

Fig. S1. Rarefaction curves of the 9 samples at cutoff levels of 3% (a) and 6% (b). The rarefaction curve, plotting the number of observed OTUs as a function of the number of sequences, was computed using RDP Pyrosequencing Pipeline Rarefraction tool.

Fig. S2. Cluster analysis based on Bray-Curtis distances of 9 samples. (a) at 3% cutoff OTU level;

(b) at Phylum level. The dot lines show the similarity cutoff levels to cluster the 9 sludge samples

into distinct A-A and A-O groups.

Fig. S3. PCoA based on Bray-Curtis distances of 9 sludge samples. (a) at 3% cutoff-OTU level; (b)

at Phylum level.

Fig. S4. Analysis scheme for identification of putative PAO. For identification of above-mentioned novel DPAO, another strategy emphasizing isolation source of related NCBI Genbank sequences was attempted, as illustrated by Fig.S4. Two assumptions were hypothesized for this strategy: (1) the novel DPAO should be an abundant population (with a least percentage above 0.5% or so) since too tenuous population was still incapable to explain the significant phosphorus removal efficiency. Theoretically, the situation of "vast but diverse" DPAO population should be considered, but this was conflicting with the ecological rule that population in the overlapped ecological niche could not co-exist after long time evolution. This assumption was also partially testified by the fact that more than 94% of the identified PAO in A-O SBR through traditional strategy had a relative abundance higher than 0.5%. (2) The DPAO sequence should be frequently recorded in NCBI Genbank, although they might not be correctly annotated as PAO or DPAO. Based on above two assumptions, all clustered OTUs in seed sludge, A-A and A-O sludge were separately ranked by their relative abundance. Only the abundant OTUs (relative abundance >0.5%) were further proceeded to avoid huge unnecessary work. Then the abundant OTUs were subjected to online BLAST for a comprehensive survey of the isolation source of their close relatives.

OTUs	Proportion (%)		Similar sequence			Maian ann incanan ta	
	A/A	A/O	Sequence NO.	Similarity (%)	Origin	Major environments	
1*	16.8	4.56	JQ072864	100	Full-scale EBPR (12)	Widely reported in biological P-removal and	
1*			HQ158656	100	SBR (25)	wastewater treatment systems	
01 *	14.5	1.36	HQ917038	100	SBR (2)	Widely reported in water treatment systems,	
21.			HQ403231	100	SBR (10)	phylogenetically similar to Thauera	
25	0.01	01 7.51	JF817650	100	Microbial fuel cells (24)	Commonly reported in anaerobic conditions, soil and	
23	9.01		HQ049856	93	Oil sands tailings pond (17)	sediment	
460	0 20	0.02	FM242265	100	Coastal sediment (15)	Commonly reported in anaerobic conditions, soil and	
402	0.30		AM422228	98	Sediment (7)	sediment	
176	2 40	0.08	JF817705	100	Microbial fuel cells (24)	Commonly reported in microbial fuel cells	
170	2.49		FJ375431	100	Microbial fuel cells (13)		
6	2.35	0.12	CU918778	100	Anaerobic digestion of sludge (18)	Commonly reported in anaerobic conditions	
0			FJ66054	100	Pilot-scale WWTP (19)		
21 2 *	1.92	0.03	JN090838	97	EBPR SBR (9)	Widely reported in biological P-removal wastewater	
512.			HQ010731	97	SBR (11)	treatment systems	
806	1.92	0.02	GU300327	90	Coastal sediment (1)	Commonly reported in soil and addiment	
800			AF507646	89	Soil (6)	Commonly reported in son and sediment.	
120*	1.80	0.62	FJ434606	100	Bioreactor (4)	Widely reported in wastewater treatment systems and	
129			AF502223	100	SBR (14)	also the biological P-removal systems	
24	1.62	0.65	JF345459	100	Citrus rhizosphere (22)	Commonly reported in soil and plant rhyzosphere	
34			JQ965569	100	Cropped rice (5)		
202	1.49	1.00	HQ119190	100	Soil (23)	Commonly reported in soil and plant rhyzosphere	
293			GU375391	100	Soil (3)		
87	1.44	2.56	HE602881	100	Caves (16)	Commonly reported in soil, sediment and occasional	

Table S1 Ranked OTUs in A-A SBR by their relative abundances and isolation environments description of their related sequence.^{δ}

			JN107387	100	Plant (8)	in wastewater treatment systems
100	1.28	0.25	JN563818	100	Sea (20)	Commonly reported in soil, sediment and occasional
			JQ965582	100	Cropped rice (5)	in wastewater treatment systems
801	1.02	0	HQ010842	93	SBR (11)	Commonly reported in soil and wastewater treatment
	1.03		AY157111	93	WWTP ⁽²¹⁾	systems

* The related sequences were widely reported in biological phosphorus removal wastewater treatment systems δ OTUs with significant higher hit ratio originated from nutrient removal activated sludge environment may indicate their universal distribution and functioning in such environments, therefore they should be especially concerned in DPAO identification.

References for Table S1

- 1 Brooks, D.D., R. Chan, E.R. Starks, S.J. Grayston, and M.D. Jones. 2011. Ectomycorrhizal hyphae structure components of the soil bacterial community for decreased phosphatase production. FEMS Microbiol. Ecol. 76:245-255.
- 2 Burgmann, H., S. Jenni, F. Vazquez, and K.M. Udert. 2011. Regime shift and microbial dynamics in a sequencing batch reactor for nitrification and anammox treatment of urine. Appl. Environ. Microb. 77:5897-5907.
- 3 Castro, H.F., A.T. Classen, E.E. Austin, R.J. Norby, and C.W. Schadt. 2010. Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microb. 76:999-1007.
- 4 Dafale, N., L. Agrawal, A. Kapley, S. Meshram, H. Purohit, and S. Wate. 2010. Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic-oxic bioreactor system degrading azo dyes. Bioresource Technol. 101:476-484.
- 5 de Souza, R., A. Beneduzi, A. Ambrosini, P.B. da Costa, J. Meyer, L.K. Vargas, R. Schoenfeld, L.M.P. Passaglia. 2012. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 360:1-19.
- 6 Dunbar, J., S.M. Barns, L.O. Ticknor, and C.R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microb. 68:3035-3045.
- 7 Eller, G., P. Deines, and M. Krueger. 2007. Possible sources of methane derived carbon for chironomid larvae. Aquat. Microb. Ecol.

46:283-293.

- 8 Fagervold, S.K., P.E. Galand, M. Zbinden, F. Gaill, P. Lebaron, and C. Palacios. 2012. Sunken woods on the ocean floor provide diverse specialized habitats for microorganisms. FEMS Microb. Ecol. 82:616-628.
- 9 Gonzalez-Gil, G., and C. Holliger. 2011. Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate. Appl. Environ. Microb. 77:8041-8051.
- 10 Guo, F., S.H. Zhang, X. Yu, and B. Wei. 2011. Variations of both bacterial community and extracellular polymers: the inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge. Bioresource Technol. 102:6421-6428.
- 11 Ji, Z.Y., and Y.G. Chen. 2010. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite. Environ. Sci. Technol. 44:8957-8963.
- 12 Lee, J.Z., S. Terry, A.J. Logan, and J.R. Spear. 2011. Microbial Dynamics of a Brewery Wastewater Treatment Works. Unpublished
- 13 Lefebvre, O., T.T.H. Nguyen, A. Al-Mamun, I.S. Chang, and H.Y. Ng. 2010. T-RFLP reveals high beta-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. J. Appl. Microbiol. 109:839-820.
- 14 McMahon, K.D., M.A. Dojka, N.R. Pace, D. Jenkins, and J.D. Keasling. 2002. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Environ. Microb. 68:4971-4978.
- 15 Paisse, S., M. Goni-Urriza, F. Coulon, and R. Duran. 2010. How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb. Ecol. 60:394-405.
- 16 Porca, E., V. Jurado, D. Zgur-Bertok, C. Saiz-Jimenez, and L. Pasic. 2012. Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microb. Ecol. 81:255-266.
- 17 Ramos-Padron E., S. Bordenave, S.P. Lin, I.M. Bhaskar, X.L. Dong, C.W. Sensen, J. Fournier, G. Voordouw, and L.M. Gieg. 2011. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ. Sci. Technol. 45:439-446.
- 18 Riviere, D., V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho, and A. Sghir. 2009. Towards the

definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3:700-714.

- 19 Satoh, H., K. Oshima, W. Suda, P. Ranasinghe, N. Li, E.G.W. Gunawardana, M. Hattori, and T. Mino. 2013. Bacterial population dynamics in a laboratory activated sludge reactor monitored by pyrosequencing of 16S rRNA. Microbes Environ. 28:65-70.
- 20 Smedile, F., E. Messina, V. La Cono, *et al.* 2013. Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapan-Vavilov Deep. Environ. Microbiol. 15:167-182.
- 21 Smith, N.R., Z. Yu, and W.W. Mohn. 2003. Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Res. 37:4873-4884.
- 22 Trivedi, P., Z.L. He, J.D. van Nostrand, G. Albrigo, J.Z. Zhou, and N. Wang. 2012. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 6:363-383.
- 23 Williamson, K.E., J. Kan, S.W. Polson, and S.J. Williamson. 2011. Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biol. Biochem. 43:736-748.
- 24 Yates, M.D., P.D. Kiely, D.F. Call, H. Rismani-Yazdi, K. Bibby, J. Peccia, J.M. Regan, B.E. Logan. 2012. Convergent development of anodic bacterial communities in microbial fuel cells. ISME J. 6:2002-2013.
- 25 Zhu, X., and Y. Chen. 2011. Reduction of N₂O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environ. Sci. Technol. 45:2137-2143.

	Table 52. Sequences and references for GAO BLAST			
Accession number	Reference			
JN647912.1~JN647900.1	Liu Z, Pruden A, Ogejo JA, Knowlton KF. Development and application of qPCR to			
	quantify glycogen accumulating organisms (GAOs) in EBPR systems. unpublished			
HQ341392.1~HQ341387.1	Kim JM, Lee HJ, Lee DS, Lee K, Jeon CO. Identification of a novel subgroup of			
	uncultured gammaproteobacterial glycogen-accumulating organisms in enhanced			
	biological phosphorus removal sludge. Microbiology, 2011, 157 (8): 2287-2296.			
AF361096.1~AF361089.1	Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL. Glycogen-accumulating			
	organisms in laboratory-scale and full-scale wastewater treatment processes.			
	Microbiology 2002, 148 (11): 3353-3364.			
DQ146475.1~DQ146465.1	Meyer RL, Saunders AM, Blackall LL. Putative glycogen-accumulating organisms			
	belonging to the Alphaproteobacteria identified through rRNA-based stable isotope			
	probing. Microbiology, 2006, 152 (2): 419-429.			
AY254696.1~AY254687.1	Beer M, Kong YH, Seviour RJ. Are some putative glycogen accumulating organisms			
	(GAO) in anaerobic: aerobic activated sludge systems members of the			
	alpha-Proteobacteria? Microbiology, 2004, 150(7): 2267-2275.			