
Text S1. Supporting Information to GABenchToB: A Genome Assembly 

Benchmark Tuned on Bacteria and Benchtop Sequencers .

Genome coverage 

The depth of coverage is an important parameter in genome assembly.  Both, insufficient as well as 

extensive coverage can have a  negative influence on the assembly outcome.  Therefore,  finding an 

optimal target coverage prior to the sequencing effort can help to keep sequencing costs low while still  

assuring sufficient sequencing data for satisfactory assemblies. Additionally to the main text, in this 

supplemental text we describe in more detail how altering the depth of coverage affects the assembly 

outcomes.  Figures S1,  S2, and  S3 are showing for the tested assemblers (ABYSS, CELERA, CLC, 

MIRA, NEWBLER, and SPADES) and all ten data sets the depth of coverage in relation to the NGA50 

length, to the number of mis-assemblies, and to the number of assembly errors, respectively. As already 

pointed out in the main text for  E. coli, the fact that coverage increases beyond a specific threshold 

does not necessarily increase assembly contiguity likewise,  is  in good accordance also with the  S. 

aureus and M. tuberculosis data (Figure S1). Interestingly, the NGA50 lengths are highly fluctuating 

with altering coverage. The zig-zag pattern of the corresponding curves show clearly how sensitive 

some assemblers react to coverage changes. A slight coverage increase can have a noticeable positive 

effect  on  the  assembly  whereas  another  coverage  increase  by  the  same  amount  can  completely 

invalidate this improvement. This is especially apparent for higher coverage ranges as shown by the S.  

aureus data sets. Of course, the non-deterministic behavior of parallelized assembly processes may 

further contribute to this variation. 

These findings are further supported by other metrics. N50 length for the MiSeq and the PGM show 

comparable saturation and over-saturation effects for most data sets albeit a tendency towards further 

N50 increases with rising coverage can be observed (data not shown). This can be explained by the 

observation that sometimes the number of mis-assemblies also increases with rising coverage (Figure 

S2). Most affected here is MIRA, that for some data sets steadily accumulates mis-assemblies, best 

shown by the PGM data sets above 75-fold coverage. This in turn has a direct opposing effect on 

NGA50 values explaining the different behavior of N50 vs. NGA50. Whereas the number of assembly 

errors (mismatches, insertions, and deletions;  Figure S3) are affected only to a small extent by the 

depth  of  coverage.  After  reaching  a  plateau  at  20-fold  to  30-fold  coverage,  error  rates  remains 

relatively stable in most cases.  
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Nonetheless, it could be argued that the observed variation originates from the randomness in the raw 

data introduced by the sub-sampling procedure. In order to rule this out, we additionally tested a second 

sub-sampling approach,  i.e. progressive sub-sampling,  where each subset is a strict  inclusion in all 

consecutive  subsets  of  a  higher  coverage.  Here,  we were interested  especially  in  regions of lower 

coverages as in those regions the greatest discrepancies between both approaches were to be expected. 

Therefore, we progressively sub-sampled the  E. coli and  S. aureus data sets to subsets of one to a 

maximum of 100-fold coverage with an increment of 5-fold coverage and compared the consecutive 

assemblies for NGA50 and number of mis-assemblies (Figures S4 and S5). To sum up, the results are 

corroborating previous findings: increasing the depth of coverage does not necessarily result in better 

assemblies. Most interestingly, the curves of the NGA50 plots show the same zig-zag pattern as for the 

plots based on the random sub-sampling. This clearly emphasizes the sensitivity of the assemblers to 

coverage changes and refutes the explanation that the variation is only caused by the randomness of the 

sub-sampling process.
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K-mer parametrization of De Bruijn Graph assemblers

As de Bruijn Graph assemblers build upon k-mers of a distinct length, the right k-mer parameterization 

of  such assemblers  is  vital  for  the  assembly  quality.  If  the  k-mer  length  is  chosen too  short,  the 

hereupon resulting DBG might suffer from too many prefix-suffix overlaps, i.e. the graph is overly 

connected. In contrast, a k-mer length close to the read length will, mostly due to sequencing errors, 

result  in  graphs with sparse connectivity  because of too few overlaps.  Both scenarios  will  lead to 

suboptimal assemblies and can only be avoided if an optimal k-mer length can be deduced from the 

input data in advance. This can be performed either by the assembler itself or by specialized third-party 

software. The naïve alternative, of course, is to try all possible k-mers. In the course of this evaluation, 

we have followed the naïve approach for all DBG assemblers for which an explicit k-mer parameter 

specification is mandatory (ABYSS, SOAP2 and VELVET; Figure S6).  As expected, NGA50 lengths 

are  strongly  fluctuating  with  altering  k-mer  parameters.  Individual  best  performing  k-mers  are 

distributed over a wide scale of possible k-mers and within windows of a certain k-mer range several 

local NGA50 optima (peaks) can be observed. Best NGA50 lengths for the VELVET assembler ranges 

between the k-mer parameters k=35 and k=109, for ABYSS between k=56 and k=110, and for SOAP2 

between  k=63  and  k=127  (MiSeq  data  only).  Thereby,  no  clear  correlation  of  the  optimal  k-mer 

parameter, the data set and the assembler can be observed. For instance, highest NGA50 values for the 

MiSeq  2x250bp  E.  coli data  set  are  achieved  with  k=98  (ABYSS),  k=123  (SOAP2),  and  k=35 

(VELVET). Even within one type of data and one assembler, NGA50 optima differ markedly, e.g. for 

the ABYSS assembler the three MiSeq2x250bp optima are k=98, k=110, and k=58. 

Of the DBG assembler used in this evaluation, the SPADES assembler is a special case. SPADES is 

initiated  with  a  set  of  k-mer  parameters  used  to  run  several  consecutive  assemblies,  which  are 

iteratively incorporated into a final result. For SPADES, the main question with regard to the optimal 

k-mer  parameter  set  is  which  individual  k-mer  should  be  added  to  the  list  of  k-mer  parameters. 

Therefore, we used a complete set of all possible k-mers and  benchmarked intermediate results of the 

iterative  assembly cycles  (Figure S7A).  Here,  two effects  can be seen.  First,  not  every additional 

assembly cycle,  i.e. not every additional k-mer parameter, improves the final assembly (e.g., MiSeq 

2x250bp S. aureus between the k-mer values of 75 and 97). Secondly, while for the MiSeq data sets the 

best  assemblies  were  always  performed  if  the  set  of  k-mers  ranged  to  the  max.  of  k=127,  PGM 

assemblies reached their optima always with sets of lower maximum k-mers. Anyway, the assemblies 

with  the  full  k-mer  sets  (up  to  the  NGA50  optima)  show no  improvements  over  our  assemblies 
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achieved with the default k-mer parameters (Figure S7B).
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Selection of optimal k-mer parameters

We want to note that we are comparing and evaluating the assemblies using the (genome size based 

and mis-assembly corrected) NGA50 metric. However, the N50 metric was used to select best resulting 

k-mer  sizes  (Table  S1)  for  all  corresponding assemblies  (Figures  2-3,  S1-S5 and  S8-S10)  in  the 

consecutive analysis. This is owed to the fact that in de novo genome assembly the genome sequence of 

the organism under consideration is usually unknown. Therefore, neither a correction for genome size 

nor for mis-assemblies can be performed. Hence, it would be misleading to base the k-mer optimization 

on NGA50 lengths for a practical evaluation.
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De novo assembly receipts 

Here,  we  give  detailed  information  about  the  specific  configuration  and  parameterization  of  each 

assembler used in this study. For all MiSeq data sets, insert-sizes and deduced values were calculated 

from the data as as described in the methods section of the main text. A corresponding overview of all 

insert-size metrics is given in Table S2. For all hereafter-listed commands, shell variables were used to 

substitute input dependent variables with appropriate values. Enclosing curly brackets and a leading 

dollar  sign  denotes  these  shell  variables.  Variable  substitutions  valid  for  all  commands  are  the 

following:

 THREADS: Always set to 48, if not stated otherwise.

 inputFile: Always refer to the FASTQ file containing the input reads. For MiSeq data sets, this 

is  one  single  file  where  both  the  forward  and  reverse  reads  were  shuffled  pairwise,  i.e. 

interleaved file  format.  If  the  assembler  prerequisites  both files  to  be given separately,  the 

variable  inputFileA refers to  the FASTQ file  containing  the forward reads  and the variable 

inputFileB to the reverse reads, respectively. 

 prefix: Always refers to a base naming scheme for all assemblers generated output folders and 

files. Concrete, this was set to the name of the used assembler, sequencing platform, sequencing 

library and data set, concatenated by underscores. 

 output: For assemblers which do not create a distinct output folder, a corresponding folder was 

created beforehand and assigned to this variable. 

 tmp: A local temporary directory was used where all input data was transferred to before the 

assembly execution. This folder also served as the temporary working directory for the duration 

of the assembly process. However, some assemblers are performing these preparations on their 

own in which case this variable is used to point to the specific temporary directory location. 

As already described, for DBG assemblers  with mandatory k-mer parameterization,  final  assembly 

evaluations were determined by maximizing N50 lengths. The final k-mer parameter of these main 

assemblies are listed in Table S1.

AbySS

For ABYSS, we used the the following command to start the assemblies:

abyss-pe  ${input}  k=${i}  name=${prefix}_${i}  v=-v  j=${THREADS}  np=${THREADS}  mpirun=$
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{mpirun}

In dependence on the input data, we set the input parameter to 'in=$(inputFile}' for MiSeq and to 'se=$

{inputFile}' for PGM data pointing to the input file locations, respectively. The parameter  k was set 

from 32 to 128 and incremented at a step size of two. The mpirun parameters points to the location of 

the Open MPI executable.

Celera

For  CELERA,  we  first  generated  the  specific  input  format.  In  the  case  of  MiSeq  data  with  the 

following command:

fastqToCA  -libraryname  ${prefix}  -technology  illumina  -type  sanger  -innie  -mates  ${inputFile}  

-insertsize ${mean} ${sd}

In the case of PGM data using this command:

fastqToCA -libraryname ${prefix} -technology 454 -type sanger -reads ${inputFile}

The insert-size parameters  mean and  sd were set for each data set to the corresponding means and 

standard deviations (Table S2). Then, a configuration file was created containing the following entries:

cnsConcurrency=24

createACE=1

frgCorrConcurrency=24

frgCorrThreads=2

mbtConcurrency=1

mbtThreads=24

merOverlapperExtendConcurrency=24

merOverlapperSeedConcurrency=24

merOverlapperThreads=2

merylMemory=10240

obtOverlapper=ovl

ovlConcurrency=24

ovlCorrConcurrency=24

7



ovlHashBits=23

ovlHashBlockLength=200000000

ovlRefBlockSize=200000

ovlOverlapper=ovl

ovlStoreMemory=10240

ovlThreads=2

shell=/usr/bin/env bash

To this configuration file the following entries were added for MiSeq data:

overlapper=ovl

unitigger=bogart

And for PGM data :

overlapper=mer

unitigger=bog

We started the Celera assemblies using the following command:

runCA -d ${output} -p ${prefix} -s ${output}/${prefix}.CELERAconfig ${FRAGINPUT} &> ${output}/

${prefix}.log

Here, FRAGINPUT refers to the input file created using the fastqToCA command.

CLC Assembly Cell

To run CLC, we used the following command for MiSeq data:

clc_assembler  -o  ${output}/${prefix}.result.fas  --cpus  ${THREADS}  -v  -p  fb  ss  ${lowInsert}  $

{uppInsert} -q ${inputFile} -e ${output}/${prefix}.distanceEstimate.tsv &> ${output}/${prefix}.log

And the following command for PGM data:

clc_assembler -o ${output}/${prefix}.result.fas --cpus ${THREADS} -v -p no -q ${inputFile}  &> $

{output}/${prefix}.log
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The parameter lowInsert and uppInsert are referring to the min and max insert-size boundaries (Table 

S2).

GS De Novo Assembler

Before the NEWBLER assembler can be started, a new assembly project has to be created. Therefore, 

the commands to prepare and start the assemblies for MiSeq data were as follows:

newAssembly -force ${output}

addRun -lib Mates -p ${output} ${inputFile}

runProject  -ace  -infoall  -cpu  ${THREADS}  -verbose  -e  ${EXPECT}  ${output}  &>  ${output}/$

{prefix}.log

Accordingly, for PGM data sets the following commands were used:

newAssembly -force ${output}

addRun -np ${output} ${inputFile}

runProject  -ace  -infoall  -cpu  ${THREADS}  -verbose  -e  ${EXPECT}  ${output}  &>  ${output}/$

{prefix}.log

The EXPECT parameter was set to 40 for PGM 200bp data sets and to 75 for all other data sets.

MIRA

In order to start MIRA assemblies, we first generated a manifest configuration file for each assembly.  

This manifest contains the following entries in the case of MiSeq data:

project = ${prefix}

job = genome,denovo,accurate

parameters = -GE:not=${THREADS} -DI:trt=${tmp} -MI:somrnl=0 

readgroup = solexa

technology = solexa

data = ${inputFileA} ${inputFileB}

strain = ${strain}

template_size = ${lowInsert} ${uppInsert}

segment_placement = ---> <---
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In the case of PGM data, the manifest files contained the following:

project = ${prefix}

job = genome,denovo,accurate

parameters = -GE:not=${THREADS} -DI:trt=${tmp}

readgroup = iontor

technology = iontor

data = ${inputFile}

strain = ${strain}

Again, the parameters lowInsert and uppInsert are referring to the min and max insert-size boundaries 

(Table S2). The strain parameter was set to the FASTA file containing the complete reference genome 

sequence of the processed data even though this information was not used during the assembly process. 

MIRA then was initiated using the following command:

mira ${prefix}.manifest &> ${prefix}.log

SeqMan Ngen

The SEQMAN assembler  also operates on configuration  files,  for which we applied the following 

general setup:

#!/usr/bin/smng

setDefaultDirectory defaultDirectory:"${output}"

diskPath path:"${tmp}"

project kind: genome_assembly

workflow kind: de_novo

setVectorParam EndCutOff: 25

setVectorParam EndMerMatch: 1

setVectorParam EndRegion: 15

setVectorParam MaxMerGap: 5

setVectorParam MergeTrimGap: 7

setVectorParam MatchSize: 9

setVectorParam MinEndTrimLength: 5
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setVectorParam MinMerMatch: 3

setVectorParam MinTrimLength: 30

setRepeatParam MaxMerGap: 10

setRepeatParam MatchSize: 17

setRepeatParam MinEndFlagLen: 25

setRepeatParam MinFlagLength: 50

setRepeatParam MinMerMatch: 2

setContaminantParam MatchSize: 17

setContaminantParam MinMerMatch: 12

setQualityParam EndRegion: 5

setQualityParam MaxN: 2

setQualityParam MaxNHiQual: 1

setQualityParam MinAveHiQual: 22

setQualityParam MinAveLowQual: 20

setQualityParam MinEndBaseQual: 15

setQualityParam NTrimWinLength: 7

setQualityParam WinLength: ${WINLENGTH}

${LOADSEQ}

setParam AllowConstraintBased: true

setParam FixedCoverage: 20

setParam CoverageType: genome

setParam DefaultQuality: 15

setParam GapPenalty: 30

setParam GenomeLength: 5000000

setParam HaploidSNP: false

setParam HaploidThreshold: 0

setParam LowCoverageThreshold: 0

setParam MatchScore: 10

setParam MatchWindowLength: 50

setParam MaxContigs: 0

setParam MatchRepeatPercent: 150
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setParam MaxUsableCount: 25

setParam Minimizer: 1

setParam MismatchPenalty: 20

setParam SkipRealign: false

setParam SNPMatchPercentage: 90

setParam SNPPasses: 2

setParam SplitFalseJoins: false

setParam SplitTemplateContigs: false

setParam TemplateDefaultQuality: 500

setParam UseRepeatHandling: true

${MATCHING}

assemble trimEnds: true vectScan: false repeatScan: false contamScan: false doAssemble: true

${REMOVE}

WriteUnassembledSeqs   file:"${output}/${prefix}.unasm.fas" saveTrimmed:false

saveProject     file:"${output}/${prefix}.ace" format:Phrap

saveProject     file:"${output}/${prefix}.fas" format:Fasta

saveReport      file:"${output}/${prefix}.info"

setAssemblyReport       file:"${output}/${prefix}.report" name:"${prefix}"

closeProject

In dependence of the input, SEQMAN specific variables were replaced as follows. For MiSeq data:

WINLENGTH := '5'

LOADSEQ := 

'loadSeq

        file:"${inputFile}"

        multiplex:false

        groupName:"${prefix}"

        seqTech:"normalScore"

        mergePairs:false

        isPair:paired

        SetPairSpecifier   pairs:{ { forward: "(.*)/1" reverse:"(.*)/2" min: ${lowInsert} max: ${uppInsert}  
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} }'

MATCHING :=

'setParam MaxGap: 6

setParam MatchSize: 21

setParam MatchSpacing: 50

setParam MinMatchPercent: 93

setParam TrimToMer: false'

REMOVE := 'removeSmallContigs minSeqs: 100 minLength: 0'

For PGM data sets, the following replacement took place: 

WINLENGTH := '10'

LOADSEQ := 

'loadSeq

        file:"${inputFile}"

        multiplex:false

        groupName:"${prefix}"

        seqTech:"IonTorrent"

        mergePairs:false'

MATCHING :=

'setParam MaxGap: 15

setParam MatchSize: 19

setParam MatchSpacing: 20

setParam MinMatchPercent: 90

setParam TrimToMer: true'

REMOVE := 'removeSmallContigs minSeqs: 10 minLength: 0'

The assemblies were then started using this command:

smng ${output}/${prefix}.SEQMANconfig &> ${output}/${prefix}.log

SOAPdenovo2

The SOAP2 assembler  was used in two different  compiled binary versions with regard to  the full 
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possible  k-mer  range.  For  k-mer  parameters  up  to  63  the  pre-compiled  63mer  version  of  the 

SOAPdenovo2-bin-LINUX-generic-r238 release were used and for k-mers from 65 to 127 the 127mer 

version, respectively. The following command line was used to initiate the assemblies:

SOAPdenovo-${kmerVersion}mer all -p ${THREADS} -s ${output}/${prefix}.SOAP2config -o $

{output}/${prefix}_${i} -K ${i} &> ${output}/${prefix}_${i}.log

The k-mer variable was set to values between 13 and 127 incremented with a step size of two. The 

configuration file containing the following parameters for PGM data sets:

max_rd_len=999

[LIB]

asm_flags=3

rank=1

q=${inputFile}

For MiSeq data sets, the configuration file contained following entries:

max_rd_len=999

[LIB]

avg_ins=${mean}

reverse_seq=0

asm_flags=3

rank=1

q1=${inputFileA}

q2=${inputFileB}

The mean parameters were set to the mean insert-size as listed in Table S2. 

SPAdes

We initiated SPADES using the following configuration for MiSeq data:

spades.py  --12  ${inputFile}  --careful  -o  ${output}/${prefix}  -t  $THREADS  --tmp-dir  ${tmp}  -k  

21,33,55,77,99,127 &> ${prefix}.log
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And for PGM data using the following command:

spades.py -s ${inputFile} --only-assembler -o ${output}/${prefix} -t $THREADS --tmp-dir ${tmp} -k  

21,33,55,77,99 &> ${prefix}.log

Although for SPADES a default comma-separated list of k-mer sizes is defined (21,33,55), we used 

these different set of parameters for the MiSeq and the PGM data sets as suggested by the SPADES 

authors  (personal  communication).  Also,  as  described  in  the  main  text,  we  tested  SPAdes  using 

increasing lists with increments of k-mer sizes but due to it's unique assembly technique the k-mer 

optimization problem does not really apply here and brute force parameter optimization is practically 

intractable. 

Velvet

For the VELVET assemblies we used five different binary versions. Here, velvet was compiled five 

times  with  altering  the  Makefile  parameter  MAXKMERLENGT  to  31,  83,  127,  177,  and  227, 

respectively. The binaries were differentially named by adding an according suffix. In dependence of 

the  actual  processed  k-mer  parameter  of  the  velvet  command  the  velvet  binary  with  minimal 

MAXKMERLENGT was used  for  the assembly,  e.g.  for  k-mers  below 32 velvet  configured  with 

MAXKMERLENGT=31 was used, and so forth. We initiated the Velvet assemblies using the below 

listed command lines.

MiSeq data:

velveth.${kmerVersion} ${output}/${prefix}_${i} ${i} -shortPaired -fastq ${inputFile} &> ${output}/$

{prefix}_${i}.velveth.log

velvetg.${kmerVersion} ${output}/${prefix}_${i}  -cov_cutoff  auto -exp_cov auto -exportFiltered  yes  

-amos_file yes -ins_length ${size} -ins_length_sd ${sd} &> ${output}/${prefix}_${i}.velvetg.log

PGM data:

velveth.${kmerVersion}  ${output}/${prefix}_${i}  ${i}  -short  -fastq  ${inputFile}  &>  ${output}/$

{prefix}_${i}.velveth.log
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velvetg.${kmerVersion} ${output}/${prefix}_${i}  -cov_cutoff  auto -exp_cov auto -exportFiltered  yes  

-amos_file yes &> ${output}/${prefix}_${i}.velvetg.log

The k-mer parameter ${i} was set to values of the range between 13 and 227 with an increment of two. 

To enable parallelization, velvet was additionally compiled with OPENMP enabled and the following 

environment variables were exported to the executing shell prior to the assemblies:

export OMP_NUM_THREADS=${THREADS}-1

export OMP_THREAD_LIMIT=${THREADS}
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