

Eating rate and prevalence of metabolic syndrome in Japanese

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005241
Article Type:	Research
Date Submitted by the Author:	11-Mar-2014
Complete List of Authors:	Nagahama, Satsue; All Japan Labor Welfare Foundation, ; School of Medicine, Toho University, Department of Environmental and Occupational Health Kurotani, Kayo; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Pham, Ngoc Minh; Thai Nguyen University of Medicine and Pharmacy, Department of Epidemiology, Faculty of Public Health Nanri, Akiko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Nishiwaki, Yuji; School of Medicine, Toho University, Department of Environmental and Occupational Health Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

BMJ Open

1	Eating rate and prevalence of metabolic syndrome in Japanese
2	
3	Satsue Nagahama ^{123*} , Kayo Kurotani ¹ , Ngoc Minh Pham ⁴ , Akiko Nanri ¹ , Keisuke
4	Kuwahara ¹ , Masashi Dan ² , Yuji Nishiwaki ³ , Tetsuya Mizoue ¹
5	
6	¹ Department of Epidemiology and Prevention, Center for Clinical Sciences, National
7	Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, Japan,
8	Zip162-8655; Tel +81-3-3202-7181, Fax 81-3-3202-7364, E-mail: satsue-n@umin.ac.jp
9	² All Japan Labor Welfare Foundation, Tokyo, Japan;
10	³ Department of Environmental and Occupational Health, School of Medicine, Toho
11	University, Tokyo, Japan;
12	⁴ Department of Epidemiology, Faculty of Public Health, Thai Nguyen University of
13	Medicine and Pharmacy, Thai Nguyen Province, Vietnam;
14	
15	Keywords: eating rate, eating speed, metabolic syndrome, health check, Japan
16	Word count: 2354

17 ABSTRACT

Objectives: To examine the association between eating rate and the prevalence of

- 19 metabolic syndrome.
- **Design:** Cross-sectional study.

21 Setting: Annual health checkup for workers at a health check service center in Japan.

22 Participants: A total of 56,865 participants (41,820 males and 15,045 females) who

attended health checkup in 2011 and reported not to have a history of coronary heart

disease or stroke.

Main outcome measure: Metabolic syndrome was defined according to two criteria:
the Adult Treatment Program III of the National Cholesterol Education Program
(NCEP-ATPIII) and International Diabetes Federation (IDF).

Results: In multiple logistic regression models, eating rate was significantly and positively associated with metabolic syndrome defined by both criteria. The odds ratio (95% confidence interval) for slow, normal and fast were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively in men (P for trend <0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for trend <0.001) under NCEP-ATPIII criteria. The association of eating rate and metabolic

syndrome was attenuated after further adjustment for body mass index, but remained

BMJ Open

3
4
5
5
0
1
8
9
10
11
12
13
10
14
15
16
17
18
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
3/
25
30
30
37
38
39
40
41
42
43
44
44
4J 4C
40
4/
48
49
50
51
52
53
54
55
55
56
5/
58
59
60

35	statistically significant only in men. Of components of metabolic syndrome, the
36	strongest association with eating rate was abdominal obesity. The associations of slow
37	eating with high blood pressure and hyperglycemia and those of fast eating with
38	abnormal lipid profile were still significant in men, even after adjustment for body mass
39	index.

- Conclusions: Our results suggest that eating rate is associated with higher prevalence of
- .is la metabolic syndrome and that this association is largely accounted for by higher body 41

42mass.

40

43 Strength and Limitation

- 44 This large scale study was the first study to elucidate the association between eating rate
- 45 and metabolic syndrome in men and women, separately.
- 46 This is the only study to report the association between eating rate and metabolic
- 47 syndrome defined by using waist circumference.
- 48 Eating rate was assessed by self-report questionnaire.

49 I	ntrodu	ction
------	--------	-------

50	Metabolic syndrome (MetS) is a cluster of physiological risk factors associated
51	with cardiovascular disease and several types of cancer. ¹ Determination of etiologic
52	factors for MetS is required for the establishment of public health strategies to reduce its
53	prevalence and prevent resulting complications. Growing evidence from both
54	observational and interventional studies in human suggests a role of dietary habits in the
55	development of MetS, ²⁻⁴ which originates from obesity. Obesity has been extensively
56	investigated in relation to dietary habits including eating rate since 1962, when Ferster
57	published a theoretical and practical weight control program focusing on eating
58	behaviors including eating rate. ⁵ Observational studies showed that obese people ate at a
59	faster rate than non-obese people, ⁶ and reducing eating rate may be a simple and
60	effective therapy for obesity. ⁷
61	During the past decade, several cross-sectional studies have found a positive
62	association between eating rate and overweight ⁸⁻¹¹ or insulin resistance. ¹¹⁻¹⁵ Similarly, a
63	few longitudinal studies showed that eating fast was associated with an increased risk of

64 weight gain^{16, 17} and type 2 diabetes.¹⁸ In addition, some cross-sectional studies have 65 reported that fast eating was positively associated with hypertriglyceridemia and low 66 high-density lipoprotein cholesterol (HDL-C).^{11, 14, 19} Therefore it is conceivable that

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
13
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
10
-+U 14
41
42
43
44
45
46
47
10
40
49
50
51
52
53
54
55
55
30
5/
58
59
60

83

1

67	eating rate may be associated with the prevalence of MetS. To our knowledge, however,
68	only one Korean study cross-sectionally examined eating rate in relation to MetS. ²⁰ In
69	that study, MetS was defined by using body mass index (BMI), rather than waist
70	circumference, and investigated the association in men only. Waist circumference is a
71	component of most MetS definitions ^{21, 22} as a surrogate of central obesity, which can
72	better predict cardiovascular risk. ²³ It is therefore necessary to examine the relationship
73	between eating rate and MetS using waist circumference in both sexes. Here, we
74	investigated cross-sectionally the association between eating rate and the prevalence of
75	MetS according to two criteria: the National Cholesterol Education Program, Adult
76	Treatment Panel III (NCEP-ATPIII) criteria ²¹ and International Diabetes Federation
77	(IDF) criteria ²² using a large dataset of worker health checkup in Japanese men and
78	women.
79	
80	METHODS AND PROCEDURES
81	Study population
82	Study participants were attendants of 2011 (calendar year) annual health

84 performing health checkup for employees. Participants were employees and their

examination at All Japan Labor Welfare Foundation (Tokyo), a health service center

BMJ Open

2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
21
24
25
26
27
28
29
30
31
22
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 17
+/
40 40
49
50
51
52
53
54
55
55
00
5/
58
59
60

85	dependents, aged 17-99 in men and 17-85 in women. Of 297,148 participants, we
86	excluded 3,660 with a history of myocardial infarction, coronary heart disease or stroke
87	24,452 with missing information on eating rate, 192,581 who took meal within 8 hours
88	or provided no information on meal time, 204,423 with missing data for any of the
89	components of MetS, 15,886 with missing information on covariates (BMI, smoking
90	status, alcohol consumption and physical activity). Some participants met more than one
91	of these exclusion criteria, leaving 56,865 participants (41,820 males and 15,045
92	females) for analysis.
93	

94 Data collection and measurements

In Japan, a new health checkup program focusing on MetS was initiated in 952008 according to the recommendation from the Ministry of Health, Labor and 96 Welfare.²⁴ At All Japan Labor Welfare Foundation, a self-administered questionnaire, 97 which was recommended by the Japanese government (Ministry of Health, Labor and 98 Welfare),²⁵ was used to assess eating rate, medical history and health-related lifestyles 99 100 including smoking, alcohol consumption and regular physical activity. Eating rate was assessed by asking "How fast is your speed of eating?", with three response options 101 (slow, normal and fast). A trained staff measured height to the nearest 0.1 cm, weight to 102

2
3
4
5
5
6
7
8
õ
9
10
11
12
13
13
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
27
21
28
29
30
21
31
32
33
34
35
00
36
37
38
39
10
40
41
42
43
44
15
40
46
47
48
10
49
50
51
52
53
50
04
55
56
57
50
00
59
60

1

103	the nearest 0.1 kg and waist circumference to the nearest 0.1 cm at the umbilical level in
104	a standing position. BMI was calculated as the weight in kilograms divided by the
105	squared height in meters. Blood pressure in the sitting position was measured using an
106	automated machine (HEM-907, Omron, Kyoto, Japan). Participants with high blood
107	pressure (≥130 mm Hg systolic or ≥85 mm Hg diastolic) received another measurement
108	and data showing lower systolic blood pressure was used. Venous blood sample was
109	collected, stored in a cooler at 4 degrees for transportation to an external laboratory
110	(SRL, Tokyo, Japan) and measured within 24 hours of blood drawing. Triglyceride level
111	was measured by enzymatic colorimertic test (Bio Majesty JCA-BM8060, JEOL, Tokyo
112	Japan). HDL-C level was determined by a direct method (Bio Majesty JCA-BM8060,
113	JEOL, Tokyo, Japan). Plasma glucose levels were determined using by the hexokinase
114	method (an automatic clinical chemistry analyzer JCA-BM9000 series, JEOL, Tokyo,
115	Japan).
116	

117 **Definitions for MetS**

MetS was defined according to two criteria: NCEP-ATPIII criteria and IDF
criteria. Under NCEP-ATPIII criteria, MetS was defined as the presence of three or
more of the following risk factors: 1) waist circumference for Asian population ≥90 cm

121	in men and \geq 80 cm in women, 2) triglyceride level \geq 150 mg/dL (1.7 mmol/L), 3)
122	HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women,
123	4) blood pressure \geq 130 mm Hg systolic or \geq 85 mm Hg diastolic, 5) fasting glucose level
124	\geq 100 mg/dL (5.6 mmol/L). ²¹ To meet the criteria for IDF MetS, participants must have
125	central obesity (waist circumference \geq 90 cm in men and \geq 80 cm in women) plus any
126	two of the following factors: 1) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50
127	mg/dL (1.29 mmol/L) in women, 2) triglyceride level \geq 150 mg/dL (1.7mmol/L), 3)
128	blood pressure \geq 130 mm Hg systolic or \geq 85 mm Hg diastolic, 4) fasting glucose level
129	\geq 100 mg/dL (5.6 mmol/L). ²² In both criteria, participants under medication for diabetes,
130	hypertension and dyslipidemia were considered as having respective factor, irrespective
131	of measured data.
132	
133	Statistical analysis
134	Participants were divided into three groups according to eating rate (slow,
135	normal and fast). The characteristics of participants across eating rate categories were
136	expressed as means (standard deviation), medians (interquartile range) and percentages

- 137 for normal continuous variables, non-normal continuous variables and categorical
- 138 variables, respectively. Trend association was assessed by assigning ordinal numbers (0

1
2
3
4
5
6
7
1
ð
9
10
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
57
52
ວ ວ
54
55
56
57
58
59
60

139	to 2) to the categories of eating rate (slow, normal and fast, respectively) and was tested
140	using linear regression and an extension of the Wilcoxon Rank-Sum test for normal and
141	non-normal continuous variables, respectively, and logistic regression for categorical
142	variables. Multiple logistic regression analysis was used to estimate the odds ratios
143	(OR) and 95% confidence interval (CI) for the prevalence of MetS across eating rate
144	categories, with normal eating rate as the reference. In multiple regression analysis, the
145	initial model was adjusted for age (continuous, year) only. In the second model, we
146	further adjusted for smoking status (non-smoker, daily smoker consuming <20
147	cigarettes per day or ≥ 20 cigarettes per day), alcohol consumption (non-drinker, <1 go,
148	1 to <2 go or ≥ 2 go per day; go is a Japanese traditional unit of measurement for alcohol
149	and a go of sake (Japanese traditional beverage) contains ~23g of ethanol) and physical
150	activity (walking time <60 min per day or \geq 60 min per day). In the third model, we
151	added BMI (continuous, kg/m ²) to the second model. We performed likelihood ratio test
152	for testing the interaction between eating rate and sex. All analyses were done for men
153	and women separately because the interaction was significant (P for interaction <0.001).
154	We repeated the above analyses for each component of MetS. Two-tailed P value <0.05
155	was considered statistically significant. All statistical analyses were performed with
156	STATA, version 12.1 (StataCorp, College Station, TX, USA).

157	
158	RESULTS
159	The prevalence of MetS defined by NCEP-ATPIII and IDF was 18.5% and
160	12.8%, respectively, in men and 12.9% and 11.4%, respectively, in women. Table 1
161	shows characteristics of the study participants across categories of eating rate. Men who
162	ate fast tended to be young, whereas women who ate slowly tended to be young. Those
163	who ate fast had significantly higher BMI, waist circumference, triglyceride level and
164	systolic and diastolic blood pressures and lower HDL-C level in both men and women.
165	The ORs of the prevalence of MetS across eating rate are shown in Table 2.
166	Regardless of which criteria we used, faster eating was associated with higher
167	prevalence of MetS in age- and multivariable-adjusted models. The trend was more
168	apparent in men than in women under IDF criteria. The multivariable-adjusted ORs
169	(95% CI) of MetS for eating slow, normal and fast rate were 0.70 (0.62 to 0.79), 1.00
170	(reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend <0.001), and 0.74
171	(0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for
172	trend <0.001) under NCEP-ATPIII criteria; the correspondent values were 0.62 (0.54 to
173	0.72), 1.00 (reference) and 1.82 (1.72 to 1.94), respectively, in men (P for trend <0.001),
174	and 0.73 (0.58 to 0.91), 1.00 (reference) and 1.32 (1.17 to 1.49), respectively, in women

2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠3 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
12	
42 12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

1 2

(P for trend <0.001) under IDF criteria. Further adjustment for BMI markedly
attenuated these associations; however, the association with eating rate and MetS under
both criteria remained statistically significant in men.

Table 3 shows the ORs of the prevalence of individual MetS components 178across three categories of eating rate. The prevalence of central obesity increased from 179slow to fast eating in both men and women (OR 0.63, 1.00 (reference) and 1.97, 180 respectively, in men (P for trend <0.001), and 0.73, 1.00(reference) and 1.44, 181respectively, in women (P for trend <0.001)). High blood pressure was positively 182associated with eating rate in both sexes. Eating rate was associated with fasting glucose, 183 triglyceride and HDL-C in men and with HDL-C in women. Additional adjustment for 184BMI largely attenuated these associations, but the associations of slow eating with high 185blood pressure (men and women) and hyperglycemia (men) and those of fast eating 186 187with abnormal lipid profile (men) remained statistically significant.

188

189 **DISCUSSION**

In this large population of Japanese men and women, we found that eating rate was positively associated with the prevalence of MetS, especially in men. Of components of MetS, the association with abdominal obesity was strongest. The

193	relationship with blood pressure in both sexes and fasting plasma glucose and lipids in
194	men remained statistically significant even after additional adjustment for BMI. To our
195	best knowledge, the present study is the first to report a positive association between
196	eating rate and the prevalence of MetS defined by using waist circumference.
197	The present finding for Mets is consistent with that of a study among Korean
198	men reporting that eating rate was positively associated with MetS, which was defined
199	by using BMI instead of waist circumference. ²⁰ As regards MetS components, our study
200	is compatible with some cross-sectional studies showing that eating rate was associated
201	with higher BMI ⁸⁻¹⁰ and two longitudinal studies showing that eating rate was
202	associated with weight gain. ^{16, 17} In a Korean study that elucidated the association
203	between eating rate and components of MetS for men and women separately, eating rate
204	was associated with obesity, high blood pressure, hyperglycemia and abnormal lipid
205	profile in men, whereas it was associated with only obesity in women. ¹¹ Our results
206	were largely consistent with those in the Korean study (except for blood pressure in
207	women).
208	We found that the association between eating rate and MetS was stronger in
209	men than in women. In the present study, the association between eating rate and MetS
210	components (hyperglycemia with slow eating and dyslipidemia with fast eating)

2
З
4
4
5
6
7
Q.
0
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
20
27
28
29
30
24
31
32
33
34
25
35
36
37
38
30
40
40
41
42
43
11
44
45
46
47
18
40
49
50
51
52
52
55
54
55
56
57
50
20
59
60

1

	remained statistically significant even after adjusting for BMI in men but not in women.
212	This finding appears to be compatible with those in previous studies showing sex
213	difference in association of eating rate with MetS components ¹¹ and insulin resistance. ¹²
214	These results may reflect the difference in actual eating speed between men and women.
215	One study elucidated that women took more bites, smaller bite size and slower bites
216	than men in eating the same amount of doughnut, irrespectively of body size. ²⁶ Another
217	study showed that objectively measured eating speed in men with self-reported slow
218	eating was faster than that in women with self-reported fast eating. ²⁷ Taken together,
219	eating rate may have a greater impact on metabolism in men than that in women.
220	Although mechanisms whereby eating rate influences metabolism is not fully
221	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal
221 222	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of
221 222 223	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In
221 222 223 224	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight
 221 222 223 224 225 	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight and MetS. Because fast eating has been associated with obesity even after adjusting for
 221 222 223 224 225 226 	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight and MetS. Because fast eating has been associated with obesity even after adjusting for total energy intake, ^{8-11, 14} there may be other pathways. One study showed that
 221 222 223 224 225 226 227 	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight and MetS. Because fast eating has been associated with obesity even after adjusting for total energy intake, ^{8-11, 14} there may be other pathways. One study showed that interleukin-1 β and interleukin-6 were higher among those who ate fast than among

ascribed the elevation of these inflammatory cytokines to an increased postprandial hyperglycemia after eating fast. These cytokines were well-known to give rise to obesity, dyslipidemia and insulin resistance,³⁶⁻³⁹ and thus also accounted for the association between fast eating and MetS. The strengths of our study deserve mention. Data of this large-scale study was derived from annual health-checkup for employees of various companies. Therefore, the present findings may be applicable to apparently healthy workers in Japan. In addition, body weight, body height and waist circumference was measured by trained technicians, which increased the validity of our study. Nonetheless, several limitations in the present study merit consideration. First, eating rate was self-reported. However, self-reported eating rate has been shown to be well correlated with friend-reported one⁹ or objectively measured one.²⁷ Second, total energy intake was not available in our study. However, because energy intake is influenced by eating rate and thus may act as a mediator rather than confounder, the adjustment of energy intake could underestimate the association between eating rate and MetS. Moreover, eating rate has been associated with body weight independent of energy intake.^{7-10, 13} Third, cross-sectional design precludes any

- of the effects of residual confounding and confounding by unmeasured variables.

causal inferences about the role of eating rate. Finally, we cannot exclude a possibility

In conclusion, we found a positive trend association between eating rate and the prevalence of MetS, especially in men. The association between eating rate and MetS was largely accounted for by level of obesity, only eating rate per se may have small effect, in any, on the components of MetS. Further research should address whether reducing eating rate prevents obesity and MetS.

 BMJ Open

Table1. Characteristics of the study individuals according to eating rates

	Men (n = 41,820)				Women (n = 15,045)			
	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Age (years) ^b	46.9 ± 12.3	46.9 ± 10.9	45.0 ± 10.4	< 0.001	43.5 ± 12.5	47.2 ± 11.6	46.7 ± 11.2	< 0.001
Walking time, ≥60 min/day (%)	21.8	19.0	20.6	0.004	15.5	15.0	16.1	0.798
Smoking status (%)								
Non-smoker	61.9	55.0	56.6	<0.001	82.9	83.1	80.7	0.572
Daily consuming <20 cigarettes /day	28.6	34.6	31.3		16.0	15.7	17.6	
Daily consuming ≥20 cigarettes /day	9.5	10.4	12.1		1.1	1.2	1.7	

Alcohol (%)

Non-drinker	30.2	26.7	26.7	< 0.001	53.4	52.2	49.8	< 0.001
Drinker <1 go /day ^d	33.9	35.7	34.5		34.2	35.9	35.5	
Drinker 1 to <2 go /day ^d	24.6	26.3	26.8		9.5	9.5	11.5	
Drinker $\geq 2 go / day^d$	11.3	11.3	12.0		2.9	2.4	3.2	
BMI (kg/m ²) ^b	22.4 ± 3.3	23.4 ± 3.3	24.6 ± 3.7	< 0.001	21.0 ± 3.5	21.8 ± 3.5	22.5 ± 3.8	< 0.001
Waist circumference (cm) ^b	80.3 ± 9.2	82.9 ± 9.0	86.0 ± 9.8	< 0.001	75.5 ± 9.5	77.7 ± 9.4	79.6 ± 9.8	< 0.001
Systolic blood pressure (mm Hg) ^b	123.5 ± 15.5	126.1 ± 15.5	126.7 ± 15.1	<0.001	113.1 ± 16.3	117.3 ± 17.2	117.0 ± 17.2	< 0.001
Diastolic blood pressure (mm Hg) ^b	75.2 ± 11.4	77.3 ± 11.9	78.0 ± 12.0	<0.001	69.1 ± 10.9	71.4 ± 11.5	71.5 ± 11.9	< 0.001
Fasting plasma glucose (mg/dL) ^c	91 (85 to 98)	92 (86 to 99)	92 (86 to 99)	0.001	87 (82 to 93)	88 (83 to 94)	88 (83 to 94)	0.001
Triglyceride (mg/dL) ^c	92 (65 to 138)	99 (69 to 148)	107 (73 to 161)	< 0.001	63 (48 to 87)	69 (51 to 96)	71 (52 to 101)	< 0.001

HDL-C (mg/dL)^b

 $61.3 \pm 15.3 \qquad 59.4 \pm 15.0 \qquad 57.2 \pm 14.3 \quad <0.001 \qquad 71.4 \pm 15.3 \qquad 70.5 \pm 15.8 \qquad 69.3 \pm 15.5 \quad <0.001$

Cross to sectional survey of 56,865 examinees in All Japan Labor Welfare Foundation, Japan, 2011.

BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Linear regression and an extension of the Wilcoxon Rank-Sum test for normal and non-normal continuous variables, respectively, and logistic

regression for categorical variables, assigning ordinal number (0 to 2) to eating rate.

^b Mean \pm SD.

^c Median (interquartile range).

^d One *go* contains ~23g of ethanol.

		Men (n = 41,820))		W	omen (n = 15,04	45)	
Eating rate	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (25.0)	
NCEP-ATPIII								
MetS, n	361	4,180	3,193		116	1,261	547	
Model 1 ^b	0.70(0.62 to 0.79)	1.00 (Ref)	1.62(1.53 to 1.71)	< 0.001	0.75(0.61 to 0.92)	1.00 (Ref)	1.27(1.13 to 1.42)	<0.001
Model 2 °	0.70(0.62 to 0.79)	1.00 (Ref)	1.61(1.53 to 1.70)	< 0.001	0.74(0.60 to 0.91)	1.00 (Ref)	1.27(1.13 to 1.43)	< 0.001
Model 3 ^d	0.91(0.80 to 1.04)	1.00 (Ref)	1.10(1.03 to 1.17)	< 0.001	0.88(0.70 to 1.11)	1.00 (Ref)	0.98(0.86 to 1.12)	0.714
IDF								
			20)				
	For	peer review or	nly - http://bmjope	n.bmj.co	m/site/about/guide	lines.xhtml		

Table2. Odds ratios and 95% confidence intervals for metabolic syndrome according to eating rate (n = 56,865)

Model 1 ^b	200	2,727	2,150		101	1,110	201
Model 1 ^b							
	0.62(0.54 to 0.72)	1.00 (Ref)	1.84(1.73 to 1.95)	< 0.001	0.73(0.59 to 0.92)	1.00 (Ref)	1.32(1.17 to 1.49)
Model 2 ^c	0.62(0.54 to 0.72)	1.00 (Ref)	1.82(1.72 to 1.94)	< 0.001	0.73(0.58 to 0.91)	1.00 (Ref)	1.32(1.17 to 1.49)
Model 3 ^d	0.81(0.67 to 0.97)	1.00 (Ref)	1.15(1.07 to 1.24)	< 0.001	0.87(0.68 to 1.12)	1.00 (Ref)	1.00(0.87 to 1.14)
mmol/L) in mer	h and <50 mg/dL (1.3 m	mol/L) in wor	nen, 4) blood pressure	$e \ge 130 \text{ mm}$	n Hg systolic or ≥85 n	nm Hg diastoli	c, 5) fasting glucose l
≥100 mg/dL (5.	6 mmol/L); Ref=Refere	nce; IDF= Inte	ernational Diabetes Fe	ederation:	waist circumference ≥	90 cm in men	and ≥ 80 cm in wome
any two of the f	following factors: 1) HD	DL-C level <40	mg/dL (1.04 mmol/L	.) in men a	and <50 mg/dL (1.29 1	nmol/L) in wo	men, 2) triglyceride l
\geq 150 mg/dL (1.	7mmol/L), 3) blood pre	ssure ≥130 mr	n Hg systolic or ≥85 r	nm Hg di	astolic, 4) fasting gluc	ose level ≥100	mg/dL (5.6 mmol/L)
			an(0, to 2) to $-t$	4 -			

^c Adjusted for age, smoking status, alcohol, and regular physical activity.

 .1, and regular physical activity, and body mass incc.

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1

 .1 ^d Adjusted for age, smoking status, alcohol, regular physical activity, and body mass index.

BMJ Open

			1	5	0	e (, ,	
	Men (n = 41,820)				Women (n = 15,045)			
	0	~		P for				P for
Eating rate	slow	normal	fast	trend ^a	slow	normal	fast	trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Central obesity ^b								
Model 1 ^c	0.63(0.56 to 0.71)	1.00 (Ref)	1.98(1.89 to 2.08)	<0.001	0.73(0.64 to 0.83)	1.00 (Ref)	1.44(1.34 to 1.56)	< 0.001
Model 2 ^d	0.63(0.56 to 0.70)	1.00 (Ref)	1.97(1.88 to 2.07)	< 0.001	0.73(0.64 to 0.83)	1.00 (Ref)	1.44(1.33 to 1.56)	< 0.001
High blood press	ure ^e							
Model 1 ^c	0.75(0.69 to 0.82)	1.00 (Ref)	1.22(1.17 to 1.27)	< 0.001	0.76(0.66 to 0.88)	1.00 (Ref)	1.10(1.01 to 1.21)	< 0.001
Model 2 ^d	0.74(0.68 to 0.81)	1.00 (Ref)	1.20(1.15 to 1.26)	< 0.001	0.76(0.65 to 0.88)	1.00 (Ref)	1.10(1.00 to 1.20)	< 0.001

Table3. Odds ratios and 95% confidence intervals for components of metabolic syndrome according to eating rate (n = 56,865)

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
22	
04	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
14	
45	
46	
47	
48	
10	

1

Model 3 $^{\rm f}$	0.88(0.81 to 0.96)	1.00 (Ref)	0.97(0.93 to 1.02)	0.645	0.85(0.72 to 0.99)	1.00 (Ref)	0.93(0.84 to 1.02)	0.923
High fasting pla	sma glucose ^g							
Model 1 ^c	0.78(0.71 to 0.87)	1.00 (Ref)	1.17(1.12 to 1.23)	< 0.001	1.03(0.85 to 1.25)	1.00 (Ref)	1.17(1.04 to 1.31)	0.035
Model 2 ^d	0.78(0.71 to 0.87)	1.00 (Ref)	1.16(1.11 to 1.22)	< 0.001	1.03(0.85 to 1.25)	1.00 (Ref)	1.16(1.03 to 1.31)	0.042
Model 3 ^f	0.88(0.80 to 0.98)	1.00 (Ref)	0.99(0.94 to 1.05)	0.238	1.14(0.94 to 1.40)	1.00 (Ref)	1.02(0.90 to 1.15)	0.536
High triglycerid	e ^h							
Model 1 ^c	0.88(0.80 to 0.96)	1.00 (Ref)	1.32(1.26 to 1.38)	<0.001	0.83(0.67 to 1.01)	1.00 (Ref)	1.14(1.01 to 1.28)	0.002
Model 2 ^d	0.90(0.82 to 0.98)	1.00 (Ref)	1.33(1.27 to 1.39)	<0.001	0.81(0.66 to 1.00)	1.00 (Ref)	1.13(1.01 to 1.27)	0.002
Model 3 $^{\rm f}$	1.08(0.98 to 1.19)	1.00 (Ref)	1.07(1.02 to 1.12)	0.121	0.90(0.73 to 1.11)	1.00 (Ref)	0.98(0.87 to 1.11)	0.753
Low HDL-C ⁱ								
Model 1 ^c	0.83(0.73 to 0.96)	1.00 (Ref)	1.34(1.26 to 1.43)	< 0.001	0.90 (0.74 to 1.09)	1.00 (Ref)	1.11(0.99 to 1.25)	0.018

24

Model 2 ^d	0.83(0.73 to 0.96)	1.00 (Ref)	1.36(1.28 to 1.45)	< 0.001	0.89(0.74 to 1.08)	1.00 (Ref)	1.12(1.00 to 1.26)	0.011
Model 3 $^{\rm f}$	0.97(0.84 to 1.12)	1.00 (Ref)	1.10(1.03 to 1.18)	0.004	1.00(0.82 to 1.22)	1.00 (Ref)	0.96(0.85 to 1.08)	0.500
Ref=Reference; I	BMI=body mass index;	HDL-C=high t	o density lipoprotein	cholester	bl.			
^a Multiple logistic	c regression, assigning c	ordinal number	(0 to 2) to eating rate					
^b Waist circumfer	rence \ge 90 cm in men, \ge	80 cm in wom	en.					
° Adjusted for age.								
^d Adjusted for age, smoking status, alcohol, and regular physical activity.								
^e Blood pressure \geq 130 mm Hg for systolic or \geq 85 mm Hg for diastolic.								
^f Adjusted for age	e, smoking status, alcoho	ol, regular phys	sical activity and body	y mass inc	lex.			
^g Fasting plasma	glucose $\geq 100 \text{ mg/dL}$ or	under medicat	ion.					
^h Triglyceride $\geq 150 \text{ mg/dL}$ or under medication.								
ⁱ HDL-C <40 mg/dL in men, <50 mg/dL in women or under medication.								
	25							

Acknowledgments

The authors would like to thank Dr. Nobuo Yanagisawa and Dr. Takeshi Kawaguchi for their coordinating the study.

Contributors: SN and KKurotani designed study and drafted the manuscript. SN, NMP, AN, KKuwahara performed the data analysis. MD collected and interpreted the data. All authors have participated in the interpretation of the findings, revised it critically for important intellectual content and approved final version to be published. TM and YN provided administrative, technical and material support.SN and TM are guarantors. Funding: This study was supported by the Industrial Health Foundation. Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: all authors declare no interests. Ethical approval: The research protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine and the Ethics Committee of Toho University.

Data sharing: No additional data available.

Transparency: SN affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant,

Page 27 of 36

registered) have been explained.

References

1. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. *Lancet* 2010;**375**:181-83.

2. Gomez-Martinez S, Martinez-Gomez D, Perez de Heredia F, et al. Eating habits and total and abdominal fat in Spanish adolescents: influence of physical activity. The AVENA study. *J Adolesc Health* 2012;**50**:403-09.

3. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. *Diabetes care* 2008;**31**:805-07.

4. Nanri A, Tomita K, Matsushita Y, et al. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: randomized controlled trial. *J Occup Health* 2012;**54**:215-22.

5. Ferster CB, Nurnberger JI, Levitt EB. The control of eating. 1962. *Obes Res* 1996;**4**:401-10.

 Hill SW, McCutcheon NB. Eating responses of obese and nonobese humans during dinner meals. *Psychosom Med* 1975;**37**:395-401.

7. Bellack AS. Behavior therapy for weight reduction. Addict Behav 1975;1:73-82.

8. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to obesity: findings based

BMJ Open

on self-administered questionnaires among middle-aged Japanese men and women. *J Epidemiol* 2006;**16**:117-24.

9. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-y-old Japanese women. *Int J Obes Relat Metab Disord* 2003;27:1405-10.

10. Maruyama K, Sato S, Ohira T, et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: cross sectional survey. *Bmj* 2008;**337**:a2002.

11. Lee KS, Kim DH, Jang JS, et al. Eating rate is associated with cardiometabolic risk factors in Korean adults. *Nut Metab Cardiovasc Dis* 2013;**23**:635-41.

12. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. *Prev Med* 2008;**46**:154-59.

13. Radzeviciene L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. *Clin Nutr* 2013;**32**:232-35.

14. Ohkuma T, Fujii H, Iwase M, et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka Diabetes Registry and the Hisayama Study. *Diabetologia* 2013;**56**:70-77.

15. Shigeta H, Shigeta M, Nakazawa A, et al. Lifestyle, obesity, and insulin resistance.

Diabetes care 2001;**24**:608.

16. Gerace TA, George VA. Predictors of weight increases over 7 years in fire fighters and paramedics. *Prev Med* 1996;**25**:593-600.

17. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. *Appetite* 2011;**57**:179-83.

Sakurai M, Nakamura K, Miura K, et al. Self-reported speed of eating and 7-year
 risk of type 2 diabetes mellitus in middle-aged Japanese men. *Metabolism* 2012;61:1566-71.

19. Kral JG, Buckley MC, Kissileff HR, et al. Metabolic correlates of eating behavior in severe obesity. *Int J Obes Relat Metab Disord* 2001;**25**:258-64.

20. Shin A, Lim SY, Sung J, et al. Dietary intake, eating habits, and metabolic syndrome in Korean men. *J Am Diet Assoc* 2009;**109**:633-40.

21. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. *Circulation* 2005;**112**:2735-52.

22. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition.

A Consensus Statement from the International Diabetes Federation. Diabet Med

BMJ Open

2006;23:469-80.

23. Shen W, Punyanitya M, Chen J, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. *Obesity (Silver Spring)* 2006;14:727-36.
24. Questionnaire of Specific Health Checkups. Secondary Questionnaire of Specific Health Checkups. Available at: http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed 21 Feb 2014.

25. Specific Health Checkups and Specific Health Guidance. Secondary Specific Health Checkups and Specific Health Guidance. Available at:

http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p rogram2 02.pdf. Accessed 21 Feb 2014.

26. Hill SW, McCutcheon NB. Contributions of obesity, gender, hunger, food preference, and body size to bite size, bite speed, and rate of eating. *Appetite* 1984;**5**:73-83.

27. Ekuni D, Furuta M, Takeuchi N, et al. Self-reports of eating quickly are related to a decreased number of chews until first swallow, total number of chews, and total duration of chewing in young people. *Arch Oral Biol* 2012;**57**:981-86.

28. Rolls ET. Sensory processing in the brain related to the control of food intake. *Proc Nutr Soc* 2007;**66**:96-112.

29. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of

food intake and body weight. Nature 2006;443:289-95.

30. de Graaf C, Blom WA, Smeets PA, et al. Biomarkers of satiation and satiety. *Am J Clin Nutr* 2004;**79**:946-61.

31. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. *J Clin Endocrinol Metab* 2010;**95**:333-37.

32. Sobki SH, Zaid AA, Khan HA, et al. Significant impact of pace of eating on serum ghrelin and glucose levels. *Clin Biochem* 2010;**43**:522-24.

33. Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. *Appetite* 2011;**56**:25-31.

34. Scisco JL, Muth ER, Dong Y, et al. Slowing bite-rate reduces energy intake: an application of the bite counter device. *J Am Diet Assoc* 2011;**111**:1231-35.

35. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interluekin-1beta concentrations in Japanese men not being treated for metabolic diseases. *Nutrition* 2012;**28**:978-83.

36. Besedovsky H, del Rey A, Sorkin E, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. *Science* 1986;**233**:652-54

37. Matsuki T, Horai R, Sudo K, et al. IL-1 plays an important role in lipid metabolism

BMJ Open

by regulating insulin levels under physiological conditions. *J Exp Med* 2003;**198**:877-88.

38. Speaker KJ, Fleshner M. Interleukin-1 beta: a potential link between stress and the development of visceral obesity. *BMC physiol* 2012;**27**:8.

39. Thorand B, Baumert J, Doring A, et al. Sex differences in the relation of body composition to markers of inflammation. *Atherosclerosis* 2006;**184**:216-24.

MS ID#: BMJ.2014.018520

MS TITLE: Eating rate and prevalence of metabolic syndrome in Japanese.

	Item No	Recommendation	Location in manuscript
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Line 20 on page 2
		(b) Provide in the abstract an informative and balanced summary of what	What was done: line 18-19 on page 2
		was done and what was found	What was found: line 40-42 on page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	Scientific background: line 50-73 on page 5
		reported	Rationale: Line 73-78 on page 5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 67-68 and line 77-78 on page 6
Methods			
Study design	4	Present key elements of study design early in the paper	Line 74 on page 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	Line 82-85 on page 6-7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	Line 85-92 on page 7
		participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	Line 118-150 on page 8-10
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Line 100-102 on page 7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Exclusion: line 85-92 on page 7
			Adjustment: line 145-151 on page 10
Study size	10	Explain how the study size was arrived at	Not provided
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	Line 144-151 on page 10
variables		applicable, describe which groupings were chosen and why	
		1	
		For peer review only - http://bmjopen.bmj.com/site/a	bout/guidelines.xhtml

BMJ Open

Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Line 134-156 on page 9-10
		(b) Describe any methods used to examine subgroups and interactions	Line 151-153 on page 10
		(c) Explain how missing data were addressed	We excluded participants who had missing information on potentia confounding variables (line 89 on page 7).
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	N/A
		(<u>e</u>) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	Line 159-160 on page 11
		potentially eligible, examined for eligibility, confirmed eligible, included in	Table 1
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	Line 159-164 on page 11
		(b) Indicate number of participants with missing data for each variable of	N/A
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	Table 2
			Line 159-160 on page 11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Table 2, Table3
		estimates and their precision (eg, 95% confidence interval). Make clear	Line 165-187 on page 11-12
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Table2, Table3
		(c) If relevant, consider translating estimates of relative risk into absolute	N/A
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	Line 152-153 on page 10
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Line 190-194 on page 12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	Line 237-246 on page 15
		2	
		or imprecision. Discuss both direction and magnitude of any potential bias	
--	--------------------------------	---	--
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	Line 197-219 on page 13-14
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Line 247-251 on page 16
Other information			
Junding	22	Give the source of funding and the role of the funders for the present study	This study was supported by the Industrial Health Foundation for
		and, if applicable, for the original study on which the present article is based	drafting the maniscript.
N/A: Not applicable.			
Give information sepa	arately	for exposed and unexposed groups.	
Note: An Explanation a checklist is best used in http://www.annals.org/	and Ela n conju ′, and E	aboration article discusses each checklist item and gives methodological backgro nction with this article (freely available on the Web sites of PLoS Medicine at ht pidemiology at http://www.epidem.com/). Information on the STROBE Initiativ	und and published examples of transparent reporting. The STROBE tp://www.plosmedicine.org/, Annals of Internal Medicine at e is available at www.strobe-statement.org.
		3	

BMJ Open

Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005241.R1
Article Type:	Research
Date Submitted by the Author:	31-May-2014
Complete List of Authors:	Nagahama, Satsue; All Japan Labor Welfare Foundation, ; School of Medicine, Toho University, Department of Environmental and Occupational Health Kurotani, Kayo; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Pham, Ngoc Minh; Thai Nguyen University of Medicine and Pharmacy, Department of Epidemiology, Faculty of Public Health Nanri, Akiko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Nishiwaki, Yuji; School of Medicine, Toho University, Department of Environmental and Occupational Health Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

1	Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional
2	study
3	
4	Satsue Nagahama ^{123*} , Kayo Kurotani ¹ , Ngoc Minh Pham ⁴ , Akiko Nanri ¹ , Keisuke
5	Kuwahara ¹ , Masashi Dan ² , Yuji Nishiwaki ³ , Tetsuya Mizoue ¹
6	
7	¹ Department of Epidemiology and Prevention, Center for Clinical Sciences, National
8	Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, Japan,
9	Zip162-8655; Tel +81-3-3202-7181, Fax 81-3-3202-7364,
10	E-mail: <u>satsue_0323@hotmail.com</u>
11	² All Japan Labor Welfare Foundation, Tokyo, Japan;
12	³ Department of Environmental and Occupational Health, School of Medicine, Toho
13	University, Tokyo, Japan;
14	⁴ Department of Epidemiology, Faculty of Public Health, Thai Nguyen University of
15	Medicine and Pharmacy, Thai Nguyen Province, Vietnam;
16	
17	Keywords: eating rate, metabolic syndrome, health checkup, Japan, Joint Interim
18	Statement

19 Word count: 2373

1		
2		
3		
4		
5		
6	20	ABSTRACT
7		
8		
9	21	Objectives: To examine the association between self-reported eating rate and metabolic
10		
11	9 9	syndrome
12	22	syndrome.
13		
14	23	Design: Cross-sectional study
16	-0	
17		
18	24	Setting: Annual health checkup at a health check service center in Japan.
19		
20		
21	25	Participants: A total of 56,865 participants (41,820 males and 15,045 females) who
22		
23	0.0	
24	26	attended health checkup in 2011 and reported not to have a history of coronary heart
25		
26	97	disease or stroke
27	21	disease of shoke.
28		
29	28	Main outcome measure: Metabolic syndrome was defined by the joint of interim
30		
31		
32	29	statement of the International Diabetes Federation and the American Heart
33		
34		
35	30	Association/National Heart, Lung, and Blood Institute.
36		
37	0.1	Doubles In multiple logistic regression models, esting rate was significantly and
38	31	Results: In multiple logistic regression models, eating rate was significantly and
39		
40 /1	32	nositively associated with metabolic syndrome. The multivariable-adjusted odds ratios
41	04	positively associated with inclubone syndrome. The multivariable-adjusted odds ratios
43		
44	33	(95% confidence interval) for slow, normal and fast were 0.70 (0.62 to 0.79), 1.00
45		
46		
47	34	(reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend <0.001), and 0.74
48		
49	~ ~	
50	35	(0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for
51		
52	26	trend < 0.001). The association of eating rate and metabolic syndrome was attenuated
53	50	tend (0.001). The association of eating face and inclabolic syndrome was attenuated
54		
55	37	after further adjustment for body mass index in both sexes, but remained statistically
56		, , , , , , , , , , , , , , , , , , ,
5/		
50 50		
09 60		9
00		J

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
4U 44	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

> significant in men. Of metabolic syndrome components, abdominal obesity showed the 38strongest association with eating rate. The associations of slow eating with high blood 39pressure and hyperglycemia and that of fast eating with lipid abnormality were still 40 significant in men, even after adjustment for body mass index. 41 **Conclusions:** Results suggest that eating rate is associated with the presence of 42

- 43metabolic syndrome and that this association is largely accounted for by the difference
- of body mass according to eating rate. 44

Strength and Limitation

- This study included a large number of participants, used waist circumference in defining
- metabolic syndrome, and analyzed data for men and women separately.
- Eating rate was assessed by a self-reported questionnaire. Information on dietary intake
- was not obtained.

ot obtained.

50 Introduction

Metabolic syndrome (MetS) is a cluster of physiological risk factors associated with cardiovascular disease and several types of cancer.¹ Determination of etiologic factors for MetS is required for the establishment of public health strategies to reduce its prevalence and prevent resulting complications. Growing evidence from both observational and interventional studies suggests a role of dietary habits in the development of MetS,²⁻⁴ which originates from obesity. Obesity has been extensively investigated in relation to dietary habits including eating rate since 1962, when Ferster published a theoretical and practical weight control program focusing on eating behaviors including eating rate.⁵ Observational studies showed that obese people ate at a faster rate than non-obese people,⁶ and reducing eating rate may be a simple and effective therapy for obesity.⁷ During the past decade, several cross-sectional studies have found a positive

association between eating rate and overweight⁸⁻¹¹ or insulin resistance.¹¹⁻¹⁵ Similarly, a few longitudinal studies showed that eating fast was associated with an increased risk of weight gain^{16, 17} and type 2 diabetes.¹⁸ In addition, some cross-sectional studies have reported that fast eating was positively associated with hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C).^{11, 14, 19} Therefore it is conceivable that

BMJ Open

68	eating rate may be associated with MetS. To our knowledge, however, only one Korean
69	study cross-sectionally examined eating rate in relation to MetS. ²⁰ In that study, MetS
70	was defined by using body mass index (BMI), rather than waist circumference, and
71	investigated the association in men only. Waist circumference is a component of most
72	MetS definitions as a surrogate of central obesity, which can better predict
73	cardiovascular risk. ²¹ It is therefore necessary to examine the relationship between
74	eating rate and MetS using waist circumference in both sexes. Here, we investigated
75	cross-sectionally the association between self-reported eating rate and the presence of
76	MetS according to the joint of interim statement of the International Diabetes Federation
77	and the American Heart Association/National Heart, Lung, and Blood Institute (JIS) ²²
78	using a large dataset of health checkup in Japanese men and women.
79	
80	METHODS AND PROCEDURES
81	Study population
82	In Japan, health checkup under occupational health and safety law is mandatory
83	for all employed workers ²³ and has been modified in 2008 when the recommendation
84	for new national health checkup system focusing on MetS has been launched. ²⁴ Study
85	participants were attendants of 2011 (calendar year) annual health checkup at All Japan

1
2
3
4
5
6
7
2 2
0
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<u>40</u>
50
51
52 50
ວ ວ
54
55
56
57
58
59
60

86	Labor Welfare Foundation (Tokyo), a health service center performing health checkup.
87	Participants were mainly Japanese employees but also included a small number of their
88	dependents and foreign workers, aged 17-99 in men and 17-85 in women. Of 297,148
89	participants, we excluded 3,660 with a history of myocardial infarction, coronary heart
90	disease or stroke, 24,452 with missing information on eating rate, 192,581 who took
91	meal within 8 hours or provided no information on meal time, 204,423 with missing
92	data for any of the components of MetS, 15,886 with missing information on covariates
93	(BMI, smoking status, alcohol consumption and physical activity). Some participants
94	met more than one of these exclusion criteria, leaving 56,865 participants (41,820 males
95	and 15,045 females) for analysis. We did not obtain written informed consent from each
96	participant; instead, we disclosed the execution of the study by showing posters, giving
97	participants an opportunity to refuse the use of their data for the study. This procedure
98	conforms to the Japanese Ethical Guidelines for Epidemiological Research. The
99	research protocol was approved by the Ethics Committee of the National Center for
100	Global Health and Medicine and the Ethics Committee of Toho University.
101	Data collection and measurements
102	A self-administered questionnaire, which was recommended for specific health
103	examination by the Japanese government (Ministry of Health, Labour and Welfare), ²⁵

104	was used to assess eating rate, medical history and health-related lifestyles including
105	smoking, alcohol consumption and regular physical activity. Eating rate was assessed by
106	asking "How fast is your speed of eating?", with three response options (slow, normal
107	and fast). A trained staff measured height to the nearest 0.1 cm, weight to the nearest 0.1
108	kg and waist circumference to the nearest 0.1 cm at the umbilical level in a standing
109	position. BMI was calculated as the weight in kilograms divided by the squared height
110	in meters. Blood pressure in the sitting position was measured using an automated
111	machine (HEM-907, Omron, Kyoto, Japan). Participants with high blood pressure
112	(\geq 130 mm Hg systolic or \geq 85 mm Hg diastolic) received another measurement and data
113	showing lower systolic blood pressure was used. Venous blood sample was collected,
114	stored in a cooler at 4 degrees for transportation to an external laboratory (SRL, Tokyo,
115	Japan) and measured within 24 hours of blood drawing. Triglyceride level was
116	measured by enzymatic colorimertic test (Bio Majesty JCA-BM8060, JEOL, Tokyo,
117	Japan). HDL-C level was determined by a direct method (Bio Majesty JCA-BM8060,
118	JEOL, Tokyo, Japan). Plasma glucose levels were determined using by the hexokinase
119	method (an automatic clinical chemistry analyzer JCA-BM9000 series, JEOL, Tokyo,
120	Japan).

Definitions for MetS

1
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39 40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
50
00 57
5/ 50
58
59
60

122	According to the JIS criteria, MetS was defined as three or more of the
123	following risk factors: 1) waist circumference for Asian population \geq 90 cm in men and
124	\geq 80 cm in women, 2) triglyceride level \geq 150 mg/dL (1.7 mmol/L), 3) HDL-C level <40
125	mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women, 4) blood
126	pressure ≥ 130 mm Hg systolic or ≥ 85 mm Hg diastolic, 5) fasting glucose level ≥ 100
127	mg/dL (5.6 mmol/L). ²² Participants under medication for diabetes, hypertension and
128	dyslipidemia were considered as having respective factor, irrespective of measured data.
129	Statistical analysis
130	Participants were divided into three groups according to eating rate (slow,
131	normal and fast). The characteristics of participants across eating rate categories were
132	expressed as means (standard deviation) for continuous variables and percentages for
133	categorical variables, respectively. Fasting plasma glucose and triglyceride were
134	expressed as medians (interquartile range) due to their skewed distribution. Trend
135	association was assessed by assigning ordinal numbers (0 to 2) to the categories of
136	eating rate (slow, normal and fast, respectively) and was tested using linear regression,
137	an extension of the Wilcoxon Rank-Sum test and logistic regression, as appropriate.
138	Multiple logistic regression analysis was used to estimate the odds ratios (OR) with
139	95% confidence intervals (CI) for the presence of MetS across eating rate categories,

BMJ Open

140	with normal eating rate as the reference. We adjusted for age (continuous, year) in the
141	basic model. In the second model, we further adjusted for smoking status (non-smoker,
142	daily smoker consuming <20 cigarettes per day or \geq 20 cigarettes per day), physical
143	activity (walking time <60 min per day or \geq 60 min per day), and alcohol consumption
144	(non-drinker, <1 go, 1 to <2 go or ≥ 2 go per day; one go of sake, Japanese traditional
145	beverage, is about 180 ml of 10 to 14% of ethanol and contains ~23g of ethanol). In the
146	third model, we added BMI (continuous, kg/m^2) to the second model. We performed
147	likelihood ratio test for testing the interaction between eating rate and sex. All analyses
148	were done for men and women separately because the interaction was significant (P for
149	interaction <0.001). We repeated the above analyses for each component of MetS.
150	Two-tailed P value <0.05 was considered statistically significant. All statistical analyses
151	were performed with STATA, version 12.1 (StataCorp, College Station, TX, USA).
152	
153	RESULTS
154	The prevalence of MetS was 18.5% in men and 12.9% in women. Table 1
155	shows characteristics of the study participants across categories of eating rate. Men who

- 157 who ate fast had significantly higher BMI, waist circumference, triglyceride level and

ate fast tended to be young, whereas women who ate slowly tended to be young. Those

2
2
3
4
-
5
6
7
1
8
۵
3
10
11
40
12
13
11
14
15
16
10
17
18
10
19
20
21
21
22
23
20
24
25
26
20
27
28
20
29
30
00
31
32
22
33
34
35
00
36
37
20
38
39
10
41
42
40
43
44
15
40
46
47
40
48
49
50
50
51
52
E 0
ეკ
54
55
22
56
57
57
58
59
20
00

158 systolic and diastolic blood pressures and lower HDL-C level in both men and women.

159	The ORs of the presence of MetS across eating rate are shown in Table 2.
160	Faster eating was associated with higher presence of MetS in age- and
161	multivariable-adjusted models. The trend was more apparent in men than in women.
162	The multivariable-adjusted ORs (95% CI) of MetS for eating slow, normal and fast rate
163	were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively, in men
164	(P for trend <0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43),
165	respectively, in women (P for trend <0.001). Further adjustment for BMI markedly
166	attenuated these associations; however, the association with fast eating and MetS
167	remained statistically significant in men.
168	Table 3 shows the ORs of the presence of individual MetS components across
169	three categories of eating rate. The ORs of central obesity increased from slow to fast
170	eating in both men and women (OR 0.63, 1.00 (reference) and 1.97, respectively, in men
171	(P for trend <0.001), and 0.73, 1.00(reference) and 1.44, respectively, in women (P for
172	trend <0.001)). High blood pressure and triglyceride were positively associated with
173	eating rate in both sexes. High fasting plasma glucose and low HDL-C were associated
174	with slow eating in both sexes, but they were associated with fast eating in men only.
175	Additional adjustment for BMI largely attenuated these associations, but the

1
2
3
4
5
6
7
0
8
9
10
11
12
13
14
15
16
17
18
19
20
20
∠ I 20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 52
53
04 57
55
56
57
58
59
60

associations of slow eating with high blood pressure (men and women) and 176hyperglycemia (men) and those of fast eating with abnormal lipid profile (men) 177remained statistically significant. 178

179

193

DISCUSSION 180

181 In this large population of Japanese men and women, we found that eating rate was positively associated with the presence of MetS, especially in men. Of components 182of MetS, the association with abdominal obesity was strongest. The relationship with 183blood pressure in both sexes and fasting plasma glucose and lipids in men remained 184statistically significant even after additional adjustment for BMI. To our best knowledge, 185the present study is the first to report a positive association between eating rate and 186 MetS defined by using waist circumference. 187 188The present finding for MetS is consistent with that of a study among Korean men reporting that eating rate was positively associated with MetS, which was defined 189by using BMI instead of waist circumference.²⁰ As regards MetS components, our study 190 is compatible with some cross-sectional studies showing that eating rate was associated 191 with higher BMI⁸⁻¹⁰ and two longitudinal studies showing that eating rate was 192associated with weight gain.^{16, 17} In a Korean study that elucidated the association

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
31
27
ა <u>∠</u>
33
34
35
36
37
38
39
40
41
/2
72 12
43 11
44 45
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

194	between eating rate and components of MetS for men and women separately, eating rate
195	was associated with obesity, high blood pressure, hyperglycemia and abnormal lipid
196	profile in men, whereas it was associated with only obesity in women. ¹¹ Our results
197	were largely consistent with those in the Korean study (except for blood pressure in
198	women).
199	Notably, we found that the associations of MetS components with eating rate
200	were largely attenuated after adjustment for BMI, a finding compatible with those of a
201	cross-sectional study in Korea ¹¹ and a prospective study in Japan. ¹⁸ This result indicates
202	that obesity is a mediator whereby fast eating deteriorates MetS components. We also
203	found, however, that some associations remained statistically significant even after
204	adjusting for BMI (dyslipidemia with fast eating and hyperglycemia with slow eating in
205	men, and high blood pressure with slow eating in both men and women). Similarly, the
206	above-mentioned Korean study ¹¹ reported that high rate of eating remained an important
207	determinant for low HDL-C and high fasting plasma glucose after adjustment for BMI
208	in men. Therefore, there may be pathways other than weight gain that might underlie the
209	association between eating rate and MetS.
210	We found that the association between eating rate and MetS was stronger in
211	men than in women, consistent with a previous study in Korea. ¹¹ Such sex difference

1
2
2
3
4
5
6
7
8
0
3
10
11
12
13
14
15
10
10
17
18
19
20
21
22
~~ ??
23
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
40
-5 50
50
51
52
53
54
55
56
57
52
50
59
60

212	may reflect the difference in actual eating speed between men and women. One study
213	elucidated that women took more bites, smaller bite size and slower bites than men in
214	eating the same amount of doughnut, irrespectively of body size. ²⁶ Another study
215	showed that objectively measured eating speed in men with self-reported slow eating
216	was faster than that in women with self-reported fast eating. ²⁷ Taken together, eating
217	rate may have a greater impact on metabolism in men than that in women.
218	Although mechanisms whereby eating rate influences metabolism is not fully
219	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal
220	from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of
221	stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In
222	these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight
223	and MetS. Because fast eating has been associated with obesity even after adjusting for
224	total energy intake, ^{8-11, 14} there may be other pathways. One study showed that
225	interleukin-1 β and interleukin-6 were higher among those who ate fast than among
226	those who ate slowly, even after accounting for energy intake and BMI. ³⁵ These
227	cytokines could induce insulin resistance, ^{36, 37} contributing to high blood pressure via an
228	increased renal sodium and water retention, plasma noradrenalin and sympathetic
229	nervous system activity. ³⁸⁻⁴⁰

230	The strengths of our study deserve mention. The present study has large sample
231	size (56,865 participants). In addition, body weight, body height and waist
232	circumference were measured by trained technicians, which increased the validity of our
233	study. Nonetheless, several limitations in the present study merit consideration. First,
234	eating rate was self-reported. However, self-reported eating rate has been shown to be
235	well correlated with friend-reported one ⁹ or objectively measured one. ²⁷ Second, total
236	energy intake was not available in our study. However, because energy intake is
237	influenced by eating rate and thus may act as a mediator rather than confounder, the
238	adjustment of energy intake could underestimate the association between eating rate and
239	MetS. Moreover, eating rate has been associated with body weight independent of
240	energy intake. ^{7-10, 13} Third, the study participants were mainly workers in various
241	industries including manufacturing (43.6%), service (27.8%) and transport and
242	telecommunications (9.9%), and these figures are similar to those of national survey. ⁴¹
243	However, information on profession of participants was not available, and thus caution
244	is required when generalize the present finding. Fourth, cross-sectional design precludes
245	any causal inferences about the role of eating rate. Finally, we cannot exclude a
246	possibility of the effects of residual confounding and confounding by unmeasured
247	variables.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

In conclusion, we found a positive trend association between self-reported eating rate and the presence of MetS in men and women. The association between eating rate and MetS was largely accounted for by the difference of body mass across eating rate. Further research should address whether reducing eating rate prevents and MetS. obesity and MetS.

		Men (n = 41,820)				Women (n = 15,045)				
	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a		
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)			
Age (years) ^b	46.9 ± 12.3	46.9 ± 10.9	45.0 ± 10.4	<0.00 1	43.5 ± 12.5	47.2 ± 11.6	46.7 ± 11.2	<0.00 1		
Walking time, ≥60 min/day (%)	21.8	19.0	20.6	0.004	15.5	15.0	16.1	0.798		
Smoking status (%)				<0.00						
Non-smoker	61.9	55.0	56.6	1	82.9	83.1	80.7	0.572		
		18								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Daily consuming <20 cigarettes	28.6	34.6	31 3		16.0	15 7	17.6
/day	20.0	51.0	51.5		10.0	10.7	17.0
Daily consuming ≥20 cigarettes							
/day	9.5	10.4	12.1		1.1	1.2	1.7
Alcohol (%)							
				< 0.00			
Non-drinker	30.2	26.7	26.7	1	53.4	52.2	49.8
Drinker <1 go /day ^d	33.9	35.7	34.5		34.2	35.9	35.5
Drinker 1 to <2 go /day ^d	24.6	26.3	26.8		9.5	9.5	11.5
Drinker $\geq 2 go / day^d$	11.3	11.3	12.0		2.9	2.4	3.2
BMI $(kg/m^2)^b$	22.4 ± 3.3	23.4 ± 3.3	24.6 ± 3.7	<0.00	21.0 ± 3.5	21.8 ± 3.5	22.5 ± 3.8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1	
2	
3	
4	
7	
5	
6	
7	
~	
8	
9	
10	
10	
11	
12	
13	
15	
14	
15	
16	
47	
17	
18	
10	
10	
20	
21	
22	
~~~	
23	
24	
25	
20	
20	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
35	
36	
37	
20	
30	
39	
40	
/1	
41	
42	
43	
11	
44	
45	
46	
17	
41	
48	
10	

Waist circumference (cm) ^b	80.3 ± 9.2	82.9 ± 9.0	86.0 ± 9.8	<0.00 1	75.5 ± 9.5	77.7 ± 9.4	79.6 ± 9.8	<0.00
Systolic blood pressure (mm Hg) ^b	123.5 ± 15.5	126.1 ± 15.5	126.7 ± 15.1	<0.00 1	113.1 ± 16.3	117.3 ± 17.2	117.0 ± 17.2	<0.00 1
Diastolic blood pressure (mm Hg) ^b	75.2± 11.4	77.3 ± 11.9	78.0 ± 12.0	<0.00 1	69.1 ± 10.9	71.4 ± 11.5	71.5 ± 11.9	<0.00 1
Fasting plasma glucose (mg/dL) ^c	91 (85 to 98)	92 (86 to 99)	92 (86 to 99)	0.001	87 (82 to 93)	88 (83 to 94)	88 (83 to 94)	0.001
Triglyceride (mg/dL) ^c	92 (65 to 138)	99 (69 to 148)	107 (73 to 161)	<0.00 1	63 (48 to 87)	69 (51 to 96)	71 (52 to 101)	<0.00 1
		20						
For pe	er review only -	http://bmjopen.	bmj.com/site/abo	ut/guide	lines.xhtml			

HDL-C	$(mg/dL)^{b}$
-------	---------------

<0.00  $61.3 \pm 15.3$  59.4 ± 15.0 57.2 ± 14.3 71.4 ± 15.3 70.5 ± 15.8 

Cross to sectional survey of 56,865 examinees in All Japan Labor Welfare Foundation, Japan, 2011.

BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Linear regression, an extension of the Wilcoxon Rank-Sum test and logistic regression, assigning ordinal number (0 to 2) to eating rate,

as appropriate.

^b Mean ± SD.

^c medians (interquartile range).

^d One *go* contains ~25g of ethanol.



< 0.00

 $69.3 \pm 15.5$ 

	Men $(n = 41,820)$				W			
Eating rate	Slow	Normal ^a	Fast	P for trend ^b	Slow	Normal ^a	Fast	P for trend ^b
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)	·0,	1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
MetS, n	361	4,180	3,193		116	1,261	547	
Model 1	0.70 (0.62 to	1.00	1.62 (1.53 to	<0.00	0.75 (0.61 to	1.00	1.27 (1.13 to	<0.00
c	0.79)	1.00	1.71)	1	0.92)	1.00	1.42)	1
Model 2	0.70 (0.62 to	1.00	1.61 (1.53 to	<0.00	0.74 (0.60 to	1.00	1.27 (1.13 to	< 0.00
d	0.79)	1.00	1.70)	1	0.91)	1.00	1.43)	1

Table2. Odds ratios and 95% confidence intervals for metabolic syndrome according to eating rate (n = 56,865)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 **BMJ Open** 

Model 3	0.91 (0.80 to		1.10 (1.03 to	< 0.00	0.88 (0.70 to	0.98 (0.86 to	
		1.00				1.00	0.714
e	1.04)		1.17)	1	1.11)	1.12)	
MetS as defin	ned using the crite	eria of the Joint	Interim Statement	: the prese	nce of three or m	ore of the following risk factors: 1)	waist
circumferenc	e ≥90 cm in men	and ≥80 cm in v	vomen, 2) triglycer	ride level	≥150 mg/dL (1.7	mmol/L), 3) HDL-C level <40 mg/d	L (1.04
mmol/L) in n	nen and <50 mg/c	lL (1.3 mmol/L)	in women, 4) bloc	od pressure	e≥130 mm Hg sy	stolic or ≥85 mm Hg diastolic, 5) fa	sting
glucose level	$\geq$ 100 mg/dL (5.6	mmol/L).					
^a Reference.							
^b Multiple log	gistic regression,	assigning ordina	l number (0 to 2) t	o eating ra	nte.		
^c Adjusted fo	r age.						
^d Adjusted fo	r age, smoking st	atus, alcohol, an	d regular physical	activity.			
^e Adjusted fo	r age, smoking st	atus, alcohol, reg	gular physical activ	vity, and b	ody mass index.		

	Men (n = 41,820)				Women $(n = 15,045)$					
Eating rate	Slow	Normal ^a	Fast	P for trend ^b	Slow	Normal ^a	Fast			
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)	9,	1,398 (9.3)	9,893 (65.8)	3,754 (24.9)			
Central obesity	/ ^c									
No. 1. 1. 1. d	0.63 (0.56 to	1.00	1.98 (1.89 to	<0.00	0.73 (0.64 to	1.00	1.44 (1.34 to			
Widden 1	0.71)		2.08)	1	0.83)		1.56)			
Model 2 ^e	0.63 (0.56 to	1.00	1.97 (1.88 to	<0.00	0.73 (0.64 to	1.00	1.44 (1.33 to			
	0.70)		2.07)	1	0.83)		1.56)			

High blood pressure ^f

	0.75 (0.69 to		1.22 (1.17 to	< 0.00	0.76 (0.66 to		1.10 (1.01 1	to <0.00
Model 1 ^d	0.82)	1.00	1.27)	1	0.88)	1.00	1.21)	1
Model 2 ^e	0.74 (0.68 to	1.00	1.20 (1.15 to	<0.00	0.76 (0.65 to	1.00	1.10 (1.00 to	<0.00
Widder 2	0.81)	1.00	1.26)	1	0.88)	1.00	1.20)	1
M	0.88 (0.81 to	1.00	0.97 (0.93 to	0.645	0.85 (0.72 to	1.00	0.93 (0.84 to	0.022
Model 3 °	0.96)	1.00	1.02)	0.645	0.99)	1.00	1.02)	0.923
High fasting pl	asma glucose ^h							
Model 1 ^d	0.78 (0.71 to	1.00	1.17 (1.12 to	<0.00	1.03 (0.85 to	1.00	1.17 (1.04 to	0.035
	0.87)	1.00	1.23)	1	1.25)	1.00	1.31)	0.055
Model 2 ^e	0.78 (0.71 to	1.00	1.16 (1.11 to	<0.00	1.03 (0.85 to	1.00	1.16 (1.03 to	0.042

	0.87)		1.22)	1	1.25)		1.31)	
a.	0.88 (0.80 to		0.99 (0.94 to		1.14 (0.94 to		1.02 (0.90 to	
Model 3 ^g	0.98)	1.00	1.05)	0.238	1.40)	1.00	1.15)	
High triglycer	ide ⁱ							
	0.88 (0.80 to		1.32 (1.26 to	<0.00	0.83 (0.67 to		1.14 (1.01 to	
Model 1 ^a	0.96)	1.00	1.38)	1	1.01)	1.00	1.28)	
	0.90 (0.82 to		1.33 (1.27 to	<0.00	0.81 (0.66 to		1.13 (1.01 to	
Model 2 ^e	0.98)	1.00	1.39)	1	1.00)	1.00	1.27)	
Model 3 ^g	1.08 (0.98 to		1.07 (1.02 to		0.90 (0.73 to		0.98 (0.87 to	
	1.19)	1.00	1.12)	0.121	1.11)	1.00	1.11)	

 **BMJ Open** 



BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Reference.

^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Waist circumference  $\geq$ 90 cm in men,  $\geq$ 80 cm in women.

^d Adjusted for age.

^e Adjusted for age, smoking status, alcohol, and regular physical activity.

^fBlood pressure  $\geq$ 130 mm Hg for systolic or  $\geq$ 85 mm Hg for diastolic.

^g Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

^hFasting plasma glucose  $\geq 100 \text{ mg/dL}$  or under medication.

ⁱ Triglyceride  $\geq$ 150 mg/dL or under medication.

^jHDL-C <40 mg/dL in men, <50 mg/dL in women or under medication.

#### Acknowledgments

The authors would like to thank Dr. Nobuo Yanagisawa and Dr. Takeshi Kawaguchi for their coordinating the study.

**Contributors:** SN and KKurotani designed study and drafted the manuscript. SN, NMP, AN, KKuwahara performed the data analysis. MD collected and interpreted the data. All authors have participated in the interpretation of the findings, revised it critically for important intellectual content and approved final version to be published. TM and YN provided administrative, technical and material support.SN and TM are guarantors.

Funding: This study was supported by the Industrial Health Foundation.

**Competing interests:** All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare: all authors declare no interests.

Ethical approval: The research protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine and the Ethics Committee of Toho University.

Data sharing: No additional data available.

Transparency: SN affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

#### References

1. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. *Lancet* 2010;**375**:181-83.

2. Gomez-Martinez S, Martinez-Gomez D, Perez de Heredia F, et al. Eating habits and total and abdominal fat in Spanish adolescents: influence of physical activity. The AVENA study. *J Adolesc Health* 2012;**50**:403-09.

3. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. *Diabetes care* 2008;**31**:805-07.

4. Nanri A, Tomita K, Matsushita Y, et al. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: randomized controlled trial. *J Occup Health* 2012;**54**:215-22.

5. Ferster CB, Nurnberger JI, Levitt EB. The control of eating. 1962. Obes Res 1996;4:401-10.

 Hill SW, McCutcheon NB. Eating responses of obese and nonobese humans during dinner meals. *Psychosom Med* 1975;**37**:395-401.

7. Bellack AS. Behavior therapy for weight reduction. Addict Behav 1975;1:73-82.

8. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to obesity: findings based

on self-administered questionnaires among middle-aged Japanese men and women. *J Epidemiol* 2006;**16**:117-24.

9. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-y-old Japanese women. *Int J Obes Relat Metab Disord* 2003;**27**:1405-10.

10. Maruyama K, Sato S, Ohira T, et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: cross sectional survey. *BMJ* 2008;**337**:a2002.

11. Lee KS, Kim DH, Jang JS, et al. Eating rate is associated with cardiometabolic risk factors in Korean adults. *Nut Metab Cardiovasc Dis* 2013;**23**:635-41.

12. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. *Prev Med* 2008;**46**:154-59.

13. Radzeviciene L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. *Clin Nutr* 2013;**32**:232-35.

14. Ohkuma T, Fujii H, Iwase M, et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka Diabetes Registry and the Hisayama Study. *Diabetologia* 2013;**56**:70-77.

15. Shigeta H, Shigeta M, Nakazawa A, et al. Lifestyle, obesity, and insulin resistance.

*Diabetes care* 2001;**24**:608.

16. Gerace TA, George VA. Predictors of weight increases over 7 years in fire fighters and paramedics. *Prev Med* 1996;**25**:593-600.

17. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. *Appetite* 2011;**57**:179-83.

Sakurai M, Nakamura K, Miura K, et al. Self-reported speed of eating and 7-year
 risk of type 2 diabetes mellitus in middle-aged Japanese men. *Metabolism* 2012;61:1566-71.

19. Kral JG, Buckley MC, Kissileff HR, et al. Metabolic correlates of eating behavior in severe obesity. *Int J Obes Relat Metab Disord* 2001;**25**:258-64.

20. Shin A, Lim SY, Sung J, et al. Dietary intake, eating habits, and metabolic syndrome in Korean men. *J Am Diet Assoc* 2009;**109**:633-40.

21. Shen W, Punyanitya M, Chen J, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. *Obesity (Silver Spring)* 2006;**14**:727-36.

22. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American

Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;**120**:1640-5.

23. Ministry of Justice, Japan. Industrial Safty and Health Act, Article 66 (Medical

Examination). Available at:

http://www.japaneselawtranslation.go.jp/law/detail/?id=1926&vm=&re=. Accessed 26 May 2014.

24. Ministry of Health, Labour and Welfare. Specific Health Checkups and Specific Health Guidance. Secondary Specific Health Checkups and Specific Health Guidance.
Available at: http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed 26 May 2014.

25. Ministry of Health, Labour and Welfare. Questionnaire of Specific Health Checkups. Secondary Questionnaire of Specific Health Checkups. Available at: http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p

rogram2_02.pdf. Accessed 26 May 2014. (in Japanese)

26. Hill SW, McCutcheon NB. Contributions of obesity, gender, hunger, food preference, and body size to bite size, bite speed, and rate of eating. *Appetite* 1984;**5**:73-83.

27. Ekuni D, Furuta M, Takeuchi N, et al. Self-reports of eating quickly are related to a decreased number of chews until first swallow, total number of chews, and total
#### **BMJ Open**

duration of chewing in young people. *Arch Oral Biol* 2012;**57**:981-86.
28. Rolls ET. Sensory processing in the brain related to the control of food intake. *Proc Nutr Soc* 2007;**66**:96-112.

29. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. *Nature* 2006;**443**:289-95.

30. de Graaf C, Blom WA, Smeets PA, et al. Biomarkers of satiation and satiety. *Am J Clin Nutr* 2004;**79**:946-61.

31. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. *J Clin Endocrinol Metab* 2010;**95**:333-37.

32. Sobki SH, Zaid AA, Khan HA, et al. Significant impact of pace of eating on serum ghrelin and glucose levels. *Clin Biochem* 2010;**43**:522-24.

33. Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. *Appetite* 2011;**56**:25-31.

34. Scisco JL, Muth ER, Dong Y, et al. Slowing bite-rate reduces energy intake: an application of the bite counter device. *J Am Diet Assoc* 2011;**111**:1231-35.

35. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interluekin-1beta concentrations in Japanese men not being treated for

metabolic diseases. Nutrition 2012;28:978-83.

36. Besedovsky H, del Rey A, Sorkin E, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. *Science* 1986;**233**:652-54

37. Matsuki T, Horai R, Sudo K, et al. IL-1 plays an important role in lipid metabolism
by regulating insulin levels under physiological conditions. *J Exp Med*2003;**198**:877-88.

38. Yatabe MS, Yatabe J, Yoneda M, et al. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. *Am J Clin Nutr* 2010;**92**:77-82.
39. Facchini FS, DoNascimento C, Reaven GM, et al. Blood pressure, sodium intake,

insulin resistance, and urinary nitrate excretion. *Hypertension* 1999;**33**:1008-12.

40. Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. *Metabolism*. 1990;**39**:167-74.

41. Ministry of Health, Labour and Welfare. Special Survey on Industrial Safety and Health. Available at: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei11/h23.html.

Accessed 26 May 2014. (in Japanese)

### **BMJ Open**

1	Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional
2	study
3	
4	Satsue Nagahama ^{123*} , Kayo Kurotani ¹ , Ngoc Minh Pham ⁴ , Akiko Nanri ¹ , Keisuke
5	Kuwahara ¹ , Masashi Dan ² , Yuji Nishiwaki ³ , Tetsuya Mizoue ¹
6	
7	¹ Department of Epidemiology and Prevention, Center for Clinical Sciences, National
8	Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, Japan,
9	Zip162-8655; Tel +81-3-3202-7181, Fax 81-3-3202-7364,
10	E-mail: <u>satsue_0323@hotmail.com</u>
11	² All Japan Labor Welfare Foundation, Tokyo, Japan;
12	³ Department of Environmental and Occupational Health, School of Medicine, Toho
13	University, Tokyo, Japan;
14	⁴ Department of Epidemiology, Faculty of Public Health, Thai Nguyen University of
15	Medicine and Pharmacy, Thai Nguyen Province, Vietnam;
16	
17	Keywords: eating rate, metabolic syndrome, health checkup, Japan, Joint Interim
18	Statement

1		
2		
3		
4		
5		
6	20	ABSTRACT
7	20	
8		
9	21	<b>Objectives:</b> To examine the association between self-reported eating rate and metabolic
10		• <b>~j</b> ••••••••••••••••••••••••••••••••••
11		
12	22	syndrome.
13		
14		
15	23	Design: Cross-sectional study.
16		
17		
18	24	Setting: Annual health checkup at a health check service center in Japan.
19		
20		
21	25	Participants: A total of 56,865 participants (41,820 males and 15,045 females) who
22		
23		
24	26	attended health checkup in 2011 and reported not to have a history of coronary heart
25		
26	07	
27	27	disease of stroke.
28		
29	90	Main autaoma massure. Matabalia gundrama was defined by the joint of interim
30	28	wiam outcome measure: Metabolic syndrome was defined by the joint of interim
31		
32	90	statement of the International Diabates Federation and the American Heart
33	49	statement of the international Diabetes redefation and the American reart
34		
35	30	Association/National Heart Lung and Blood Institute
36	00	Association Autonal Heart, Dang, and Diood Institute.
37		
38	31	<b>Results:</b> In multiple logistic regression models eating rate was significantly and
39		
40		
41	32	positively associated with metabolic syndrome. The multivariable-adjusted odds ratios
42		
43		
44	33	(95% confidence interval) for slow, normal and fast were 0.70 (0.62 to 0.79), 1.00
45		
46		
47	34	(reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend <0.001), and 0.74
48		
49		
50	35	(0.60  to  0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for
51		
52	0.0	
53	36	trend <0.001). The association of eating rate and metabolic syndrome was attenuated
54		
55	0 <i>7</i>	often forther adjustment for heady many index in 1-41, so well is seen to 1 statistic 1
56	37	after further adjustment for body mass index in both sexes, but remained statistically
57		
58		

3	
1	
5	
0	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
⊿1	
10	
42	
43	
44	
45	
46	
47	
48	
10	
-+3 E0	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

> significant in men. Of metabolic syndrome components, abdominal obesity showed the 38strongest association with eating rate. The associations of slow eating with high blood 39pressure and hyperglycemia and that of fast eating with lipid abnormality were still 40 significant in men, even after adjustment for body mass index. 41

**Conclusions:** Results suggest that eating rate is associated with the presence of 42

- 43metabolic syndrome and that this association is largely accounted for by the difference
- of body mass according to eating rate. 44

#### **Strength and Limitation**

- This study included a large number of participants, used waist circumference in defining
- metabolic syndrome, and analyzed data for men and women separately.
- Eating rate was and Eating rate was assessed by a self-reported questionnaire. Information on dietary intake

### 50 Introduction

Metabolic syndrome (MetS) is a cluster of physiological risk factors associated with cardiovascular disease and several types of cancer.¹ Determination of etiologic factors for MetS is required for the establishment of public health strategies to reduce its prevalence and prevent resulting complications. Growing evidence from both observational and interventional studies suggests a role of dietary habits in the development of MetS,²⁻⁴ which originates from obesity. Obesity has been extensively investigated in relation to dietary habits including eating rate since 1962, when Ferster published a theoretical and practical weight control program focusing on eating behaviors including eating rate.⁵ Observational studies showed that obese people ate at a faster rate than non-obese people,⁶ and reducing eating rate may be a simple and effective therapy for obesity.⁷ 

During the past decade, several cross-sectional studies have found a positive association between eating rate and overweight⁸⁻¹¹ or insulin resistance.¹¹⁻¹⁵ Similarly, a few longitudinal studies showed that eating fast was associated with an increased risk of weight gain^{16, 17} and type 2 diabetes.¹⁸ In addition, some cross-sectional studies have reported that fast eating was positively associated with hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C).^{11, 14, 19} Therefore it is conceivable that

### **BMJ Open**

75		BMJ Open
	68	eating rate may be associated with MetS. To our knowledge, however, only one Korean
	69	study cross-sectionally examined eating rate in relation to MetS. ²⁰ In that study, MetS
	70	was defined by using body mass index (BMI), rather than waist circumference, and
	71	investigated the association in men only. Waist circumference is a component of most
	72	MetS definitions as a surrogate of central obesity, which can better predict
	73	cardiovascular risk. ²¹ It is therefore necessary to examine the relationship between
	74	eating rate and MetS using waist circumference in both sexes. Here, we investigated
	75	cross-sectionally the association between self-reported eating rate and the presence of
	76	MetS according to the joint of interim statement of the International Diabetes Federation
	77	and the American Heart Association/National Heart, Lung, and Blood Institute (JIS) ²²
	78	using a large dataset of health checkup in Japanese men and women.
	79	
	80	METHODS AND PROCEDURES
	81	Study population
	82	In Japan, health checkup under occupational health and safety law is mandatory
	83	for all employed workers ²³ and has been modified in 2008 when the recommendation
	84	for new national health checkup system focusing on MetS has been launched. ²⁴ Study
	85	participants were attendants of 2011 (calendar year) annual health checkup at All Japan
		7

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
∠ I 22
22 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
31 20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60

86	Labor Welfare Foundation (Tokyo), a health service center performing health checkup.
87	Participants were mainly Japanese employees but also included a small number of their
88	dependents and foreign workers, aged 17-99 in men and 17-85 in women. Of 297,148
89	participants, we excluded 3,660 with a history of myocardial infarction, coronary heart
90	disease or stroke, 24,452 with missing information on eating rate, 192,581 who took
91	meal within 8 hours or provided no information on meal time, 204,423 with missing
92	data for any of the components of MetS, 15,886 with missing information on covariates
93	(BMI, smoking status, alcohol consumption and physical activity). Some participants
94	met more than one of these exclusion criteria, leaving 56,865 participants (41,820 males
95	and 15,045 females) for analysis. We did not obtain written informed consent from each
96	participant; instead, we disclosed the execution of the study by showing posters, giving
97	participants an opportunity to refuse the use of their data for the study. This procedure
98	conforms to the Japanese Ethical Guidelines for Epidemiological Research. The
99	research protocol was approved by the Ethics Committee of the National Center for
100	Global Health and Medicine and the Ethics Committee of Toho University.
101	Data collection and measurements
102	A self-administered questionnaire, which was recommended for specific health
103	examination by the Japanese government (Ministry of Health, Labour and Welfare), ²⁵

104	was used to assess eating rate, medical history and health-related lifestyles including
105	smoking, alcohol consumption and regular physical activity. Eating rate was assessed by
106	asking "How fast is your speed of eating?", with three response options (slow, normal
107	and fast). A trained staff measured height to the nearest 0.1 cm, weight to the nearest 0.1
108	kg and waist circumference to the nearest 0.1 cm at the umbilical level in a standing
109	position. BMI was calculated as the weight in kilograms divided by the squared height
110	in meters. Blood pressure in the sitting position was measured using an automated
111	machine (HEM-907, Omron, Kyoto, Japan). Participants with high blood pressure
112	( $\geq$ 130 mm Hg systolic or $\geq$ 85 mm Hg diastolic) received another measurement and data
113	showing lower systolic blood pressure was used. Venous blood sample was collected,
114	stored in a cooler at 4 degrees for transportation to an external laboratory (SRL, Tokyo,
115	Japan) and measured within 24 hours of blood drawing. Triglyceride level was
116	measured by enzymatic colorimertic test (Bio Majesty JCA-BM8060, JEOL, Tokyo,
117	Japan). HDL-C level was determined by a direct method (Bio Majesty JCA-BM8060,
118	JEOL, Tokyo, Japan). Plasma glucose levels were determined using by the hexokinase
119	method (an automatic clinical chemistry analyzer JCA-BM9000 series, JEOL, Tokyo,
120	Japan).

### **Definitions for MetS**

2
2
3
4
5
e e
0
7
8
0
9
10
11
10
12
13
14
15
15
16
17
10
10
19
20
21
21
22
23
24
24
25
26
20
21
28
29
20
30
31
32
20
33
34
35
26
30
37
38
20
39
40
41
40
42
43
44
1 E
40
46
47
10
4ŏ
49
50
E1
ЪТ
52
53
E /
54
55
56
50
57
58
59
0.0
60

1

According to the JIS criteria, MetS was defined as three or more of the
following risk factors: 1) waist circumference for Asian population $\geq$ 90 cm in men and
$\geq$ 80 cm in women, 2) triglyceride level $\geq$ 150 mg/dL (1.7 mmol/L), 3) HDL-C level <40
mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women, 4) blood
pressure $\geq$ 130 mm Hg systolic or $\geq$ 85 mm Hg diastolic, 5) fasting glucose level $\geq$ 100
mg/dL (5.6 mmol/L). ²² Participants under medication for diabetes, hypertension and
dyslipidemia were considered as having respective factor, irrespective of measured data.
Statistical analysis
Participants were divided into three groups according to eating rate (slow,
normal and fast). The characteristics of participants across eating rate categories were
expressed as means (standard deviation) for continuous variables and percentages for
categorical variables, respectively. Fasting plasma glucose and triglyceride were
expressed as medians (interquartile range) due to their skewed distribution. Trend
association was assessed by assigning ordinal numbers (0 to 2) to the categories of
eating rate (slow, normal and fast, respectively) and was tested using linear regression,
an extension of the Wilcoxon Rank-Sum test and logistic regression, as appropriate.
Multiple logistic regression analysis was used to estimate the odds ratios (OR) with
95% confidence intervals (CI) for the presence of MetS across eating rate categories,

140	with normal eating rate as the reference. We adjusted for age (continuous, year) in the
141	basic model. In the second model, we further adjusted for smoking status (non-smoker,
142	daily smoker consuming <20 cigarettes per day or $\geq$ 20 cigarettes per day), physical
143	activity (walking time <60 min per day or $\geq$ 60 min per day), and alcohol consumption
144	(non-drinker, <1 go, 1 to <2 go or $\geq 2$ go per day; one go of sake, Japanese traditional
145	beverage, is about 180 ml of 10 to 14% of ethanol and contains ~23g of ethanol). In the
146	third model, we added BMI (continuous, $kg/m^2$ ) to the second model. We performed
147	likelihood ratio test for testing the interaction between eating rate and sex. All analyses
148	were done for men and women separately because the interaction was significant (P for
149	interaction <0.001). We repeated the above analyses for each component of MetS.
150	Two-tailed P value <0.05 was considered statistically significant. All statistical analyses
151	were performed with STATA, version 12.1 (StataCorp, College Station, TX, USA).
152	
153	RESULTS
154	The prevalence of MetS was 18.5% in men and 12.9% in women. Table 1
155	shows characteristics of the study participants across categories of eating rate. Men who
156	ate fast tended to be young, whereas women who ate slowly tended to be young. Those

157 who ate fast had significantly higher BMI, waist circumference, triglyceride level and

2
Z
3
4
-
5
6
7
1
8
۵
9
10
11
40
12
13
11
14
15
16
10
17
18
10
19
20
21
<b>∠</b> I
22
23
20
24
25
20
20
27
28
20
29
30
00
31
32
22
33
34
35
00
36
37
20
38
39
4∩
-0
41
42
40
43
44
45
40
46
47
40
4ð
49
50
50
51
52
52
ეკ
54
55
22
56
57
57
58
59
~~
bυ

1

158 systolic and diastolic blood pressures and lower HDL-C level in both men and women.

159	The ORs of the presence of MetS across eating rate are shown in Table 2.
160	Faster eating was associated with higher presence of MetS in age- and
161	multivariable-adjusted models. The trend was more apparent in men than in women.
162	The multivariable-adjusted ORs (95% CI) of MetS for eating slow, normal and fast rate
163	were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively, in men
164	(P for trend <0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43),
165	respectively, in women (P for trend <0.001). Further adjustment for BMI markedly
166	attenuated these associations; however, the association with fast eating and MetS
167	remained statistically significant in men.
168	Table 3 shows the ORs of the presence of individual MetS components across
169	three categories of eating rate. The ORs of central obesity increased from slow to fast
170	eating in both men and women (OR 0.63, 1.00 (reference) and 1.97, respectively, in men
171	(P for trend <0.001), and 0.73, 1.00(reference) and 1.44, respectively, in women (P for
172	trend <0.001)). High blood pressure and triglyceride were positively associated with
173	eating rate in both sexes. High fasting plasma glucose and low HDL-C were associated
174	with slow eating in both sexes, but they were associated with fast eating in men only.
175	Additional adjustment for BMI largely attenuated these associations, but the

#### **BMJ Open**

176	associations of slow eating with high blood pressure (men and women) and
177	hyperglycemia (men) and those of fast eating with abnormal lipid profile (men)
178	remained statistically significant.
179	
180	DISCUSSION
181	In this large population of Japanese men and women, we found that eating rate
182	was positively associated with the presence of MetS, especially in men. Of components
183	of MetS, the association with abdominal obesity was strongest. The relationship with
184	blood pressure in both sexes and fasting plasma glucose and lipids in men remained
185	statistically significant even after additional adjustment for BMI. To our best knowledge,
186	the present study is the first to report a positive association between eating rate and
187	MetS defined by using waist circumference.
188	The present finding for MetS is consistent with that of a study among Korean
189	men reporting that eating rate was positively associated with MetS, which was defined
190	by using BMI instead of waist circumference. ²⁰ As regards MetS components, our study
191	is compatible with some cross-sectional studies showing that eating rate was associated
192	with higher BMI ⁸⁻¹⁰ and two longitudinal studies showing that eating rate was
193	associated with weight gain. ^{16, 17} In a Korean study that elucidated the association

1
2
3
1
5
0
6
1
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
56
57
57
20
59
60

194	between eating rate and components of MetS for men and women separately, eating rate
195	was associated with obesity, high blood pressure, hyperglycemia and abnormal lipid
196	profile in men, whereas it was associated with only obesity in women. ¹¹ Our results
197	were largely consistent with those in the Korean study (except for blood pressure in
198	women).
199	Notably, we found that the associations of MetS components with eating rate
200	were largely attenuated after adjustment for BMI, a finding compatible with those of a
201	cross-sectional study in Korea ¹¹ and a prospective study in Japan. ¹⁸ This result indicates
202	that obesity is a mediator whereby fast eating deteriorates MetS components. We also
203	found, however, that some associations remained statistically significant even after
204	adjusting for BMI (dyslipidemia with fast eating and hyperglycemia with slow eating in
205	men, and high blood pressure with slow eating in both men and women). Similarly, the
206	above-mentioned Korean study ¹¹ reported that high rate of eating remained an important
207	determinant for low HDL-C and high fasting plasma glucose after adjustment for BMI
208	in men. Therefore, there may be pathways other than weight gain that might underlie the
209	association between eating rate and MetS.
210	We found that the association between eating rate and MetS was stronger in
211	men than in women, consistent with a previous study in Korea. ¹¹ Such sex difference

1
2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
22
20
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
11
44
45
46
47
48
10
49
50
51
52
53
54
54
55
56
57
58
50
03
60

212	may reflect the difference in actual eating speed between men and women. One study
213	elucidated that women took more bites, smaller bite size and slower bites than men in
214	eating the same amount of doughnut, irrespectively of body size. ²⁶ Another study
215	showed that objectively measured eating speed in men with self-reported slow eating
216	was faster than that in women with self-reported fast eating. ²⁷ Taken together, eating
217	rate may have a greater impact on metabolism in men than that in women.
218	Although mechanisms whereby eating rate influences metabolism is not fully
219	elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal
220	from oral cavity to the brain, ^{28, 29} induces less satiation and satiety due to a lack of
221	stomach expansion ³⁰ and alters the circulating levels of certain gut hormones. ^{31, 32} In
222	these pathways, fast eating leads to excess energy intake, ^{33, 34} resulting in overweight
223	and MetS. Because fast eating has been associated with obesity even after adjusting for
224	total energy intake, ^{8-11, 14} there may be other pathways. One study showed that
225	interleukin-1 $\beta$ and interleukin-6 were higher among those who ate fast than among
226	those who ate slowly, even after accounting for energy intake and BMI. ³⁵ These
227	cytokines could induce insulin resistance, ^{36, 37} contributing to high blood pressure via an
228	increased renal sodium and water retention, plasma noradrenalin and sympathetic
229	nervous system activity. ³⁸⁻⁴⁰

1
2
2
3
4
5
6
7
8
0
3
10
11
12
13
14
15
10
10
17
18
19
20
21
22
~~ ??
23
24
25
26
27
28
29
30
21
20
32
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
48
40
-5 50
50
51
52
53
54
55
56
57
52
50
59
60

230	The strengths of our study deserve mention. The present study has large sample
231	size (56,865 participants). In addition, body weight, body height and waist
232	circumference were measured by trained technicians, which increased the validity of our
233	study. Nonetheless, several limitations in the present study merit consideration. First,
234	eating rate was self-reported. However, self-reported eating rate has been shown to be
235	well correlated with friend-reported one ⁹ or objectively measured one. ²⁷ Second, total
236	energy intake was not available in our study. However, because energy intake is
237	influenced by eating rate and thus may act as a mediator rather than confounder, the
238	adjustment of energy intake could underestimate the association between eating rate and
239	MetS. Moreover, eating rate has been associated with body weight independent of
240	energy intake. ^{7-10, 13} Third, the study participants were mainly workers in various
241	industries including manufacturing (43.6%), service (27.8%) and transport and
242	telecommunications (9.9%), and these figures are similar to those of national survey. ⁴¹
243	However, information on profession of participants was not available, and thus caution
244	is required when generalize the present finding. Fourth, cross-sectional design precludes
245	any causal inferences about the role of eating rate. Finally, we cannot exclude a
246	possibility of the effects of residual confounding and confounding by unmeasured
247	variables.

In conclusion, we found a positive trend association between self-reported eating rate and the presence of MetS in men and women. The association between eating rate and MetS was largely accounted for by the difference of body mass across eating rate. Further research should address whether reducing eating rate prevents and MetS. obesity and MetS. 

Table1. Characteristics of the study individuals according to eating rates

	Men $(n = 41,820)$			Women (n = 15,045)				
	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Age (years) ^b	$46.9 \pm 12.3$	46.9 ± 10.9	45.0 ± 10.4	<0.00 1	43.5 ± 12.5	47.2 ± 11.6	46.7 ± 11.2	<0.00 1
Walking time, ≥60 min/day (%)	21.8	19.0	20.6	0.004	15.5	15.0	16.1	0.798
Smoking status (%)				<0.00				
Non-smoker	61.9	55.0	56.6	1	82.9	83.1	80.7	0.572
		18						
For p	eer review only -	http://bmiopen.l	omi.com/site/abo	out/auide	lines.xhtml			

 BMJ Open

Daily consuming <20 cigarettes							
/day	28.6	34.6	31.3		16.0	15.7	17.6
ruuy							
Daily consuming $\geq 20$ cigarettes	9.5	10.4	12.1		1.1	1.2	1.7
/day							
Alcohol (%)							
				< 0.00			
Non-drinker	30.2	26.7	26.7	1	53.4	52.2	49.8
Drinker <1 go /day ^d	33.9	35.7	34.5		34.2	35.9	35.5
Drinker 1 to <2 go /day ^d	24.6	26.3	26.8		9.5	9.5	11.5
Drinker $\geq 2 go / day^d$	11.3	11.3	12.0		2.9	2.4	3.2
BMI (kg/m ² ) ^b	$22.4 \pm 3.3$	23.4 ± 3.3	$24.6 \pm 3.7$	<0.00	21.0 ± 3.5	21.8 ± 3.5	$22.5 \pm 3.8$

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
১∠ ৫৫	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	

$\pm 9.4$ 79.6 $\pm 9.8$	< 0.00
	1
$\pm 17.2  117.0 \pm 17.2$	<0.00 1
$\pm 11.5$ 71.5 $\pm 11.9$	<0.00 1
83 to 88 (83 to 94) 94)	0.001
51 to     71 (52 to       96)     101)	<0.00 1
4 ; (( 9 9	$4 \pm 11.5$ $71.5 \pm 11.9$ 8 (83 to       88 (83 to 94)         94)       9(51 to       71 (52 to         96)       101)

	$(ma/dI)^{b}$
HDL-C	(mg/dL)°

<0.00  $61.3 \pm 15.3$   $59.4 \pm 15.0$   $57.2 \pm 14.3$   $71.4 \pm 15.3$   $70.5 \pm 15.8$ 

Cross to sectional survey of 56,865 examinees in All Japan Labor Welfare Foundation, Japan, 2011.

BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Linear regression, an extension of the Wilcoxon Rank-Sum test and logistic regression, assigning ordinal number (0 to 2) to eating rate,

as appropriate.

^b Mean  $\pm$  SD.

^c medians (interquartile range).

^d One *go* contains  $\sim 25$ g of ethanol.



< 0.00

 $69.3 \pm 15.5$ 

	Men $(n = 41,820)$				W			
Eating rate	Slow	Normal ^a	Fast	P for trend ^b	Slow	Normal ^a	Fast	P for trend ^b
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)	·0,	1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
MetS, n	361	4,180	3,193		116	1,261	547	
Model 1	0.70 (0.62 to	1.00	1.62 (1.53 to	< 0.00	0.75 (0.61 to	1.00	1.27 (1.13 to	<0.00
c	0.79)	1.00	1.71)	1	0.92)	1.00	1.42)	1
Model 2	0.70 (0.62 to	1.00	1.61 (1.53 to	< 0.00	0.74 (0.60 to	1.00	1.27 (1.13 to	< 0.00
d	0.79)	1.00	1.70)	1	0.91)	1.00	1.43)	1

Table2. Odds ratios and 95% confidence intervals for metabolic syndrome according to eating rate (n = 56,865)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

**BMJ Open** 

Model 3	0.91 (0.80 to		1.10 (1.03 to	< 0.00	0.88 (0.70 to		0.98 (0.86 to	
		1.00				1.00		0.714
e	1.04)		1.17)	1	1.11)		1.12)	

MetS as defined using the criteria of the Joint Interim Statement : the presence of three or more of the following risk factors: 1) waist
circumference ≥90 cm in men and ≥80 cm in women, 2) triglyceride level ≥150 mg/dL (1.7 mmol/L), 3) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women, 4) blood pressure ≥130 mm Hg systolic or ≥85 mm Hg diastolic, 5) fasting</li>
glucose level ≥100 mg/dL (5.6 mmol/L).
^a Reference.
^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.
^c Adjusted for age.
^d Adjusted for age, smoking status, alcohol, and regular physical activity, and body mass index.

Men (n = 41,820)					W			
Eating rate	Slow	Normal ^a	Fast	P for trend ^b	Slow	Normal ^a	Fast	P for trend ^b
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)	9,	1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Central obesity	y ^c							
Model 1 ^d	0.63 (0.56 to	1.00	1.98 (1.89 to	<0.00	0.73 (0.64 to	1.00 1.00	1.44 (1.34 to	< 0.00
	0.71)	1.00	2.08)	1	0.83)		1.56)	1
Model 2 ^e	0.63 (0.56 to	1.00	1.97 (1.88 to	< 0.00	0.73 (0.64 to		1.44 (1.33 to	< 0.00
	0.70)	1.00	2.07)	1	0.83)		1.56)	1

# Table3. Odds ratios and 95% confidence intervals for components of metabolic syndrome according to eating rate (n = 56,865)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to <0.00
1
< 0.00
1
0.923
0.035

	0.87)		1.22)	1	1.25)		1.31)	
Model 3 ^g	0.88 (0.80 to	1.00	0.99 (0.94 to	0.238	1.14 (0.94 to	1.00	1.02 (0.90 to	0.536
Wodel 5	0.98)	1.00	1.05)		1.40)	1.00	1.15)	
High triglyceri	ide ⁱ							
Model 1 ^d	0.88 (0.80 to	1.00	1.32 (1.26 to	<0.00	0.83 (0.67 to	1.00	1.14 (1.01 to	0.002
Widdel 1	0.96)	1.00	1.38)	1	1.01)		1.28)	
Model 2 ^e	0.90 (0.82 to	1.00	1.33 (1.27 to	<0.00	0.81 (0.66 to	1.00	1.13 (1.01 to	0.002
Widdel 2	0.98)	1.00	1.39)	1	1.00)		1.27)	
Model 3 ^g	1.08 (0.98 to	1.00	1.07 (1.02 to	0.121	0.90 (0.73 to	1.00	0.98 (0.87 to	0.753
	1.19)	1.00	1.12)		1.11)	1.00	1.11)	

Low HDL-C^j

  **BMJ Open** 



BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

## ^a Reference.

^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Waist circumference  $\geq$ 90 cm in men,  $\geq$ 80 cm in women.

^d Adjusted for age.

^e Adjusted for age, smoking status, alcohol, and regular physical activity.

^fBlood pressure  $\geq$ 130 mm Hg for systolic or  $\geq$ 85 mm Hg for diastolic.

^g Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

^h Fasting plasma glucose  $\geq 100 \text{ mg/dL}$  or under medication.

ⁱ Triglyceride  $\geq$ 150 mg/dL or under medication.

^j HDL-C <40 mg/dL in men, <50 mg/dL in women or under medication.

### Acknowledgments

The authors would like to thank Dr. Nobuo Yanagisawa and Dr. Takeshi Kawaguchi for their coordinating the study.

Contributors: SN and KKurotani designed study and drafted the manuscript. SN, NMP, AN, KKuwahara performed the data analysis. MD collected and interpreted the data. All authors have participated in the interpretation of the findings, revised it critically for important intellectual content and approved final version to be published. TM and YN provided administrative, technical and material support.SN and TM are guarantors. Funding: This study was supported by the Industrial Health Foundation. Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: all authors declare no interests. Ethical approval: The research protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine and the Ethics Committee of Toho

University.

Data sharing: No additional data available.

Transparency: SN affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant,

#### References

1. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. *Lancet* 2010;**375**:181-83.

2. Gomez-Martinez S, Martinez-Gomez D, Perez de Heredia F, et al. Eating habits and total and abdominal fat in Spanish adolescents: influence of physical activity. The AVENA study. *J Adolesc Health* 2012;**50**:403-09.

3. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. *Diabetes care* 2008;**31**:805-07.

4. Nanri A, Tomita K, Matsushita Y, et al. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: randomized controlled trial. *J Occup Health* 2012;**54**:215-22.

5. Ferster CB, Nurnberger JI, Levitt EB. The control of eating. 1962. *Obes Res* 1996;**4**:401-10.

 Hill SW, McCutcheon NB. Eating responses of obese and nonobese humans during dinner meals. *Psychosom Med* 1975;**37**:395-401.

7. Bellack AS. Behavior therapy for weight reduction. Addict Behav 1975;1:73-82.

8. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to obesity: findings based

on self-administered questionnaires among middle-aged Japanese men and women. *J Epidemiol* 2006;**16**:117-24.

9. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-y-old Japanese women. *Int J Obes Relat Metab Disord* 2003;**27**:1405-10.

10. Maruyama K, Sato S, Ohira T, et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: cross sectional survey. *BMJ* 2008;**337**:a2002.

11. Lee KS, Kim DH, Jang JS, et al. Eating rate is associated with cardiometabolic risk factors in Korean adults. *Nut Metab Cardiovasc Dis* 2013;**23**:635-41.

12. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. *Prev Med* 2008;**46**:154-59.

13. Radzeviciene L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. *Clin Nutr* 2013;**32**:232-35.

14. Ohkuma T, Fujii H, Iwase M, et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka Diabetes Registry and the Hisayama Study. *Diabetologia* 2013;**56**:70-77.

15. Shigeta H, Shigeta M, Nakazawa A, et al. Lifestyle, obesity, and insulin resistance.

*Diabetes care* 2001;**24**:608.

16. Gerace TA, George VA. Predictors of weight increases over 7 years in fire fighters and paramedics. *Prev Med* 1996;**25**:593-600.

17. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. *Appetite* 2011;**57**:179-83.

Sakurai M, Nakamura K, Miura K, et al. Self-reported speed of eating and 7-year
 risk of type 2 diabetes mellitus in middle-aged Japanese men. *Metabolism* 2012;61:1566-71.

19. Kral JG, Buckley MC, Kissileff HR, et al. Metabolic correlates of eating behavior in severe obesity. *Int J Obes Relat Metab Disord* 2001;**25**:258-64.

20. Shin A, Lim SY, Sung J, et al. Dietary intake, eating habits, and metabolic syndrome in Korean men. *J Am Diet Assoc* 2009;**109**:633-40.

21. Shen W, Punyanitya M, Chen J, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. *Obesity (Silver Spring)* 2006;**14**:727-36.

22. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American

Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;**120**:1640-5.

23. Ministry of Justice, Japan. Industrial Safty and Health Act, Article 66 (Medical

Examination). Available at:

http://www.japaneselawtranslation.go.jp/law/detail/?id=1926&vm=&re=. Accessed 26 May 2014.

24. Ministry of Health, Labour and Welfare. Specific Health Checkups and Specific Health Guidance. Secondary Specific Health Checkups and Specific Health Guidance.
Available at: http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed 26 May 2014.

25. Ministry of Health, Labour and Welfare. Questionnaire of Specific Health Checkups. Secondary Questionnaire of Specific Health Checkups. Available at: http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p

rogram2_02.pdf. Accessed 26 May 2014. (in Japanese)

26. Hill SW, McCutcheon NB. Contributions of obesity, gender, hunger, food preference, and body size to bite size, bite speed, and rate of eating. *Appetite* 1984;**5**:73-83.

27. Ekuni D, Furuta M, Takeuchi N, et al. Self-reports of eating quickly are related to a decreased number of chews until first swallow, total number of chews, and total
#### **BMJ Open**

duration of chewing in young people. *Arch Oral Biol* 2012;57:981-86.
28. Rolls ET. Sensory processing in the brain related to the control of food intake. *Proc Nutr Soc* 2007;66:96-112.

29. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. *Nature* 2006;**443**:289-95.

30. de Graaf C, Blom WA, Smeets PA, et al. Biomarkers of satiation and satiety. *Am J Clin Nutr* 2004;**79**:946-61.

31. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. *J Clin Endocrinol Metab* 2010;**95**:333-37.

32. Sobki SH, Zaid AA, Khan HA, et al. Significant impact of pace of eating on serum ghrelin and glucose levels. *Clin Biochem* 2010;**43**:522-24.

33. Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. *Appetite* 2011;**56**:25-31.

34. Scisco JL, Muth ER, Dong Y, et al. Slowing bite-rate reduces energy intake: an application of the bite counter device. *J Am Diet Assoc* 2011;**111**:1231-35.

35. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interluekin-1beta concentrations in Japanese men not being treated for

metabolic diseases. Nutrition 2012;28:978-83.

36. Besedovsky H, del Rey A, Sorkin E, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. *Science* 1986;**233**:652-54

37. Matsuki T, Horai R, Sudo K, et al. IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. *J Exp Med* 2003;**198**:877-88.

38. Yatabe MS, Yatabe J, Yoneda M, et al. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. *Am J Clin Nutr* 2010;**92**:77-82.
39. Facchini FS, DoNascimento C, Reaven GM, et al. Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion. *Hypertension* 1999;**33**:1008-12.

40. Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. *Metabolism*. 1990;**39**:167-74.

41. Ministry of Health, Labour and Welfare. Special Survey on Industrial Safety and Health. Available at: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei11/h23.html. Accessed 26 May 2014. (in Japanese)

# **BMJ Open**

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies* 

# MS ID#: bmjopen-2014-005241.R1

MS TITLE: Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional study

	Item No	Recommendation	Location in manuscript
Title and abstract	1	( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract	Line 1 on page 1 and line 23 on page 3
		(b) Provide in the abstract an informative and balanced summary of what	What was done: line 21-22 on page 3
		was done and what was found	What was found: line 42-44 on page 4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Scientific background: line 51-68 on page 6 and 7 Rationale: Line 68-74 on page 7
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 74-78 on page 7
Methods			
Study design	4	Present key elements of study design early in the paper	Line 75 on page 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 84-88 on page 7-8
Participants	6	( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection of participants	Line 88-95 on page 8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	Outcome: line 122-128 on page 10
		and effect modifiers. Give diagnostic criteria, if applicable	Exposure: line 105-107 on page 9
			Potential confounders: line 140-147 on page 11
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Line 102-120 on page 8 and 9
measurement		assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Exclusion: line 89-90 on page 8
			Adjustment: line 140-147 on page 11
Study size	10	Explain how the study size was arrived at	Not provided
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	Adjustment: line 140-147 on page 11
variables		applicable, describe which groupings were chosen and why	
		1	
		For peer review only - http://bmjopen.bmj.com/site/a	bout/guidelines.xhtml

Statistical methods	12	( <i>a</i> ) Describe all statistical methods, including those used to control for confounding	Line 130-151 on page 10-11
		(b) Describe any methods used to examine subgroups and interactions	Line 146-149 on page 11
		(c) Explain how missing data were addressed	We excluded participants who had missing information on potentia
			confounding variables (line 90 on page 8).
		( <i>d</i> ) If applicable, describe analytical methods taking account of sampling strategy	N/A
		( <u>e</u> ) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	Line 159-160 on page 11
-		potentially eligible, examined for eligibility, confirmed eligible, included in	Table 1
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	Line 154-178 on page 12 and 13
		(b) Indicate number of participants with missing data for each variable of	N/A
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	Table 2
			Line 154 on page 11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Table 2, Table3
		estimates and their precision (eg, 95% confidence interval). Make clear	Line 159- on page 11-12
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Table2, Table3
		(c) If relevant, consider translating estimates of relative risk into absolute	N/A
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	Line 147-149 on page 11
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Line 181-185 on page 13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	Line 233-247 on page 16
		2	
		For peer review only - http://bmjopen.bmj.com/site/a	bout/guidelines.xhtml

<b>T</b>	20	or imprecision. Discuss both direction and magnitude or any potential bias	1. 100 200 10 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	Line 188-209 on page 13-14
		limitations, multiplicity of analyses, results from similar studies, and other	
Generalisability	21	relevant evidence	Line 243-244 on page 16
Other information	21	Discuss the generalisation (external variancy) of the study results	
Funding	22	Give the source of funding and the role of the funders for the present study	This study was supported by the Industrial Health Foundation for
6		and, if applicable, for the original study on which the present article is based	drafting the maniscript.
N/A: Not applicable.			
*Give information se	parately	for exposed and unexposed groups.	
I	0 /		8
		3	

# **BMJ Open**

# Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-005241.R2
Article Type:	Research
Date Submitted by the Author:	31-Jul-2014
Complete List of Authors:	Nagahama, Satsue; All Japan Labor Welfare Foundation, ; School of Medicine, Toho University, Department of Environmental and Occupational Health Kurotani, Kayo; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Pham, Ngoc Minh; Thai Nguyen University of Medicine and Pharmacy, Department of Epidemiology, Faculty of Public Health Nanri, Akiko; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Kuwahara, Keisuke; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences Dan, Masashi; All Japan Labor Welfare Foundation, Nishiwaki, Yuji; School of Medicine, Toho University, Department of Environmental and Occupational Health Mizoue, Tetsuya; National Center for Global Health and Medicine, Department of Epidemiology and Prevention, Center for Clinical Sciences
<b>Primary Subject Heading</b> :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts



#### **BMJ Open**

1	Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional
2	study
3	
4	Satsue Nagahama ^{123*} , Kayo Kurotani ¹ , Ngoc Minh Pham ⁴ , Akiko Nanri ¹ , Keisuke
5	Kuwahara ¹ , Masashi Dan ² , Yuji Nishiwaki ³ , Tetsuya Mizoue ¹
6	
7	¹ Department of Epidemiology and Prevention, Center for Clinical Sciences, National
8	Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, Japan,
9	Zip162-8655; Tel +81-3-3202-7181, Fax 81-3-3202-7364,
10	E-mail: <u>satsue_0323@hotmail.com</u>
11	² All Japan Labor Welfare Foundation, Tokyo, Japan;
12	³ Department of Environmental and Occupational Health, School of Medicine, Toho
13	University, Tokyo, Japan;
14	⁴ Department of Epidemiology, Faculty of Public Health, Thai Nguyen University of
15	Medicine and Pharmacy, Thai Nguyen Province, Vietnam;
16	
17	Keywords: eating rate, metabolic syndrome, health checkup, Japan, Joint Interim
18	Statement

19 Word count: 2875

4		
1		
2		
3		
4		
5		
6	20	ABSTRACT
7	20	
, 8		
0	01	
9	21	Objectives: To examine the association between self-reported eating rate and metabolic
10		
11		
12	22	syndrome.
13		
14		
15	23	Design: Cross-sectional study
16		
10		
17	94	Setting: A proved health checkup at a health check convice conter in Japan
18	$\mathbf{Z}4$	Setting: Annual nearth checkup at a hearth check service center in Japan.
19		
20		
21	25	<b>Participants:</b> A total of 56,865 participants (41,820 males and 15,045 females) who
21		
22		
23	26	attended health checkup in 2011 and reported not to have a history of coronary heart
24	_0	
25		
26	07	diaman an ataular
27	27	disease of stroke.
29		
20		
29	28	Main outcome measure: Metabolic syndrome was defined by the joint of interim
30		
31		
32	29	statement of the International Diabetes Federation and the American Heart
33	20	statement of the international Diabetes reacting and the rintertean react
34		
35	20	Association (National Heart Lung, and Dland Institute)
30	30	Association/National Heart, Lung, and Blood Institute.
30		
37		
38	31	<b>Results:</b> In multiple logistic regression models, eating rate was significantly and
39		
40		
41	32	positively associated with metabolic syndrome. The multivariable-adjusted odds ratios
40	02	positively associated with metacone synarome. The matrix and e adjusted outs ratios
42		
43	0.0	
44	33	(95% confidence interval) for slow, normal and fast were 0.70 (0.62 to 0.79), 1.00
45		
46		
47	34	(reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend <0.001), and 0.74
10		
40		
49	35	(0.60  to  0.91) 1.00 (reference) and 1.27 (1.13 to 1.43) respectively in women (P for
50	55	(0.00, 0.00, 0.00), $1.00$ (reference) and $1.27$ (1.15 to $1.45$ ), respectively, in women (1.16)
51		
52	0.0	
53	36	trend <0.001). Of metabolic syndrome components, abdominal obesity showed the
54		
54		
55	<b>37</b>	strongest association with eating rate. The associations of eating rate and metabolic
56		
57		
58		

3	
1	
4	
5	
6	
7	
Ω.	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
31	
34	
35	
36	
37	
20	
50	
39	
40	
41	
42	
-T <u>C</u>	
43	
44	
45	
46	
17	
41	
48	
49	
50	
51	
51	
52	
53	
54	
55	
55	
90	
57	
58	
59	
60	
<b>n</b> 11	

1 2

> syndrome and its components were largely attenuated after further adjustment for body 38mass index; however, the association of slow eating with lower odds of high blood 39pressure (men and women) and hyperglycemia (men) and that of fast eating with higher 40 odds of lipid abnormality (men) remained statistically significant. 41

> Conclusions: Results suggest that eating rate is associated with the presence of 42inti. 43metabolic syndrome and that this association is largely accounted for by the difference

of body mass according to eating rate. 44

#### **Strength and Limitation**

- This study included a large number of participants, used waist circumference in defining
- metabolic syndrome, and analyzed data for men and women separately.
- Eating rate was assessed by a self-reported questionnaire. Information on dietary intake
- was not obtained.

 .t obtained.

#### 50 Introduction

Metabolic syndrome (MetS) is a cluster of physiological risk factors associated with cardiovascular disease and several types of cancer.¹ Determination of etiologic factors for MetS is required for the establishment of public health strategies to reduce its prevalence and prevent resulting complications. Growing evidence from both observational and interventional studies suggests a role of dietary habits in the development of MetS,²⁻⁴ which originates from obesity. Obesity has been extensively investigated in relation to dietary habits including eating rate since 1962, when Ferster published a theoretical and practical weight control program focusing on eating behaviors including eating rate.⁵ Observational studies showed that obese people ate at a faster rate than non-obese people,⁶ and reducing eating rate may be a simple and effective therapy for obesity.⁷ 

During the past decade, several cross-sectional studies have found a positive association between eating rate and overweight⁸⁻¹¹ or insulin resistance.¹¹⁻¹⁵ Similarly, a few longitudinal studies showed that eating fast was associated with an increased risk of weight gain^{16, 17} and type 2 diabetes.¹⁸ In addition, some cross-sectional studies have reported that fast eating was positively associated with hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C).^{11, 14, 19} Therefore it is conceivable that

#### **BMJ Open**

eating rate may be associated with MetS. To our knowledge, however, only one Korean study cross-sectionally examined eating rate in relation to MetS.²⁰ In that study, MetS was defined by using body mass index (BMI), rather than waist circumference, and investigated the association in men only. Waist circumference is a component of most MetS definitions as a surrogate of central obesity, which can better predict cardiovascular risk.²¹ It is therefore necessary to examine the relationship between eating rate and MetS using waist circumference in both men and women. Here, we investigated cross-sectionally the association between self-reported eating rate and the presence of MetS according to the joint of interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute (JIS)²² using a large dataset of health checkup in Japanese men and women. **METHODS AND PROCEDURES Study population** In Japan, health checkup under occupational health and safety law is mandatory for all employed workers²³ and has been modified in 2008 when the recommendation 

⁸⁵ for new national health checkup system focusing on MetS has been launched.²⁴ Study

2	
3	
1	
4	
5	
6	
7	
Ω.	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
Z I	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
33	
0.0	
34	
35	
36	
37	
20	
38	
39	
40	
Δ1	
10	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
50	
51	
52	
53	
БЛ	
54	
55	
56	
57	
52	
50	
59	
~~	

1

86	participants were attendants of 2011 (calendar year) annual health checkup at All Japan
87	Labor Welfare Foundation (Tokyo), a health service center performing health checkup.
88	Participants were mainly Japanese employees but also included a small number of their
89	dependents and foreign workers, aged 17-99 in men and 17-85 in women. Of 297,148
90	participants, we excluded 3,660 with a history of myocardial infarction, coronary heart
91	disease or stroke, which might influence both eating rate and MetS. Of the remaining
92	293,488 participants, we included 269,297 who reported their eating rate. Of these, we
93	excluded 182,487 with missing data for any of the components of MetS (173,376
94	without plasma glucose, 61,602 without waist circumference, 43,724 without
95	triglyceride, 43,401 without HDL-C and 504 without blood pressure; some participants
96	had two or more missing data). Major reason for a large number of participants with
97	missing measurement of blood glucose was that HbA1c was measured instead of blood
98	glucose for those who attended checkup in non-fasting condition. Of the remaining
99	86,810 participants, we further excluded 29,337 who took meal within 8 hours before
100	blood drawing or provided no information on meal time. After further exclusion of 608
101	participants with missing information on covariates (BMI, smoking status, alcohol
102	consumption and physical activity), 56,865 participants (41,820 males and 15,045
103	females) remained for analysis. We did not obtain written informed consent from each

### **BMJ Open**

104	participant; instead, we disclosed the execution of the study by showing posters, giving
105	participants an opportunity to refuse the use of their data for the study. In Japan,
106	informed consent is not necessarily required for observational studies using existing
107	data, as described in the Japanese Ethical Guidelines for Epidemiological Research. ²⁵
108	The research protocol was approved by the Ethics Committee of the National Center for
109	Global Health and Medicine and the Ethics Committee of Toho University.
110	Data collection and measurements
111	A self-administered questionnaire, which was recommended for specific health
112	examination by the Japanese government (Ministry of Health, Labour and Welfare), ²⁶
113	was used to assess eating rate, medical history and health-related lifestyles including
114	smoking, alcohol consumption and regular physical activity. Eating rate was assessed by
115	asking "How fast is your speed of eating?", with three response options (slow, normal
116	and fast). A trained staff measured height to the nearest 0.1 cm, weight to the nearest 0.1
117	kg and waist circumference to the nearest 0.1 cm at the umbilical level in a standing
118	position. BMI was calculated as the weight in kilograms divided by the squared height
119	in meters. Blood pressure in the sitting position was measured using an automated
120	machine (HEM-907, Omron, Kyoto, Japan). Participants with high blood pressure
121	( $\geq$ 130 mm Hg systolic or $\geq$ 85 mm Hg diastolic) received another measurement and data

122	showing lower systolic blood pressure was used. Venous blood sample was collected,
123	stored in a cooler at 4 degrees for transportation to an external laboratory (SRL, Tokyo,
124	Japan) and measured within 24 hours of blood drawing. Triglyceride level was
125	measured by enzymatic colorimertic test (Bio Majesty JCA-BM8060, JEOL, Tokyo,
126	Japan). HDL-C level was determined by a direct method (Bio Majesty JCA-BM8060,
127	JEOL, Tokyo, Japan). Plasma glucose level was determined using by the hexokinase
128	method (an automatic clinical chemistry analyzer JCA-BM9000 series, JEOL, Tokyo,
129	Japan).

### **Definitions for MetS**

According to the JIS criteria, MetS was defined as three or more of the following risk factors: 1) waist circumference for Asian population  $\geq 90$  cm in men and  $\geq$ 80 cm in women, 2) triglyceride level  $\geq$ 150 mg/dL (1.7 mmol/L), 3) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women, 4) blood pressure  $\geq 130$  mm Hg systolic or  $\geq 85$  mm Hg diastolic, 5) fasting glucose level  $\geq 100$ mg/dL (5.6 mmol/L).²² Participants under medication for diabetes, hypertension and dyslipidemia were considered as having respective factor, irrespective of measured data. Statistical analysis Participants were divided into three groups according to eating rate (slow, 

140	normal and fast). The characteristics of participants across eating rate categories were
141	expressed as means (standard deviation) for continuous variables and percentages for
142	categorical variables, respectively. Fasting plasma glucose and triglyceride were highly
143	skewed; hence, they were log-transformed and expressed as geometric means (95%
144	confidence intervals (CI)). Trend association was assessed by assigning ordinal numbers
145	(0 to 2) to the categories of eating rate (slow, normal and fast, respectively) and was
146	tested using linear regression and logistic regression, as appropriate. Multiple logistic
147	regression analysis was used to estimate the odds ratios (OR) with 95% CI for the
148	presence of MetS across eating rate categories, with normal eating rate as the reference.
149	We adjusted for age (continuous, year) in the basic model. In the second model, we
150	further adjusted for smoking status (non-smoker, daily smoker consuming <20
151	cigarettes per day or $\geq$ 20 cigarettes per day), physical activity (walking time <60 min
152	per day or $\geq 60$ min per day), and alcohol consumption (non-drinker, <1 go, 1 to <2 go
153	or $\geq 2$ go per day; one go of sake, Japanese traditional beverage, is about 180 ml of 10 to
154	14% of ethanol and contains $\sim$ 23g of ethanol). In the third model, we added BMI
155	(continuous, $kg/m^2$ ) to the second model. We performed likelihood ratio test for testing
156	the interaction between eating rate and sex. All analyses were done for men and women
157	separately because the interaction was significant (P for interaction <0.001). We

repeated the above analyses for each component of MetS. Two-tailed P value <0.05 was considered statistically significant. All statistical analyses were performed with STATA, version 12.1 (StataCorp, College Station, TX, USA). RESULTS The prevalence of MetS was 18.5% in men and 12.8 % in women. Table 1 shows characteristics of the study participants across categories of eating rate. Men who ate fast tended to be young, whereas women who ate slowly tended to be young. Both men and women who ate fast consumed greater amount of alcohol and had significantly higher BMI, waist circumference, triglyceride level and systolic and diastolic blood pressures and lower HDL-C level than those who ate slowly. The ORs of the presence of MetS across eating rate are shown in Table 2. Faster eating was associated with higher presence of MetS in ageand multivariable-adjusted models. The trend was more apparent in men than in women. The multivariable-adjusted ORs (95% CI) of MetS for eating slow, normal and fast rate were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend < 0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for trend <0.001). Further adjustment for BMI markedly 

#### **BMJ Open**

attenuated these associations; however, the association with fast eating and MetSremained statistically significant in men.

Table 3 shows the ORs of the presence of individual MetS components across three categories of eating rate. Central obesity sharply increased with increasing speed of eating; the ORs for slow, normal and fast eating were 0.63, 1.00 (reference) and 1.97, respectively, in men (P for trend <0.001), and 0.73, 1.00(reference) and 1.44, respectively, in women (P for trend <0.001). High blood pressure and high triglyceride were positively associated with eating rate in both men and women. High fasting plasma glucose and low HDL-C were associated with fast eating in both men and women, but they were associated with slow eating in men only. Additional adjustment for BMI largely attenuated these associations and the significant trend association disappeared, but the associations of slow eating with decreased odds of high blood pressure (men and women) and hyperglycemia (men) and those of fast eating with increased odds of abnormal lipid profile (men) remained statistically significant. 

#### **DISCUSSION**

In this large population of Japanese men and women, we found that eating ratewas positively associated with the presence of MetS, especially in men. Of components

194	of MetS, the association with abdominal obesity was strongest. These associations were
195	largely attenuated after adjustment for BMI. However, slow eating was associated with
196	decreased odds of high blood pressure in both men and women and high fasting plasma
197	glucose in men, and fast eating was associated with increased odds of lipid abnormal
198	profiles in men. To our best knowledge, the present study is the first to report a positive
199	association between eating rate and MetS defined by using waist circumference.
200	The present finding for MetS is consistent with that of a study among Korean
201	men reporting that eating rate was positively associated with MetS, which was defined
202	by using BMI instead of waist circumference. ²⁰ As regards MetS components, our study
203	is compatible with some cross-sectional studies showing that eating rate was associated
204	with higher BMI ⁸⁻¹¹ and two longitudinal studies showing that eating rate was
205	associated with weight gain. ^{16, 17} In a Korean study that elucidated the association
206	between eating rate and components of MetS for men and women separately, eating rate
207	was associated with obesity, high blood pressure, hyperglycemia and abnormal lipid
208	profile in men, whereas it was associated with only obesity in women. ¹¹ Our results
209	were largely consistent with those in the Korean study (except for blood pressure in
210	women).

1
2
2
3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
20
24
20
26
27
28
29
30
31
32
33
34
25
30
36
37
38
39
40
41
42
43
44
45
40
40
41
48
49
50
51
52
53
54
55
55
50
5/ 50
58
59
60

211	Notably, we found that the associations of MetS components with eating rate
212	were largely attenuated after adjustment for BMI, a finding compatible with those of a
213	cross-sectional study in Korea ¹¹ and a prospective study in Japan. ¹⁸ This result indicates
214	that obesity is a mediator whereby fast eating deteriorates MetS components. We also
215	found, however, that some associations remained statistically significant even after
216	adjusting for BMI (dyslipidemia with fast eating and hyperglycemia with slow eating in
217	men, and high blood pressure with slow eating in both men and women). Similarly, the
218	above-mentioned Korean study ¹¹ reported that high rate of eating remained an important
219	determinant for low HDL-C and high fasting plasma glucose after adjustment for BMI
220	in men. Therefore, there may be pathways other than weight gain that might underlie the
221	association between eating rate and MetS.
222	We found that the association between eating rate and MetS was stronger in
223	men than in women, consistent with a previous study in Korea. ¹¹ Such sex difference
224	may reflect the difference in actual eating speed between men and women. One study
225	elucidated that women took more bites, smaller bite size and slower bites than men in
226	eating the same amount of doughnut, irrespectively of body size. ²⁷ Another study
227	showed that objectively measured eating speed in men with self-reported slow eating

15

was faster than that in women with self-reported fast eating.²⁸ Taken together, eating
rate may have a greater impact on metabolism in men than that in women.

Although mechanisms whereby eating rate influences metabolism is not fully elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain,^{29, 30} induces less satiation and satiety due to a lack of stomach expansion³¹ and alters the circulating levels of certain gut hormones.^{32, 33} In these pathways, fast eating leads to excess energy intake,^{34, 35} resulting in overweight and MetS. Because fast eating has been associated with obesity even after adjusting for total energy intake,^{8-11, 14} there may be other pathways. One study showed that interleukin-1ß and interleukin-6 were higher among those who ate fast than among those who ate slowly, even after accounting for energy intake and BMI.³⁶ These cytokines could induce insulin resistance,^{37, 38} contributing to high blood pressure via an increased renal sodium and water retention, plasma noradrenalin and sympathetic nervous system activity.³⁹⁻⁴¹ 

The strengths of our study deserve mention. The present study has large sample size (56,865 participants). In addition, body weight, body height and waist circumference were measured by trained technicians, which increased the validity of our study. Nonetheless, several limitations in the present study merit consideration. First,

77	BMJ Open
246	eating rate was self-reported. However, self-reported eating rate has been shown to be
247	well correlated with friend-reported one ⁹ or objectively measured one. ²⁸ Second,
248	information on dietary intake was not available in the present study and thus total
249	energy intake was not considered in analyses. The adjustment of energy intake, however,
250	may not be appropriate because energy intake may increase with eating rate and thus
251	may act as a mediator rather than confounder. Moreover, eating rate has been associated
252	with body weight independent of energy intake. ^{7-10,13} Third, fast-food is an energy-dense
253	dietary source and has been linked to MetS. ⁴² Because fast-food is usually consumed
254	quickly, it may confound the association of eating rate with MetS. Fourth, the study
255	participants were mainly workers in various industries including manufacturing (43.6%),
256	service (27.8%) and transport and telecommunications (9.9%), and these figures are
257	similar to those of national survey. ⁴³ However, information on profession of participants
258	was not available, and thus caution is required when generalize the present finding.
259	Fifth, a large number of participants were excluded from the present analysis due to
260	missing data for MetS components. We cannot deny a possibility of bias due to such
261	selective inclusion. Sixth, cross-sectional design precludes any causal inferences about
262	the role of eating rate. Finally, we cannot exclude a possibility of the effects of residual
263	confounding and confounding by unmeasured variables.
	17

In conclusion, we found a positive trend association between self-reported eating rate and the presence of MetS in men and women. The association between eating rate and MetS was largely accounted for by the difference of body mass across eating rate. Further research should address whether reducing eating rate prevents and MetS. obesity and MetS. 

 BMJ Open

Table1. Characteristics of the study individuals according to eating rates

	Men (n = 41,82	:0)			Women ( $n = 1$	5,045)		
	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Age (years) ^b	46.9 ± 12.3	46.9 ± 10.9	45.0 ± 10.4	<0.001	43.5 ± 12.5	47.2 ± 11.6	46.7 ± 11.2	< 0.001
Walking time, ≥60 min/day (%)	21.8	19.0	20.6	0.004	15.5	15.0	16.1	0.798
Smoking status (%)								
Non-smoker	61.9	55.0	56.6	<0.001	82.9	83.1	80.7	0.572
Daily consuming <20 cigarettes /day	28.6	34.6	31.3		16.0	15.7	17.6	
Daily consuming ≥20 cigarettes /day	9.5	10.4	12.1		1.1	1.2	1.7	

Alcohol (%)

5 6

Alcohol (%)								
Non-drinker	30.2	26.7	26.7	<0.001	53.4	52.2	49.8	< 0.001
Drinker <1 go /day ^d	33.9	35.7	34.5		34.2	35.9	35.5	
Drinker 1 to <2 go /day ^d	24.6	26.3	26.8		9.5	9.5	11.5	
Drinker $\geq 2 go / day^d$	11.3	11.3	12.0		2.9	2.4	3.2	
BMI $(kg/m^2)^b$	$22.4 \pm 3.3$	23.4 ± 3.3	24.6 ± 3.7	<0.001	21.0 ± 3.5	21.8 ± 3.5	22.5 ± 3.8	< 0.001
Waist circumference (cm) ^b	80.3 ± 9.2	$82.9 \pm 9.0$	86.0 ± 9.8	<0.001	75.5 ± 9.5	$77.7\pm9.4$	$79.6\pm9.8$	< 0.001
Systolic blood pressure (mm Hg) ^b	123.5 ± 15.5	126.1 ± 15.5	126.7 ± 15.1	<0.001	113.1 ± 16.3	117.3 ± 17.2	$117.0 \pm 17.2$	< 0.001
Diastolic blood pressure (mm Hg) ^b	75.2 ± 11.4	77.3 ± 11.9	$78.0 \pm 12.0$	<0.001	69.1 ± 10.9	71.4 ± 11.5	71.5 ± 11.9	< 0.001
Fasting plasma glucose (mg/dL) ^c	93.0 (92.5 to	94.4 (94.2 to	94.6 (94.3 to	<0.001	88.1 (87.5 to	89.1 (88.9 to	89.5 (89.1 to	<0.001
	93.6)	94.6)	94.8)		88.7)	89.3)	89.9)	
		20						

 BMJ Open

Triglyceride (mg/dL) ^c	98.3 (96.2 to	103.8 (103.0 to	110.8 (109.8 to	< 0.001	67.0 (65.3 to	71.6 (70.9 to	74.1 (72.9	to <
(	100.4)	104.6)	111.9)		68.7)	72.3)	75.2)	
HDL-C (mg/dL) ^b	61.3 ± 15.3	59.4 ± 15.0	57.2 ± 14.3	< 0.001	71.4 ± 15.3	$70.5 \pm 15.8$	69.3 ± 15.5	<
	D							
Cross to sectional survey of 56,86	65 examinees in All Japan L	abor Welfare Found	idation, Japan, 2011.					
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=h	b5 examinees in All Japan L high to density lipoprotein o	cholesterol.	idation, Japan, 2011.					
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=h ^a Linear regression and logistic reg	65 examinees in All Japan L high to density lipoprotein o gression, assigning ordinal	cholesterol. number (0 to 2) to e	idation, Japan, 2011. eating rate, as approp	oriate.				
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=I ^a Linear regression and logistic reg	65 examinees in All Japan L high to density lipoprotein o gression, assigning ordinal	cholesterol. number (0 to 2) to e	eating rate, as approp	oriate.				
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=ł ^a Linear regression and logistic reg ^b Mean ± SD. ^c Geometric means (95% confiden	55 examinees in All Japan L high to density lipoprotein o gression, assigning ordinal nce intervals).	abor Welfare Foun- cholesterol. number (0 to 2) to e	eating rate, as approp	oriate.				
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=ł ^a Linear regression and logistic reg ^b Mean ± SD. ^c Geometric means (95% confident ^d One <i>go</i> contains ~25g of ethanol	65 examinees in All Japan L high to density lipoprotein o gression, assigning ordinal nce intervals).	abor Welfare Foun- cholesterol. number (0 to 2) to e	eating rate, as approp	oriate.				
Cross to sectional survey of 56,86 BMI=body mass index; HDL-C=I ^a Linear regression and logistic reg ^b Mean ± SD. ^c Geometric means (95% confident ^d One <i>go</i> contains ~25g of ethanol	55 examinees in All Japan L high to density lipoprotein o gression, assigning ordinal nce intervals).	abor Welfare Foun- cholesterol. number (0 to 2) to e	eating rate, as approp	oriate.				

	Men (n = 41,820)				Women (n = 15,045					
Eating rate	Slow	Normal ^a	P Normal ^a Fast tr		P mal ^a Fast trenc		Slow	Normal ^a	Fast	P for
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)			
MetS, n	361	4,180	3,193		116	1,261	547			
Model 1 ^c	0.70 (0.62 to 0.79)	1.00	1.62 (1.53 to 1.71)	<0.001	0.75 (0.61 to 0.92)	1.00	1.27 (1.13 to 1.42)	<0.001		
Model 2 ^d	0.70 (0.62 to 0.79)	1.00	1.61 (1.53 to 1.70)	< 0.001	0.74 (0.60 to 0.91)	1.00	1.27 (1.13 to 1.43)	< 0.001		
Model 3 ^e	0.91 (0.80 to 1.04)	1.00	1.10 (1.03 to 1.17)	< 0.001	0.88 (0.70 to 1.11)	1.00	0.98 (0.86 to 1.12)	0.714		
MetS=Metabo	lic syndrome.					9				

Table2.	Odds ratios and 95% confidence	e intervals for metabolic	syndrome accord	ding to eating rate (n =	56,865)
---------	--------------------------------	---------------------------	-----------------	--------------------------	---------

 MetS as defined using the criteria of the Joint Interim Statement : the presence of three or more of the following risk factors: 1) waist circumference  $\geq$ 90 cm

in men and ≥80 cm in women, 2) triglyceride level ≥150 mg/dL (1.7 mmol/L), 3) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3

mmol/L) in women, 4) blood pressure  $\geq 130$  mm Hg systolic or  $\geq 85$  mm Hg diastolic, 5) fasting glucose level  $\geq 100$  mg/dL (5.6 mmol/L).

^a Reference.

^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Adjusted for age.

^d Adjusted for age, smoking status, alcohol and regular physical activity.

. and body mass index. ^e Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

	Men (n = 41,820)				Women (n = 15,0			
Eating rate	Slow	Normal ^a	Fast	P for	Slow	Normal ^a	Fast	P for trend ^b
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Central obesity	, c							
Model 1 ^d	0.63 (0.56 to	1.00	1.98 (1.89 to	< 0.00	0.73 (0.64 to	1.00	1.44 (1.34 to	< 0.00
	0.71)		2.08)	1	0.83)		1.56)	1
Model 2 ^e	0.63 (0.56 to	1.00	1.97 (1.88 to	< 0.00	0.73 (0.64 to	1.00	1.44 (1.33 to	< 0.00
	0.70)		2.07)	1	0.83)		1.56)	1

Table3. Odds ratios and 95% confidence intervals for components of metabolic syndrome according to eating rate (n = 56,865)

  $\mathbf{24}$ 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 High blood pressure ^f

Model 1 ^d	0.75	(0.69	to	1.00	1.22	(1.17	to	< 0.00	0.76	(0.66	to	1.00	1.10	(1.01	to	< 0.00
Wodel 1	0.82)			1.00	1.27)			1	0.88)			1.00	1.21)			1
Model 2 °	0.74	(0.68	to	1.00	1.20	(1.15	to	<0.00	0.76	(0.65	to	1.00	1.10	(1.00	to	< 0.00
	0.81)			1.00	1.26)			1	0.88)			1.00	1.20)			1
	0.88	(0.81	to	1.00	0.97	(0.93	to	0 6 4 5	0.85	(0.72	to	1.00	0.93	(0.84	to	0.022
Wodel 3	0.96)			1.00	1.02)			0.043	0.99)			1.00	1.02)			0.925
High fasting pl	asma gl	lucose ^h														
NC 111 d	0.78	(0.71	to	1.00	1.17	(1.12	to	< 0.00	1.03	(0.85	to	1.00	1.17	(1.04	to	0.025
Model 1	0.87)			1.00	1.23)			1	1.25)			1.00	1.31)			0.035
Model 2 ^e	0.78	(0.71	to	1.00	1.16	(1.11	to	< 0.00	1.03	(0.85	to	1.00	1.16	(1.03	to	0.042
							25	5								



Low HDL-C ^j

 **BMJ Open** 



BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Reference.

^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Waist circumference  $\geq$ 90 cm in men and  $\geq$ 80 cm in women.

^d Adjusted for age.

^e Adjusted for age, smoking status, alcohol and regular physical activity.

^fBlood pressure  $\geq$ 130 mm Hg for systolic or  $\geq$ 85 mm Hg for diastolic.

^g Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

^h Fasting plasma glucose  $\geq 100 \text{ mg/dL}$  or under medication.

ⁱ Triglyceride  $\geq$ 150 mg/dL or under medication.

^j HDL-C <40 mg/dL in men, <50 mg/dL in women or under medication.

#### Acknowledgments

The authors would like to thank Dr. Nobuo Yanagisawa and Dr. Takeshi Kawaguchi for their coordinating the study.

**Contributors:** SN and KKurotani designed study and drafted the manuscript. SN, NMP, AN, KKuwahara performed the data analysis. MD collected and interpreted the data. All authors have participated in the interpretation of the findings, revised it critically for important intellectual content and approved final version to be published. TM and YN provided administrative, technical and material support.SN and TM are guarantors.

Funding: This study was supported by the Industrial Health Foundation.

**Competing interests:** All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare: all authors declare no interests.

Ethical approval: The research protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine and the Ethics Committee of Toho University.

Data sharing: No additional data available.

**Transparency:** SN affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant,
### References

1. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. *Lancet* 2010;**375**:181-83.

2. Gomez-Martinez S, Martinez-Gomez D, Perez de Heredia F, et al. Eating habits and total and abdominal fat in Spanish adolescents: influence of physical activity. The AVENA study. *J Adolesc Health* 2012;**50**:403-09.

3. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. *Diabetes care* 2008;**31**:805-07.

4. Nanri A, Tomita K, Matsushita Y, et al. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: randomized controlled trial. *J Occup Health* 2012;**54**:215-22.

5. Ferster CB, Nurnberger JI, Levitt EB. The control of eating. 1962. *Obes Res* 1996;**4**:401-10.

 Hill SW, McCutcheon NB. Eating responses of obese and nonobese humans during dinner meals. *Psychosom Med* 1975;**37**:395-401.

7. Bellack AS. Behavior therapy for weight reduction. Addict Behav 1975;1:73-82.

8. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to obesity: findings based

on self-administered questionnaires among middle-aged Japanese men and women. *J Epidemiol* 2006;**16**:117-24.

9. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-y-old Japanese women. *Int J Obes Relat Metab Disord* 2003;**27**:1405-10.

10. Maruyama K, Sato S, Ohira T, et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: cross sectional survey. *BMJ* 2008;**337**:a2002.

11. Lee KS, Kim DH, Jang JS, et al. Eating rate is associated with cardiometabolic risk factors in Korean adults. *Nut Metab Cardiovasc Dis* 2013;**23**:635-41.

12. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. *Prev Med* 2008;**46**:154-59.

13. Radzeviciene L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. *Clin Nutr* 2013;**32**:232-35.

14. Ohkuma T, Fujii H, Iwase M, et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka Diabetes Registry and the Hisayama Study. *Diabetologia* 2013;**56**:70-77.

15. Shigeta H, Shigeta M, Nakazawa A, et al. Lifestyle, obesity, and insulin resistance.

#### **BMJ Open**

*Diabetes care* 2001;**24**:608.

16. Gerace TA, George VA. Predictors of weight increases over 7 years in fire fighters and paramedics. *Prev Med* 1996;**25**:593-600.

17. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. *Appetite* 2011;**57**:179-83.

Sakurai M, Nakamura K, Miura K, et al. Self-reported speed of eating and 7-year risk of type 2 diabetes mellitus in middle-aged Japanese men. *Metabolism* 2012;61:1566-71.

19. Kral JG, Buckley MC, Kissileff HR, et al. Metabolic correlates of eating behavior in severe obesity. *Int J Obes Relat Metab Disord* 2001;**25**:258-64.

20. Shin A, Lim SY, Sung J, et al. Dietary intake, eating habits, and metabolic syndrome in Korean men. *J Am Diet Assoc* 2009;**109**:633-40.

21. Shen W, Punyanitya M, Chen J, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. *Obesity (Silver Spring)* 2006;**14**:727-36.

22. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American

Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;**120**:1640-5.

23. Ministry of Justice, Japan. Industrial Safety and Health Act, Article 66 (Medical Examination). Available at:

http://www.japaneselawtranslation.go.jp/law/detail/?id=1926&vm=&re=. Accessed 28 July 2014.

24. Ministry of Health, Labour and Welfare. Specific Health Checkups and Specific Health Guidance. Secondary Specific Health Checkups and Specific Health Guidance. Available at: http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed 28 July 2014.25. The Ministry of Health, Labour and Welfare, Ministry of Education, Culture, Sports, Science and Technology. Ethical guidelines for epidemiological research. 2002. Available at: http://www.niph.go.jp/wadai/ekigakurinri/guidelines.pdf. Accessed 28 July, 2014.

26. Ministry of Health, Labour and Welfare. Questionnaire of Specific Health Checkups. Secondary Questionnaire of Specific Health Checkups. Available at:

http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p rogram2_02.pdf. Accessed 28 July 2014. (in Japanese)

27. Hill SW, McCutcheon NB. Contributions of obesity, gender, hunger, food preference,

#### **BMJ Open**

and body size to bite size, bite speed, and rate of eating. Appetite 1984;5:73-83. 28. Ekuni D, Furuta M, Takeuchi N, et al. Self-reports of eating quickly are related to a decreased number of chews until first swallow, total number of chews, and total duration of chewing in young people. Arch Oral Biol 2012;57:981-86. 29. Rolls ET. Sensory processing in the brain related to the control of food intake. *Proc* Nutr Soc 2007;66:96-112. 30. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature 2006;443:289-95. 31. de Graaf C, Blom WA, Smeets PA, et al. Biomarkers of satiation and satiety. Am J *Clin Nutr* 2004;**79**:946-61. 32. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab 2010;95:333-37. 33. Sobki SH, Zaid AA, Khan HA, et al. Significant impact of pace of eating on serum ghrelin and glucose levels. Clin Biochem 2010;43:522-24. 34. Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite 2011;56:25-31. 35. Scisco JL, Muth ER, Dong Y, et al. Slowing bite-rate reduces energy intake: an

application of the bite counter device. J Am Diet Assoc 2011;111:1231-35.

36. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interluekin-1beta concentrations in Japanese men not being treated for metabolic diseases. *Nutrition* 2012;**28**:978-83.

37. Besedovsky H, del Rey A, Sorkin E, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. *Science* 1986;**233**:652-54

38. Matsuki T, Horai R, Sudo K, et al. IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. *J Exp Med* 2003;**198**:877-88.

39. Yatabe MS, Yatabe J, Yoneda M, et al. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. *Am J Clin Nutr* 2010;**92**:77-82.

40. Facchini FS, DoNascimento C, Reaven GM, et al. Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion. *Hypertension* 1999;**33**:1008-12.

41. Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. *Metabolism*. 1990;**39**:167-74.

42. De Vogli R, Kouvonen A, Gimeno D. The influence of market deregulation on fast food consumption and body mass index: a cross national time series analysis. *Bull* 

World Health Organ 2014;92:99-107A.

43. Ministry of Health, Labour and Welfare. Special Survey on Industrial Safety and

Health. Available at: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei11/h23.html.

Accessed 28 July 2014. (in Japanese)

Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional

1
2
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
20
20
27
28
29
30
30
31
32
33
34
25
30
36
37
38
30
40
40
41
42
43
44
 1 E
40
46
47
48
40
73 50
50
51
52
53
54
54
55
56
57
58
50
59
60

1

2	study
3	
4	Satsue Nagahama ^{123*} , Kayo Kurotani ¹ , Ngoc Minh Pham ⁴ , Akiko Nanri ¹ , Keisuke
5	Kuwahara ¹ , Masashi Dan ² , Yuji Nishiwaki ³ , Tetsuya Mizoue ¹
6	
7	¹ Department of Epidemiology and Prevention, Center for Clinical Sciences, National
8	Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, Japan,
9	Zip162-8655; Tel +81-3-3202-7181, Fax 81-3-3202-7364,
10	E-mail: <u>satsue_0323@hotmail.com</u>
11	² All Japan Labor Welfare Foundation, Tokyo, Japan;
12	³ Department of Environmental and Occupational Health, School of Medicine, Toho
13	University, Tokyo, Japan;
14	⁴ Department of Epidemiology, Faculty of Public Health, Thai Nguyen University of
15	Medicine and Pharmacy, Thai Nguyen Province, Vietnam;
16	
17	Keywords: eating rate, metabolic syndrome, health checkup, Japan, Joint Interim

18 Statement

Word count: 2875

1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 21 21 22	19
23 24 25 26 27 28 29 30 31 32 33 45 36 37 38 39 40 41 42 43 44 5	
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

### 20 ABSTRACT

**Objectives:** To examine the association between self-reported eating rate and metabolic

syndrome.

- **Design:** Cross-sectional study.
- 24 Setting: Annual health checkup at a health check service center in Japan.

Participants: A total of 56,865 participants (41,820 males and 15,045 females) who
attended health checkup in 2011 and reported not to have a history of coronary heart
disease or stroke.

Main outcome measure: Metabolic syndrome was defined by the joint of interim statement of the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute.

**Results:** In multiple logistic regression models, eating rate was significantly and positively associated with metabolic syndrome. The multivariable-adjusted odds ratios (95% confidence interval) for slow, normal and fast were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively, in men (P for trend <0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43), respectively, in women (P for trend <0.001). Of metabolic syndrome components, abdominal obesity showed the strongest association with eating rate. The associations of eating rate and metabolic

### **BMJ Open**

3
4
5
6
7
<i>i</i>
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
0Z 22
33
34
35
36
37
38
20
39
40
41
42
43
44
45
40 10
40
47
48
49
50
51
52
52
53
54
55
56
57
59
50
59
60

syndrome and its components were largely attenuated after further adjustment for body 38mass index; however, the association of slow eating with lower odds of high blood 39pressure (men and women) and hyperglycemia (men) and that of fast eating with higher 40 odds of lipid abnormality (men) remained statistically significant. 41

- Conclusions: Results suggest that eating rate is associated with the presence of 4243metabolic syndrome and that this association is largely accounted for by the difference
- of body mass according to eating rate. 44

#### **Strength and Limitation**

- This study included a large number of participants, used waist circumference in defining
- metabolic syndrome, and analyzed data for men and women separately.
- Eating rate was assessed by a self-reported questionnaire. Information on dietary intake
- was not obtained.

t obtained.

### **BMJ Open**

51	Metabolic syndrome (MetS) is a cluster of physiological risk factors associated
52	with cardiovascular disease and several types of cancer. ¹ Determination of etiologic
53	factors for MetS is required for the establishment of public health strategies to reduce its
54	prevalence and prevent resulting complications. Growing evidence from both
55	observational and interventional studies suggests a role of dietary habits in the
56	development of MetS, ²⁻⁴ which originates from obesity. Obesity has been extensively
57	investigated in relation to dietary habits including eating rate since 1962, when Ferster
58	published a theoretical and practical weight control program focusing on eating
59	behaviors including eating rate. ⁵ Observational studies showed that obese people ate at a
60	faster rate than non-obese people, ⁶ and reducing eating rate may be a simple and
61	effective therapy for obesity. ⁷
62	During the past decade, several cross-sectional studies have found a positive
63	association between eating rate and overweight ⁸⁻¹¹ or insulin resistance. ¹¹⁻¹⁵ Similarly, a

few longitudinal studies showed that eating fast was associated with an increased risk of weight gain^{16, 17} and type 2 diabetes.¹⁸ In addition, some cross-sectional studies have reported that fast eating was positively associated with hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C).^{11, 14, 19} Therefore it is conceivable that

1
2
3
1
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
13
20
21
22
23
24
25
26
20
27
28
29
30
31
32
22
22
34
35
36
37
38
39
10
41
42
43
44
45
46
47
<u>ν</u>
40
49
50
51
52
53
54
55
55
56
57
58
59
60

68	eating rate may be associated with MetS. To our knowledge, however, only one Korean
69	study cross-sectionally examined eating rate in relation to MetS. ²⁰ In that study, MetS
70	was defined by using body mass index (BMI), rather than waist circumference, and
71	investigated the association in men only. Waist circumference is a component of most
72	MetS definitions as a surrogate of central obesity, which can better predict
73	cardiovascular risk. ²¹ It is therefore necessary to examine the relationship between
74	eating rate and MetS using waist circumference in both men and women. Here, we
75	investigated cross-sectionally the association between self-reported eating rate and the
76	presence of MetS according to the joint of interim statement of the International
77	Diabetes Federation and the American Heart Association/National Heart, Lung, and
78	Blood Institute (JIS) ²² using a large dataset of health checkup in Japanese men and
79	women.
80	
81	METHODS AND PROCEDURES
82	Study population
83	In Japan, health checkup under occupational health and safety law is mandatory
84	for all employed workers ²³ and has been modified in 2008 when the recommendation

85 for new national health checkup system focusing on MetS has been launched.²⁴ Study

# **BMJ Open**

90	participants were attendents of 2011 (colonder year) appual health sheekup at All Japan
00	participants were attendants of 2011 (calendar year) annual health checkup at An Japan
87	Labor Welfare Foundation (Tokyo), a health service center performing health checkup.
88	Participants were mainly Japanese employees but also included a small number of their
89	dependents and foreign workers, aged 17-99 in men and 17-85 in women. Of 297,148
90	participants, we excluded 3,660 with a history of myocardial infarction, coronary heart
91	disease or stroke, which might influence both eating rate and MetS. Of the remaining
92	293,488 participants, we included 269,297 who reported their eating rate. Of these, we
93	excluded 182,487 with missing data for any of the components of MetS (173,376
94	without plasma glucose, 61,602 without waist circumference, 43,724 without
95	triglyceride, 43,401 without HDL-C and 504 without blood pressure; some participants
96	had two or more missing data). Major reason for a large number of participants with
97	missing measurement of blood glucose was that HbA1c was measured instead of blood
98	glucose for those who attended checkup in non-fasting condition. Of the remaining
99	86,810 participants, we further excluded 29,337 who took meal within 8 hours before
100	blood drawing or provided no information on meal time. After further exclusion of 608
101	participants with missing information on covariates (BMI, smoking status, alcohol
102	consumption and physical activity), 56,865 participants (41,820 males and 15,045
103	females) remained for analysis. We did not obtain written informed consent from each

~	
3	
Λ	
4	
5	
6	
2	
1	
8	
0	
9	
1	0
4	4
1	1
1	2
1	3
	5
1	4
1	5
4	~
1	6
1	7
	0
	Ø
1	9
~	0
2	U
2	1
2	2
2	~
2	3
2	4
~	-
2	5
2	6
2	7
2	.7
2	8
2	a
~	3
3	0
3	1
0	
~	~
3	2
3	2
3	2
3 3 3	2 3 4
333	2345
3333	2345
3 3 3 3 3	2 3 4 5 6
3 3 3 3 3 3 3	234567
3 3 3 3 3 3 3 3 3	2345678
3 3 3 3 3 3 3 3 3	2345678
3 3 3 3 3 3 3 3 3 3 3 3 3	23456789
3 3 3 3 3 3 3 3 3 4	234567890
3 3 3 3 3 3 3 3 3 4	234567890
3 3 3 3 3 3 3 3 4 4	2345678901
3 3 3 3 3 3 3 3 4 4 4	23456789012
3333333444	234567890122
3 3 3 3 3 3 3 3 4 4 4 4 4 4	234567890123
333333344444	2345678901234
3333333444444	23456789012345
3 3 3 3 3 3 3 4 4 4 4 4 4	23456789012345
33333334444444	234567890123456
333333344444444	2345678901234567
3333333444444444	23456789012345670
333333344444444444	23456789012345678
3333333444444444444	234567890123456789
3333333444444444444	2345678901234567890
333333344444444444	2345678901234567890
3333333444444444455	23456789012345678901
33333334444444444555	234567890123456789012
3333333344444444445555	234567890123456789012
33333333444444444455555	2345678901234567890123
333333334444444444555555	23456789012345678901234
333333334444444444555555	23456789012345678901234
3333333344444444445555555	234567890123456789012345
333333334444444444555555555555555555555	2345678901234567890123456
333333334444444444555555555555555555555	23456789012345678901234567
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	23456789012345678901234567
333333344444444455555555555555555555555	234567890123456789012345678
333333344444444455555555555555555555555	2345678901234567890123456780
333333344444444445555555555555555555555	2345678901234567890123456789

1

104	participant; instead, we disclosed the execution of the study by showing posters, giving
105	participants an opportunity to refuse the use of their data for the study. In Japan,
106	informed consent is not necessarily required for observational studies using existing
107	data, as described in the Japanese Ethical Guidelines for Epidemiological Research. ²⁵
108	The research protocol was approved by the Ethics Committee of the National Center for
109	Global Health and Medicine and the Ethics Committee of Toho University.
110	Data collection and measurements
111	A self-administered questionnaire, which was recommended for specific health
112	examination by the Japanese government (Ministry of Health, Labour and Welfare), ²⁶
113	was used to assess eating rate, medical history and health-related lifestyles including
114	smoking, alcohol consumption and regular physical activity. Eating rate was assessed by
115	asking "How fast is your speed of eating?", with three response options (slow, normal
116	and fast). A trained staff measured height to the nearest 0.1 cm, weight to the nearest 0.1
117	kg and waist circumference to the nearest 0.1 cm at the umbilical level in a standing
118	position. BMI was calculated as the weight in kilograms divided by the squared height
119	in meters. Blood pressure in the sitting position was measured using an automated
120	machine (HEM-907, Omron, Kyoto, Japan). Participants with high blood pressure
121	( $\geq$ 130 mm Hg systolic or $\geq$ 85 mm Hg diastolic) received another measurement and data

### **BMJ Open**

showing lower systolic blood pressure was used. Venous blood sample was collected, stored in a cooler at 4 degrees for transportation to an external laboratory (SRL, Tokyo, Japan) and measured within 24 hours of blood drawing. Triglyceride level was measured by enzymatic colorimetric test (Bio Majesty JCA-BM8060, JEOL, Tokyo, Japan). HDL-C level was determined by a direct method (Bio Majesty JCA-BM8060, JEOL, Tokyo, Japan). Plasma glucose level was determined using by the hexokinase method (an automatic clinical chemistry analyzer JCA-BM9000 series, JEOL, Tokyo, Japan). 

# **Definitions for MetS**

According to the JIS criteria, MetS was defined as three or more of the following risk factors: 1) waist circumference for Asian population  $\geq 90$  cm in men and  $\geq$ 80 cm in women, 2) triglyceride level  $\geq$ 150 mg/dL (1.7 mmol/L), 3) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3 mmol/L) in women, 4) blood pressure  $\geq 130$  mm Hg systolic or  $\geq 85$  mm Hg diastolic, 5) fasting glucose level  $\geq 100$ mg/dL (5.6 mmol/L).²² Participants under medication for diabetes, hypertension and dyslipidemia were considered as having respective factor, irrespective of measured data. Statistical analysis Participants were divided into three groups according to eating rate (slow,

2
3
1
т Б
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
20
26
27
28
29
30
21
31
32
33
34
35
36
27
37
38
39
40
41
42
43
11
44
40
46
47
48
49
50
51
51
5Z
53
54
55
56
57
50
20
59
60

1

140	normal and fast). The characteristics of participants across eating rate categories were
141	expressed as means (standard deviation) for continuous variables and percentages for
142	categorical variables, respectively. Fasting plasma glucose and triglyceride were highly
143	skewed; hence, they were log-transformed and expressed as geometric means (95%
144	confidence intervals (CI)). Trend association was assessed by assigning ordinal numbers
145	(0 to 2) to the categories of eating rate (slow, normal and fast, respectively) and was
146	tested using linear regression and logistic regression, as appropriate. Multiple logistic
147	regression analysis was used to estimate the odds ratios (OR) with 95% CI for the
148	presence of MetS across eating rate categories, with normal eating rate as the reference.
149	We adjusted for age (continuous, year) in the basic model. In the second model, we
150	further adjusted for smoking status (non-smoker, daily smoker consuming <20
151	cigarettes per day or $\geq 20$ cigarettes per day), physical activity (walking time <60 min
152	per day or $\geq 60$ min per day), and alcohol consumption (non-drinker, <1 go, 1 to <2 go
153	or $\geq 2$ go per day; one go of sake, Japanese traditional beverage, is about 180 ml of 10 to
154	14% of ethanol and contains ~23g of ethanol). In the third model, we added BMI
155	(continuous, $kg/m^2$ ) to the second model. We performed likelihood ratio test for testing
156	the interaction between eating rate and sex. All analyses were done for men and women
157	separately because the interaction was significant (P for interaction <0.001). We

### **BMJ Open**

158	repeated the above analyses for each component of MetS. Two-tailed P value <0.05 was
159	considered statistically significant. All statistical analyses were performed with STATA,
160	version 12.1 (StataCorp, College Station, TX, USA).
161	
162	RESULTS
163	The prevalence of MetS was 18.5% in men and 12.8 % in women. Table 1
164	shows characteristics of the study participants across categories of eating rate. Men who
165	ate fast tended to be young, whereas women who ate slowly tended to be young. Both
166	men and women who ate fast consumed greater amount of alcohol and had significantly
167	higher BMI, waist circumference, triglyceride level and systolic and diastolic blood
168	pressures and lower HDL-C level than those who ate slowly.
169	The ORs of the presence of MetS across eating rate are shown in Table 2.
170	Faster eating was associated with higher presence of MetS in age- and
171	multivariable-adjusted models. The trend was more apparent in men than in women.
172	The multivariable-adjusted ORs (95% CI) of MetS for eating slow, normal and fast rate
173	were 0.70 (0.62 to 0.79), 1.00 (reference) and 1.61 (1.53 to 1.70), respectively, in men
174	(P for trend <0.001), and 0.74 (0.60 to 0.91), 1.00 (reference) and 1.27 (1.13 to 1.43),
175	respectively, in women (P for trend <0.001). Further adjustment for BMI markedly

attenuated these associations; however, the association with fast eating and MetSremained statistically significant in men.

 
 Table 3 shows the ORs of the presence of individual MetS components across
 three categories of eating rate. Central obesity sharply increased with increasing speed of eating; the ORs for slow, normal and fast eating were 0.63, 1.00 (reference) and 1.97, respectively, in men (P for trend <0.001), and 0.73, 1.00(reference) and 1.44, respectively, in women (P for trend <0.001). High blood pressure and high triglyceride were positively associated with eating rate in both men and women. High fasting plasma glucose and low HDL-C were associated with fast eating in both men and women, but they were associated with slow eating in men only. Additional adjustment for BMI largely attenuated these associations and the significant trend association disappeared, but the associations of slow eating with decreased odds of high blood pressure (men and women) and hyperglycemia (men) and those of fast eating with increased odds of abnormal lipid profile (men) remained statistically significant. 

### **DISCUSSION**

In this large population of Japanese men and women, we found that eating ratewas positively associated with the presence of MetS, especially in men. Of components

194	of MetS, the association with abdominal obesity was strongest. These associations were
195	largely attenuated after adjustment for BMI. However, slow eating was associated with
196	decreased odds of high blood pressure in both men and women and high fasting plasma
197	glucose in men, and fast eating was associated with increased odds of lipid abnormal
198	profiles in men. To our best knowledge, the present study is the first to report a positive
199	association between eating rate and MetS defined by using waist circumference.
200	The present finding for MetS is consistent with that of a study among Korean
201	men reporting that eating rate was positively associated with MetS, which was defined
202	by using BMI instead of waist circumference. ²⁰ As regards MetS components, our study
203	is compatible with some cross-sectional studies showing that eating rate was associated
204	with higher BMI ⁸⁻¹¹ and two longitudinal studies showing that eating rate was
205	associated with weight gain. ^{16, 17} In a Korean study that elucidated the association
206	between eating rate and components of MetS for men and women separately, eating rate
207	was associated with obesity, high blood pressure, hyperglycemia and abnormal lipid
208	profile in men, whereas it was associated with only obesity in women. ¹¹ Our results
209	were largely consistent with those in the Korean study (except for blood pressure in
210	women).

1
2
3
1
5
5
6
1
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
50
52
ວ <b>ວ</b> ⊏₄
54
55
56
57
58
59
60

211	Notably, we found that the associations of MetS components with eating rate
212	were largely attenuated after adjustment for BMI, a finding compatible with those of a
213	cross-sectional study in Korea ¹¹ and a prospective study in Japan. ¹⁸ This result indicates
214	that obesity is a mediator whereby fast eating deteriorates MetS components. We also
215	found, however, that some associations remained statistically significant even after
216	adjusting for BMI (dyslipidemia with fast eating and hyperglycemia with slow eating in
217	men, and high blood pressure with slow eating in both men and women). Similarly, the
218	above-mentioned Korean study ¹¹ reported that high rate of eating remained an important
219	determinant for low HDL-C and high fasting plasma glucose after adjustment for BMI
220	in men. Therefore, there may be pathways other than weight gain that might underlie the
221	association between eating rate and MetS.
222	We found that the association between eating rate and MetS was stronger in
223	men than in women, consistent with a previous study in Korea. ¹¹ Such sex difference
224	may reflect the difference in actual eating speed between men and women. One study
225	elucidated that women took more bites, smaller bite size and slower bites than men in
226	eating the same amount of doughnut, irrespectively of body size. ²⁷ Another study
227	showed that objectively measured eating speed in men with self-reported slow eating

was faster than that in women with self-reported fast eating.²⁸ Taken together, eating
rate may have a greater impact on metabolism in men than that in women.

Although mechanisms whereby eating rate influences metabolism is not fully elucidated, overeating may link fast eating to MetS. Fast eating gives few satiety signal from oral cavity to the brain,^{29, 30} induces less satiation and satiety due to a lack of stomach expansion³¹ and alters the circulating levels of certain gut hormones.^{32, 33} In these pathways, fast eating leads to excess energy intake,^{34, 35} resulting in overweight and MetS. Because fast eating has been associated with obesity even after adjusting for total energy intake,^{8-11, 14} there may be other pathways. One study showed that interleukin-1 $\beta$  and interleukin-6 were higher among those who ate fast than among those who ate slowly, even after accounting for energy intake and BMI.³⁶ These cytokines could induce insulin resistance,^{37, 38} contributing to high blood pressure via an increased renal sodium and water retention, plasma noradrenalin and sympathetic nervous system activity.³⁹⁻⁴¹ 

The strengths of our study deserve mention. The present study has large sample size (56,865 participants). In addition, body weight, body height and waist circumference were measured by trained technicians, which increased the validity of our study. Nonetheless, several limitations in the present study merit consideration. First,

1
2
3
1
5
0
6
1
8
9
10
11
12
13
1/
14
10
10
1/
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
-0 /0
49 50
5U
51
52
53
54
55
56
57
58
59
60
00

246	eating rate was self-reported. However, self-reported eating rate has been shown to be
247	well correlated with friend-reported one ⁹ or objectively measured one. ²⁸ Second,
248	information on dietary intake was not available in the present study and thus total
249	energy intake was not considered in analyses. The adjustment of energy intake, however,
250	may not be appropriate because energy intake may increase with eating rate and thus
251	may act as a mediator rather than confounder. Moreover, eating rate has been associated
252	with body weight independent of energy intake. ^{7-10,13} Third, fast-food is an energy-dense
253	dietary source and has been linked to MetS. ⁴² Because fast-food is usually consumed
254	quickly, it may confound the association of eating rate with MetS. Fourth, the study
255	participants were mainly workers in various industries including manufacturing (43.6%),
256	service (27.8%) and transport and telecommunications (9.9%), and these figures are
257	similar to those of national survey. ⁴³ However, information on profession of participants
258	was not available, and thus caution is required when generalize the present finding.
259	Fifth, a large number of participants were excluded from the present analysis due to
260	missing data for MetS components. We cannot deny a possibility of bias due to such
261	selective inclusion. Sixth, cross-sectional design precludes any causal inferences about
262	the role of eating rate. Finally, we cannot exclude a possibility of the effects of residual
263	confounding and confounding by unmeasured variables.

In conclusion, we found a positive trend association between self-reported eating rate and the presence of MetS in men and women. The association between eating rate and MetS was largely accounted for by the difference of body mass across eating rate. Further research should address whether reducing eating rate prevents and MetS. obesity and MetS. 

# Table1. Characteristics of the study individuals according to eating rates

	Men (n = 41,820)				Women ( $n = 1$ )			
	Slow	Normal	Fast	P for trend ^a	Slow	Normal	Fast	P for trend ^a
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Age (years) ^b	46.9 ± 12.3	46.9 ± 10.9	$45.0 \pm 10.4$	< 0.001	43.5 ± 12.5	47.2 ± 11.6	46.7 ± 11.2	< 0.001
Walking time, ≥60 min/day (%)	21.8	19.0	20.6	0.004	15.5	15.0	16.1	0.798
Smoking status (%)								
Non-smoker	61.9	55.0	56.6	<0.001	82.9	83.1	80.7	0.572
Daily consuming <20 cigarettes /day	28.6	34.6	31.3		16.0	15.7	17.6	
Daily consuming ≥20 cigarettes /day	9.5	10.4	12.1		1.1	1.2	1.7	

# Alcohol (%)

Non-drinker	30.2	26.7	26.7	<0.001	53.4	52.2	49.8	< 0.001
Drinker <1 go /day ^d	33.9	35.7	34.5		34.2	35.9	35.5	
Drinker 1 to <2 go /day ^d	24.6	26.3	26.8		9.5	9.5	11.5	
Drinker $\geq 2 go / day^d$	11.3	11.3	12.0		2.9	2.4	3.2	
BMI $(kg/m^2)^b$	22.4 ± 3.3	23.4 ± 3.3	24.6 ± 3.7	<0.001	21.0 ± 3.5	21.8 ± 3.5	$22.5 \pm 3.8$	< 0.001
Waist circumference (cm) ^b	80.3 ± 9.2	$82.9\pm9.0$	86.0 ± 9.8	<0.001	$75.5\pm9.5$	$77.7 \pm 9.4$	$79.6\pm9.8$	< 0.001
Systolic blood pressure (mm Hg) ^b	123.5 ± 15.5	126.1 ± 15.5	126.7 ± 15.1	<0.001	113.1 ± 16.3	117.3 ± 17.2	117.0 ± 17.2	< 0.001
Diastolic blood pressure (mm Hg) ^b	75.2 ± 11.4	77.3 ± 11.9	$78.0 \pm 12.0$	<0.001	69.1 ± 10.9	71.4 ± 11.5	71.5 ± 11.9	< 0.001
Fasting plasma glucose (mg/dL) ^c	93.0 (92.5 to	94.4 (94.2 to	94.6 (94.3 to	<0.001	88.1 (87.5 to	89.1 (88.9 to	89.5 (89.1 to	<0.001
	93.6)	94.6)	94.8)	0.001	88.7)	89.3)	89.9)	0.001

	2	98.3 (96.2	to 103.8 (103.0 to	110.8 (109.8 to		67.0 (65.3 to	71.6 (70.9 to	74.1 (72.9	to
Triglyceride (mg/dL) ^c		.00.4)	104.6)	111.9)	< 0.001	68.7)	72.3)	75.2)	<0.00
HDL-C (mg/dL) ^b	0	51.3 ± 15.3	59.4 ± 15.0	57.2 ± 14.3	<0.001	71.4 ± 15.3	70.5 ± 15.8	69.3 ± 15.5	<0.00
		D	0						
Cross to sectional survey of 56,8	65 examinee	s in All Japa	n Labor Welfare Foun	dation, Japan, 2011.					
BMI=body mass index; HDL-C=	high to dens	ity lipoprote	in cholesterol.						
BMI=body mass index; HDL-C=	=high to dens egression, as	ity lipoprote	in cholesterol.	eating rate, as approp	riate.				
BMI=body mass index; HDL-C= ^a Linear regression and logistic re ^b Mean ± SD.	=high to dens egression, as	ity lipoprote	in cholesterol.	eating rate, as approp	riate.				
BMI=body mass index; HDL-C= ^a Linear regression and logistic re ^b Mean ± SD. ^c Geometric means (95% confide	=high to dens egression, as ence intervals	ity lipoprote signing ordin ).	in cholesterol.	eating rate, as approp	riate.				
BMI=body mass index; HDL-C= ^a Linear regression and logistic re ^b Mean ± SD. ³ Geometric means (95% confide ¹ One <i>go</i> contains ~25g of ethance	=high to dens egression, as ence intervals ol.	ity lipoprote signing ordin ).	in cholesterol.	eating rate, as approp	riate.				
BMI=body mass index; HDL-C= ^a Linear regression and logistic re ³ Mean ± SD. ³ Geometric means (95% confide ⁴ One <i>go</i> contains ~25g of ethance	=high to dens egression, as ence intervals ol.	ity lipoprote signing ordin ).	in cholesterol.	eating rate, as approp	riate.				
BMI=body mass index; HDL-C= ¹ Linear regression and logistic re ² Mean ± SD. ² Geometric means (95% confide ¹ One <i>go</i> contains ~25g of ethance	=high to dens egression, as ence intervals	ity lipoprote signing ordin	in cholesterol.	eating rate, as approp	riate.				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Table2. Odds ratios and 95% confidence intervals for metabolic syndrome according to eating rate (n = 56,865)

	Men (n = 41,820)				Women (n = 15,045			
Eating rate	Slow	Normal ^a	Fast	P for trend ^b	Slow	Normal ^a	Fast	P for
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
MetS, n	361	4,180	3,193		116	1,261	547	
Model 1 ^c	0.70 (0.62 to 0.79)	1.00	1.62 (1.53 to 1.71)	<0.001	0.75 (0.61 to 0.92)	1.00	1.27 (1.13 to 1.42)	< 0.001
Model 2 ^d	0.70 (0.62 to 0.79)	1.00	1.61 (1.53 to 1.70)	<0.001	0.74 (0.60 to 0.91)	1.00	1.27 (1.13 to 1.43)	< 0.001
Model 3 ^e	0.91 (0.80 to 1.04)	1.00	1.10 (1.03 to 1.17)	<0.001	0.88 (0.70 to 1.11)	1.00	0.98 (0.86 to 1.12)	0.714

MetS=Metabolic syndrome.

MetS as defined using the criteria of the Joint Interim Statement : the presence of three or more of the following risk factors: 1) waist circumference ≥90 cm

in men and ≥80 cm in women, 2) triglyceride level ≥150 mg/dL (1.7 mmol/L), 3) HDL-C level <40 mg/dL (1.04 mmol/L) in men and <50 mg/dL (1.3

mmol/L) in women, 4) blood pressure  $\geq$ 130 mm Hg systolic or  $\geq$ 85 mm Hg diastolic, 5) fasting glucose level  $\geq$ 100 mg/dL (5.6 mmol/L).

^a Reference.

^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Adjusted for age.

^d Adjusted for age, smoking status, alcohol and regular physical activity.

*,*ity. ۳d body mass index. ^e Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

	Men (n = 41,820	)			Women (n = 15,	045)		
				P for				P for
Eating rate	Slow	Normal ^a	Fast	trend ^b	Slow	Normal ^a	Fast	trend ^b
n (%)	2,821 (6.8)	24,893 (59.5)	14,106 (33.7)		1,398 (9.3)	9,893 (65.8)	3,754 (24.9)	
Central obesity	y ^c							
Model 1 ^d	0.63 (0.56 to	1.00	1.98 (1.89 to	o <0.00	0.73 (0.64 to	1.00	1.44 (1.34 to	o <0.00
	0.71)	1.00	2.08)	1	0.83)	1.00	1.56)	1
Model 2 ^e	0.63 (0.56 to	1.00	1.97 (1.88 to	o <0.00	0.73 (0.64 to	, 1.00	1.44 (1.33 te	o <0.00
Wodel 2	0.70)	1.00	2.07)	1	0.83)	1.00	1.56)	1

Table3. Odds ratios and 95% confidence intervals for components of metabolic syndrome according to eating rate (n = 56,865)

High blood pressure ^f

Model 1 ^d	0.75	(0.69	to	1 00	1.22	(1.17	to	<0.00	0.76	(0.66	to	1.00	1.10	(1.01	to	< 0.00
	0.82)				1.27)			1	0.88)				1.21)			1
Model 2 ^e	0.74	(0.68	to	1.00	1.20	(1.15	to	< 0.00	0.76	(0.65	to	1.00	1.10	(1.00	to	< 0.00
	0.81)				1.26)			1	0.88)				1.20)			1
Model 3 ^g	0.88	(0.81	to	1.00	0.97	(0.93	to	0 6 4 5	0.85	(0.72	to	1.00	0.93	(0.84	to	0.022
	0.96)				1.02)			0.645	0.99)				1.02)			0.923
High fasting pl	asma gl	lucose ^h														
Model 1 ^d	0.78	(0.71	to	1.00	1.17	(1.12	to	<0.00	1.03	(0.85	to	<b>b</b>	1.17	(1.04	to	
	0.87)				1.23)			1	1.25)	25)		1.00	1.31)			0.035
Model 2 ^e	0.78	(0.71	to	1.00	1.16	(1.11	to	<0.00	1.03	(0.85	to	1.00	1.16	(1.03	to	0.042
							25									
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml															

 BMJ Open

	0.87)				1.22)			1	1.25)				1.31)			
Model 3 ^g	0.88	(0.80	to	1.00	0.99	(0.94	to	0 228	1.14	(0.94	to	1.00	1.02	(0.90	to	0 526
	0.98)			1.00	1.05)			0.238	1.40)			1.00	1.15)			0.550
High triglycerio	de ⁱ															
Model 1 ^d	0.88	(0.80	to	1.00	1.32	(1.26	to	<0.00	0.83	(0.67	to	1.00	1.14	(1.01	to	0.002
	0.96)				1.38)			1	1.01)				1.28)			
Model 2 ^e	0.90	(0.82	to	1.00	1.33	(1.27	to	<0.00	0.81	0.81 (0.66	to	1 00	1.13	(1.01	to	0 002
	0.98)				1.39)			1	1.00)			1.00	1.27)			0.002
Model 3 ^g	1.08	(0.98	to	1.00	1.07	(1.02	to	0 121	0.90	(0.73	to	1.00	0.98	(0.87	to	0 753
	1.19)			1.00	1.12)			0.121	1.11)			1.00	1.11)		0.7	0.755

Low HDL-C^j



BMI=body mass index; HDL-C=high to density lipoprotein cholesterol.

^a Reference.

 ^b Multiple logistic regression, assigning ordinal number (0 to 2) to eating rate.

^c Waist circumference  $\geq$ 90 cm in men and  $\geq$ 80 cm in women.

^d Adjusted for age.

^e Adjusted for age, smoking status, alcohol and regular physical activity.

^fBlood pressure  $\geq$ 130 mm Hg for systolic or  $\geq$ 85 mm Hg for diastolic.

^g Adjusted for age, smoking status, alcohol, regular physical activity and body mass index.

^h Fasting plasma glucose  $\geq 100 \text{ mg/dL}$  or under medication.

ⁱ Triglyceride  $\geq$ 150 mg/dL or under medication.

^j HDL-C <40 mg/dL in men, <50 mg/dL in women or under medication.

### Acknowledgments

The authors would like to thank Dr. Nobuo Yanagisawa and Dr. Takeshi Kawaguchi for their coordinating the study.

Contributors: SN and KKurotani designed study and drafted the manuscript. SN, NMP, AN, KKuwahara performed the data analysis. MD collected and interpreted the data. All authors have participated in the interpretation of the findings, revised it critically for important intellectual content and approved final version to be published. TM and YN provided administrative, technical and material support.SN and TM are guarantors. Funding: This study was supported by the Industrial Health Foundation. Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: all authors declare no interests. Ethical approval: The research protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine and the Ethics Committee of Toho University.

Data sharing: No additional data available.

Transparency: SN affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant,
Page 67 of 77

registered) have been explained.

### References

1. Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. *Lancet* 2010;**375**:181-83.

2. Gomez-Martinez S, Martinez-Gomez D, Perez de Heredia F, et al. Eating habits and total and abdominal fat in Spanish adolescents: influence of physical activity. The AVENA study. *J Adolesc Health* 2012;**50**:403-09.

3. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. *Diabetes care* 2008;**31**:805-07.

4. Nanri A, Tomita K, Matsushita Y, et al. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: randomized controlled trial. *J Occup Health* 2012;**54**:215-22.

5. Ferster CB, Nurnberger JI, Levitt EB. The control of eating. 1962. *Obes Res* 1996;**4**:401-10.

 Hill SW, McCutcheon NB. Eating responses of obese and nonobese humans during dinner meals. *Psychosom Med* 1975;**37**:395-401.

7. Bellack AS. Behavior therapy for weight reduction. Addict Behav 1975;1:73-82.

8. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to obesity: findings based

#### **BMJ Open**

on self-administered questionnaires among middle-aged Japanese men and women. *J Epidemiol* 2006;**16**:117-24.

9. Sasaki S, Katagiri A, Tsuji T, et al. Self-reported rate of eating correlates with body mass index in 18-y-old Japanese women. *Int J Obes Relat Metab Disord* 2003;**27**:1405-10.

10. Maruyama K, Sato S, Ohira T, et al. The joint impact on being overweight of self reported behaviours of eating quickly and eating until full: cross sectional survey. *BMJ* 2008;**337**:a2002.

11. Lee KS, Kim DH, Jang JS, et al. Eating rate is associated with cardiometabolic risk factors in Korean adults. *Nut Metab Cardiovasc Dis* 2013;**23**:635-41.

12. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. *Prev Med* 2008;**46**:154-59.

13. Radzeviciene L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. *Clin Nutr* 2013;**32**:232-35.

14. Ohkuma T, Fujii H, Iwase M, et al. Impact of eating rate on obesity and cardiovascular risk factors according to glucose tolerance status: the Fukuoka Diabetes Registry and the Hisayama Study. *Diabetologia* 2013;**56**:70-77.

15. Shigeta H, Shigeta M, Nakazawa A, et al. Lifestyle, obesity, and insulin resistance.

*Diabetes care* 2001;**24**:608.

16. Gerace TA, George VA. Predictors of weight increases over 7 years in fire fighters and paramedics. *Prev Med* 1996;**25**:593-600.

17. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. *Appetite* 2011;**57**:179-83.

Sakurai M, Nakamura K, Miura K, et al. Self-reported speed of eating and 7-year risk of type 2 diabetes mellitus in middle-aged Japanese men. *Metabolism* 2012;61:1566-71.

19. Kral JG, Buckley MC, Kissileff HR, et al. Metabolic correlates of eating behavior in severe obesity. *Int J Obes Relat Metab Disord* 2001;**25**:258-64.

20. Shin A, Lim SY, Sung J, et al. Dietary intake, eating habits, and metabolic syndrome in Korean men. *J Am Diet Assoc* 2009;**109**:633-40.

21. Shen W, Punyanitya M, Chen J, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. *Obesity (Silver Spring)* 2006;**14**:727-36.

22. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American

#### **BMJ Open**

Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;**120**:1640-5.

23. Ministry of Justice, Japan. Industrial Safety and Health Act, Article 66 (Medical Examination). Available at:

http://www.japaneselawtranslation.go.jp/law/detail/?id=1926&vm=&re=. Accessed 28 July 2014.

24. Ministry of Health, Labour and Welfare. Specific Health Checkups and Specific Health Guidance. Secondary Specific Health Checkups and Specific Health Guidance. Available at: http://www.mhlw.go.jp/english/wp/wp-hw3/dl/2-007.pdf. Accessed 28 July 2014.25. The Ministry of Health, Labour and Welfare, Ministry of Education, Culture, Sports, Science and Technology. Ethical guidelines for epidemiological research. 2002. Available at: http://www.niph.go.jp/wadai/ekigakurinri/guidelines.pdf. Accessed 28 July, 2014.

26. Ministry of Health, Labour and Welfare. Questionnaire of Specific Health Checkups. Secondary Questionnaire of Specific Health Checkups. Available at:

http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/seikatsu/dl/hoken-p rogram2_02.pdf. Accessed 28 July 2014. (in Japanese)

27. Hill SW, McCutcheon NB. Contributions of obesity, gender, hunger, food preference,

and body size to bite size, bite speed, and rate of eating. Appetite 1984;5:73-83.

28. Ekuni D, Furuta M, Takeuchi N, et al. Self-reports of eating quickly are related to a decreased number of chews until first swallow, total number of chews, and total duration of chewing in young people. *Arch Oral Biol* 2012;**57**:981-86.

29. Rolls ET. Sensory processing in the brain related to the control of food intake. *Proc Nutr Soc* 2007;**66**:96-112.

30. Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. *Nature* 2006;**443**:289-95.

31. de Graaf C, Blom WA, Smeets PA, et al. Biomarkers of satiation and satiety. *Am J Clin Nutr* 2004;**79**:946-61.

32. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. *J Clin Endocrinol Metab* 2010;**95**:333-37.

33. Sobki SH, Zaid AA, Khan HA, et al. Significant impact of pace of eating on serum ghrelin and glucose levels. *Clin Biochem* 2010;**43**:522-24.

34. Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. *Appetite* 2011;**56**:25-31.

35. Scisco JL, Muth ER, Dong Y, et al. Slowing bite-rate reduces energy intake: an

#### **BMJ Open**

application of the bite counter device. J Am Diet Assoc 2011;111:1231-35.
36. Mochizuki K, Misaki Y, Miyauchi R, et al. A higher rate of eating is associated with higher circulating interluekin-1beta concentrations in Japanese men not being treated for metabolic diseases. Nutrition 2012;28:978-83.
37. Besedovsky H, del Rey A, Sorkin E, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986;233:652-54
38. Matsuki T, Horai R, Sudo K, et al. IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. J Exp Med 2003;198:877-88.
39. Yatabe MS, Yatabe J, Yoneda M, et al. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin

40. Facchini FS, DoNascimento C, Reaven GM, et al. Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion. *Hypertension* 1999;**33**:1008-12.

activity in lean patients with essential hypertension. Am J Clin Nutr 2010;92:77-82.

41. Pollare T, Lithell H, Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. *Metabolism*. 1990;**39**:167-74.

42. De Vogli R, Kouvonen A, Gimeno D. The influence of market deregulation on fast food consumption and body mass index: a cross national time series analysis. *Bull* 

World Health Organ 2014;92:99-107A.

43. Ministry of Health, Labour and Welfare. Special Survey on Industrial Safety and

Health. Available at: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei11/h23.html.

Accessed 28 July 2014. (in Japanese)

## BMJ Open

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

# MS ID#: bmjopen-2014-005241.R1

MS TITLE: Self-reported eating rate and metabolic syndrome in Japanese: cross-sectional study

	Item No	Recommendation	Location in manuscript
Title and abstract	1	( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract	Line 1 on page 1 and line 23 on page 3
		(b) Provide in the abstract an informative and balanced summary of what	What was done: line 21-22 on page 3
		was done and what was found	What was found: line 42-44 on page 4
Introduction		No	
Background/rationale	2	Explain the scientific background and rationale for the investigation being	Scientific background: line 51-67 on page 6
		reported	Rationale: Line 67-74 on page 6 and 7
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 73-79 on page 7
Methods			
Study design	4	Present key elements of study design early in the paper	Line 75 on page 7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	Line 83-89 on page 7-8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	Line 89-103 on page 8
		participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	Outcome: line 131-138 on page 10
		and effect modifiers. Give diagnostic criteria, if applicable	Exposure: line 115 on page 9
			Potential confounders: line 149-155 on page 11
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Line 116-129 on page 9 and 10
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Exclusion: line 89-103 on page 8
			Adjustment: line 149-155 on page 11
Study size	10	Explain how the study size was arrived at	Not provided
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	Adjustment: line 149-155 on page 11
variables		applicable, describe which groupings were chosen and why	
		1	
		For peer review only - http://bmjopen.bmj.com/site/a	bout/guidelines.xhtml

Statistical methods	12	( <i>a</i> ) Describe all statistical methods, including those used to control for confounding	Line 140-157 on page 11
		(b) Describe any methods used to examine subgroups and interactions	Line 155-157 on page 11
		(c) Explain how missing data were addressed	We excluded participants who had missing information on potentia
			confounding variables (line 100-102 on page 8).
		(d) If applicable, describe analytical methods taking account of sampling	N/A
		strategy	
		( <u>e</u> ) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	Table 1
		potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Table 1
		social) and information on exposures and potential confounders	Line 63-168 on page 12
		(b) Indicate number of participants with missing data for each variable of	N/A
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	Table 2
			Line 163 on page 12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Table 2, Table3
		estimates and their precision (eg, 95% confidence interval). Make clear	Line 169-189 on page 12-13
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Table2, Table3
		(c) If relevant, consider translating estimates of relative risk into absolute	N/A
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	Line 155-156 on page 11
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Line 192-199 on page 13 and 14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	Line 245-263 on page 16 and 17
		2	
		For peer review only - http://bmjopen.bmj.com/site/a	about/guidelines.xhtml

<del>.</del> •	•	or imprecision. Discuss both direction and magnitude of any potential bias	1. 200.010
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	Line 200-210 on page 14
		limitations, multiplicity of analyses, results from similar studies, and other	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Line 254-258 on page 17
Other information	21	Discuss the generalisation (external value) of the study results	
Funding	22	Give the source of funding and the role of the funders for the present study	This study was supported by the Industrial Health Foundation for
lunung		and, if applicable, for the original study on which the present article is based	drafting the maniscript.
N/A: Not applicable.			
*Give information se	eparately f	for exposed and unexposed groups.	
		3	