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Fig. S1. Rarefaction curves of the 9 samples at cutoff levels of 3% (a) and 6% (b). The rarefaction 

curve, plotting the number of observed OTUs as a function of the number of sequences, was 

computed using RDP Pyrosequencing Pipeline Rarefraction tool. 

   



 

        

Fig. S2. Cluster analysis based on Bray-Curtis distances of 9 samples. (a) at 3% cutoff OTU level; 

(b) at Phylum level. The dot lines show the similarity cutoff levels to cluster the 9 sludge samples 

into distinct A-A and A-O groups.  
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Fig. S3. PCoA based on Bray-Curtis distances of 9 sludge samples. (a) at 3% cutoff-OTU level; (b) 

at Phylum level. 
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Fig. S4. Analysis scheme for identification of putative PAO. For identification of 

above-mentioned novel DPAO, another strategy emphasizing isolation source of 

related NCBI Genbank sequences was attempted, as illustrated by Fig.S4. Two 

assumptions were hypothesized for this strategy: (1) the novel DPAO should be an 

abundant population (with a least percentage above 0.5% or so) since too tenuous 

population was still incapable to explain the significant phosphorus removal 

efficiency. Theoretically, the situation of “vast but diverse” DPAO population should 

be considered, but this was conflicting with the ecological rule that population in the 

overlapped ecological niche could not co-exist after long time evolution. This 

assumption was also partially testified by the fact that more than 94% of the identified 

PAO in A-O SBR through traditional strategy had a relative abundance higher than 

0.5%. (2) The DPAO sequence should be frequently recorded in NCBI Genbank, 

although they might not be correctly annotated as PAO or DPAO. Based on above two 

assumptions, all clustered OTUs in seed sludge, A-A and A-O sludge were separately 

ranked by their relative abundance. Only the abundant OTUs (relative 

abundance >0.5%) were further proceeded to avoid huge unnecessary work. Then the 

abundant OTUs were subjected to online BLAST for a comprehensive survey of the 

isolation source of their close relatives.  
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Table S1 Ranked OTUs in A-A SBR by their relative abundances and isolation environments description of their related sequence.δ 

OTUs 
Proportion (%) Similar sequence  

Major environments  
A/A A/O Sequence NO. Similarity (%) Origin 

1* 16.8 4.56 
JQ072864 100 Full-scale EBPR (12) Widely reported in biological P-removal and 

wastewater treatment systems  HQ158656 100 SBR (25) 

21* 14.5 1.36 
HQ917038 100 SBR (2) Widely reported in water treatment systems, 

phylogenetically similar to Thauera HQ403231 100 SBR (10) 

25 9.01 7.51 
JF817650 100 Microbial fuel cells (24) Commonly reported in anaerobic conditions, soil and 

sediment HQ049856 93 Oil sands tailings pond (17) 

462 8.38 0.02 
FM242265 100 Coastal sediment (15) Commonly reported in anaerobic conditions, soil and 

sediment AM422228 98 Sediment (7) 

176 2.49 0.08 
JF817705 100 Microbial fuel cells (24) 

Commonly reported in microbial fuel cells 
FJ375431 100 Microbial fuel cells (13) 

6 2.35 0.12 
CU918778 100 Anaerobic digestion of sludge (18)

Commonly reported in anaerobic conditions 
FJ66054 100 Pilot-scale WWTP (19) 

312* 1.92 0.03 
JN090838 97 EBPR SBR (9) Widely reported in biological P-removal wastewater 

treatment systems HQ010731 97 SBR (11) 

806 1.92 0.02 
GU300327 90 Coastal sediment (1) 

Commonly reported in soil and sediment. 
AF507646 89 Soil (6) 

129* 1.80 0.62 
FJ434606 100 Bioreactor (4) Widely reported in wastewater treatment systems and 

also the biological P-removal systems AF502223 100 SBR (14) 

34 1.62 0.65 
JF345459 100 Citrus rhizosphere (22) 

Commonly reported in soil and plant rhyzosphere  
JQ965569 100 Cropped rice (5)  

293 1.49 1.00 
HQ119190 100 Soil (23) 

Commonly reported in soil and plant rhyzosphere 
GU375391 100 Soil (3) 

87 1.44 2.56 HE602881 100 Caves (16) Commonly reported in soil, sediment and occasional 



JN107387 100 Plant (8) in wastewater treatment systems 

100 1.28 0.25 
JN563818 100 Sea (20) Commonly reported in soil, sediment and occasional 

in wastewater treatment systems JQ965582 100 Cropped rice (5) 

801 1.03 0 
HQ010842 93 SBR (11) Commonly reported in soil and wastewater treatment 

systems AY157111 93 WWTP (21) 

* The related sequences were widely reported in biological phosphorus removal wastewater treatment systems 

δ OTUs with significant higher hit ratio originated from nutrient removal activated sludge environment may indicate their universal distribution 

and functioning in such environments, therefore they should be especially concerned in DPAO identification. 
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