A high content assay to identify small molecule modulators of a cancer stem cell population in luminal breast cancer

Supplementary Material

Byong Hoon Yoo,¹ Sunshine Daddario Axlund,² Peter Kabos,⁴ Brian G. Reid,¹ Jerome Schaack,³ Carol A. Sartorius,² and Daniel V. LaBarbera¹

¹Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences; Departments of ²Pathology, ³Microbiology, and ⁴Medical Oncology School of Medicine; The University of Colorado Denver Anschutz Medial Center, Aurora, CO, USA.

Supplementary Figure S1.

High-content assay validation.

(A) Maps of 3 different 96-well plates for assay validation. including: 8 positive (1 µM RU486) and 8 negative (0.5% DMSO) controls per plate. All control wells were treated with 100 nM progesterone. Plate maps were generated using the Operetta® imager and Harmony® software, and the scale bar next to the maps depicts the quantitative GFP intensity per well.

(**B**) Statistical parameters of assay validation including: signal to noise (S/N), signal to background (S/B), and % coefficient of variation (%CV).