [13]:

mi,j = Pi,jτ +
∑
k 6=j

Pi,k (mk,j + τ) . (8)

We are interested in the MFPT for ATP movement from the upper bath to the lower
bath, and vice versa. Unfortunately, Eq. 8 cannot be applied directly to our MSM,
since transitions to and from the empty channel, N , do not distinguish whether ATP
exited or entered to the upper or lower bath. However, we can modify our MSM to
take the separate baths into account since we know the exchange probabilities with
each bath.

We split state N into two separate states: A where ATP is in the upper bath,
and B where ATP in the lower bath. We then self-consistently computed all MFPTs
including mA,B and mB,A. However, there are several transition probability elements
that must be reconsidered: PA,A, PB,B, Pi,A, Pi,B, PA,i, and PB,i. Both PA,B and PB,A

are zero, as we never observe movement from one bath to the other in one step. PA,i

and PB,i are given by Eq. 4 with the corresponding ATP concentration values, cA or
cB, respectively. Pi,A and Pi,B are determined directly from the simulation data as
described in the section Markov State Model Coupled to a Continuum Bath. Based
on this data, we know ATP exiting states at the top of the channel only enter bath
A and ATP exiting states at the bottom of the channel only enter bath B. This
uniquely determines Pi,A/B from Pi,N based on the location of state i. The last terms
to be determined are the self transition probabilities for ATP in states A and B,
which are given by the normalization condition:

PA,A = 1 −
∑
i 6=A

PA,i. (9)

With these terms identified, the MFPT for arriving in bath B starting from all
other states can be determined from the following set of self-consistent equations:

PA,A − 1 PA,1 · · · PA,N−1
P1,A P1,1 − 1 · · · P1,N−1

...
...

. . .
...

PN−1,A PN−1,1 · · · PN−1,N−1 − 1




mA,B

m1,B
...

mN−1,B

 =


−τ
−τ
...

−τ

 , (10)

where the element mA,B is the quantity of interest, and the MFPT from B to A,
mB,A, can be determined from a similar set of equations.
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Transition Path Theory Analysis

We computed the highest flux pathways taken by ATP as it passes through the
channel using transition path theory [14, 15] as implemented in MSMBuilder2 [7, 8,
16]. We started with the original MSM defined on the states that fall between -18 and
+20 Å along the z axis, but rather than coupling to a continuum bath, we extended
the atomistic MSM 4 Å in the positive, Ω+ (+20 Å < z ≤ +24 Å), and negative
directions, Ω− (−22 Å ≥ z < −18 Å). We then computed all the pathways from all
states in Ω− to all states in Ω+ (Fig. 5 in the main text), and vice versa. However,
we removed pathways from the analysis which contained transitions with zero counts
in the count matrix, Cij(τ). This occasionally occurs because the MLE method for
computing the transition probability matrix will assign a finite probability value to
a transition with zero counts if there are counts in the reverse direction. Finally, we
analyzed the top 143 pathways, which account for 70% of the total flux. In Fig. 5b
in the main text, we grouped the pathways into four categories (paths 1–4) based
on which residue the ATP interacts with just prior to escape to the cytoplasm. We
included a 5th path, which does not interact with the central portion of the N-terminal
helix during permeation.

Local Equilibration Times Within States

To ensure that there are no kinetic barriers within MSM states, we calculated the time
required for ATP to relax within each state. Following the approach in Ref. [15], we
partitioned each state into two sub-states using the same hybrid k-centers k-medoids
algorithm used to construct the full MSM, as shown in Supplementary Fig. 5. We
then computed the 2 × 2 transition probability matrix between the two sub-states
for a range of lag times. The relaxation time between the two sub-states, t̂, is related
to the second eigenvalue, λ2, of the sub-state transition probability matrix:

t̂2 = − τ

lnλ2(τ)
. (11)

As seen in Supplementary Fig. 5, the internal relaxation times of all but 23 of the
210 generators were less than the lag time used in the construction of the full MSM.
Since the majority of the states relax faster than the lag time used to construct the
MSM, it indicates that there are no internal barriers within states and that they
are well equilibrated. Moreover, removing these 23 states from our analysis had no
significant change in the MFPT for ATP permeation.
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MFPT Error Analysis

The statistical uncertainties in the MFPT were calculated using the percentile boot-
strap method [17]. From the original data set of 453 simulations, 1000 bootstrap
samples were generated, each by randomly selecting 453 trajectories with replace-
ment. For each bootstrap sample, a new MSM was constructed and the MFPTs
were calculated as in section Calculation of the Mean First Passage Times. The
95% confidence intervals for the MFPT in each direction were then estimated from
the distributions shown in Supplementary Fig. 6a–d. Additionally, we examined the
sensitivity of the MFPTs calculated from the model to our choice of lag time and
cluster radius. In Supplementary Fig. 6e, the MFPT for permeation in each direction
through VDAC is shown as a function of cluster radius. As the radius of each cluster
increases the general trend is for the MFPT to decrease as the states begin to sub-
sume energetic barriers that separate the true metastable basins. While decreasing
the cluster radius cutoff reduces the presence of slow relaxation times within a state,
the number of states increases, decreasing the sampling of state-to-state transitions
for a finite data set. Our choice of cluster radius, was selected to minimized slow
relaxation times within each state, as assessed in section Local Equilibration Times
Within States, while ensuring that the MSM represented a well-connected state space
with a robust number of observed transitions along the permeation pathways. Sup-
plementary Fig. 6f shows the dependence of the MFPTs on the lag time used to
construct the MSM. While the MFPT for transitions from the IMS to the cytoplasm
was robust over the full range of examined lag times (5–30 ns), the MFPT for the
reverse transition increases with lag time. This increase is expected in general since
data is removed from the analysis when the lag time is increased. We expect that
this rise is due to reduced transitions counts between a particular bottle neck state.
We note that there is a jump from 15 to 20 ns, but from 5 to 15 ns the increase in
the MFPT is in line with the 95% confidence error provided by our analysis.

Simulation Time (µs) Applied Voltage (mV) Initial ATP position
1 4.84 0 pore
2 0.61 0 upper bath
3 1.99 50 upper bath
4 1.99 100 upper bath
5 4.17 50 upper bath
6 3.11 -50 lower bath

Supplementary Table 1: VDAC dataset at Anton.
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