

Supplementary Materials for

Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas

Daniel Schramek, Ataman Sendoel, Jeremy P. Segal, Slobodan Beronja, Evan Heller, Daniel Oristian, Boris Reva, Elaine Fuchs*

*Corresponding author. E-mail: fuchslb@rockefeller.edu

Published 17 January 2014, *Science* **343**, 309 (2014) DOI: 10.1126/science.1248627

This PDF file includes: Materials and Methods

Figs. S1 to S23 Tables S1 to S4 References

Materials and Methods

Mice and lentiviral transductions

TβRII floxed mice (17) were crossed to K14-Cre (18) and/or Rosa26YFPlox/stop/lox (19) mice and or K14-CreER mice (18). *Myh9* floxed mice were purchased form EMMA (EM:02572). CD1 mice were from Charles River laboratories. Large-scale production and concentration of lentivirus ($6x10^9$ cfu/ml) as well as ultrasound-guided lentiviral injection were performed as previously described. (20, 21) As controls for knock-down mice, littermates were infected with a non-targeting scrambled-shRNA, which activates the endogenous microRNA processing pathway but is not known to target any gene. *Myh9*fl/fl K14CreER mice were injected i.p. with 2mg tamoxifen (20mg/ml stock solution in corn oil) for 5 consecutive days at 6-8 weeks of age. DMBA/TPA treatment was performed as previously described. (22) Briefly, 7-8 week old CD1 mice in second telogen were shaved and treated with 400nmol DMBA in 100ul aceton one week later. Thereafter, mice were treated with 17nM TPA in 100ul aceton wice weekly for 20 weeks. All animals were maintained in an AAALAC-approved animal facility and procedures were performed with protocols approved by IACUC and in accordance with the National Institutes of Health.

Constructs and RNAi

shRNA constructs for the shRNA pool were obtained from The Broad Institute's Mission TRC-1 mouse library. (23) We tested and used especially the following shRNAs targeting *Brca1*, *Trp53* and *Myh9*:

Brca1 #560	TRCN0000042560	5'-CCCATCATACTTTAATGTGTA-3'
Trp53 #361	TRCN0000012361	5'-CCACTACAAGTACATGTGTAA-3'
Myh9 #503	TRCN0000071503	5'-GCCCTGGAACTGTGTTTAGAA-3'
Myh9 #504	TRCN0000071504	5'-CGGTAAATTCATTCGTATCAA-3'
Myh9 #505	TRCN0000071505	5'-GCACACATTGACACAGCCAAT-3'
Myh9 #506	TRCN0000071506	5'-GCCATACAACAAATACCGCTT-3'
Myh9 #507	TRCN0000071507	5'-GCGATACTACTCAGGGCTTAT-3'

The scrambled shRNA 5'-CAACAAGATGAAGAGCACCAA-3' was used as the scrambled control. These hairpin sequences were cloned from the library vectors into pLKO-H2B-RFP vector. (20) All other hairpins were obtained from the TRC library and are listed in Supplementary Table 1.

In vivo Screen

We used non-invasive, ultrasound-guided *in utero* lentiviral-mediated delivery of RNAi, which selectively transduces single-layered surface ectoderm of living E9.5 mouse embryos as previously described (24). Our prior applications of *in utero* lentiviral RNAi transductions have been restricted to rapidly growing mouse embryos, where one can screen effectively for oncogenic regulators. (20, 24, 25) However, there are caveats to using embryonic growth as a measure for tumor growth, particularly since cancers often develop in adult tissues, which are not as proliferative. Hair follicle development is also ongoing throughout embryogenesis, potentially confounding results. By lowering the titer and using less potent tumor-susceptibility mouse models such as *TGFbRII*-cKO, *Trp53* mutants and oncogenic *HRas*, we carried out an *in vivo* RNAi tumor-suppressor screen in adult mice. We titered our pool such that ~15-20% of the ~150,000 surface ectoderm progenitors were infected (fig. S2A). Based upon library size, ≥20 cells/embryo should be transduced with each shRNA, which if inconsequential should expand clonally 40X by adulthood.

Tumor free survival.

Control and *T\betaRII*-cKO animals were transduced at E9.5 with low-titer shRNA pool targeting orthologs of putative HNSCC genes, including *Brca1*, *Trp53* or *Myh9*. Scrambled shRNA was used as control. Transductions and knockdowns were confirmed by real-time PCR of mRNAs isolated from newborn skin epidermis or by fluorescence microscopy of a lentiviral reporter fluor, H2B-RFP or H2B-GFP. Animals were assessed biweekly for signs of tumorigenesis, and were considered positive if lesions grew to be larger than 2mm in diameter.

Deep Sequencing: Sample preparation, preamplification and sequence processing Epidermal and tumor cells were subjected to genomic DNA isolation with the DNeasy Blood & Tissue Kit (Qiagen), and each sample was analyzed for target transduction using real-time PCR. 6µg genomic DNA of each tumor was used as template in a pre-amplification reaction with 25 cycles and Phusion High-Fidelity DNA Polymerase (NEB). PCR products were run on a 2% agarose gel, and a clean ~200 bp band was isolated using QIAquick Gel Extraction Kit as recommended by the manufacturer (Qiagen). Final samples were then sent for Illumina HiSeq 2000 sequencing. Illumina reads were trimmed to the 21 nt hairpin sequence using the FASTX-Toolkit and aligned to the TRC 2.x library with BWA (v 0.6.2)44 using a maximum edit distance of 3. Hits were ranked based on (a) numbers of shRNAs that targeted the gene and scored positively in the screen, with 2 out of 5 shRNAs being considered meaningful; and (b) numbers of tumors enriched for a specific shRNA.

Immunofluorescence staining.

The following primary antibodies were used for immunofluorescence: chicken anti-GFP (1:2000; Abcam); guinea-pig anti-K5 (1:500; E. Fuchs); rat anti-K14 (1:500; E. Fuchs); rabbit anti-K6 (1:500; E. Fuchs); rabbit anti-K18 (1:500; E. Fuchs); rat anti-CD104 β4integrin (346-11A, 1:300; BD); rabbit anti loricin (1:500; E. Fuchs); rabbit anti-Caspase 3 (AF835, 1:1000; R&D), rabbit anti-K10 (PRB-159P, 1:1000; Covance); rabbit anti-Myh9 (HPA001644, 1:500 Sigma); rabbit anti-SMA (ab5694 1:300; Abcam) and rabit anti-p53 (NCL-p53-CM5p, 1:300; Leica). Secondary antibodies were conjugated to Alexa-488, 546, or 647 (1:1000, Life Technologies). Cells and tissues were processed as previously reported (20), and mounted in Vectashield HardSet mounting medium with DAPI (Life Technologies). Confocal images were captured by a scanning laser confocal microscope (LSM510 and LSM780; Carl Zeiss, Inc.) using Plan-Apochromat 20x/0.8 oil and C Apochromat 40x/1.2 water lenses. Images were processed using ImageJ and Adobe Photoshop CS3. For quantifications of nuclear p53, images were captured using an inverted Zeiss LSM 780 laser scanning microscope, powered by Zen software. Quantitative image analysis was performed using ImageJ software. To quantify p53 nuclear staining, the following formula was used: CTCF (corrected total cell fluorescence) = whole nucleus signal – (mean background signal (measured in the suprabasal layer) x area of the nucleus measured).

Immunohistochemistry and histological analyses of mouse and human tumors

Immunohistochemistry was performed as previously described (26). Briefly, 5-µm stained with sections were cut, H&E or processed for immunohistochemistry/immunofluorescence microscopy. Whole-mount staining of mammary glands was performed as described (26, 27). For immunoperoxidase staining, paraffin-embedded sections were dehydrated and antigenic epitopes exposed using a 10mM citrate buffer (pH 6.0) in a pressure cooker. Sections were incubated with the following primary antibodies at 4°C overnight: rabbit anti-K14 (1:500; E. Fuchs) and rabbit anti-Myh9 (HPA001644, 1:500 Sigma). Primary antibody staining was visualized using peroxidase-conjugated anti-rabbit IgG followed by the DAB substrate kit for peroxidase visualization of secondary antibodies (Vector Laboratories). The following human tissue microarray comprising 48 healthy human skin samples, 30 hyperplastic skin lesions and 206 human skin SCCs as well as from 156 HNSCCs were obtained from US Biomax, Rockeville, MD: SK244a, SK241, SK242, SK801, SK802, SK2081, SK801b and HN803a, HN811a, HN483.

Western Blot analysis

Protein blotting was carried out using standard protocols. Briefly, total cell lysates were prepared using RIPA buffer (20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.5% Deoxycorate, 0.1 % SDS, 25 mM β -glycerophosphate, 10 mM NaF, 1 mM Na3VO4) supplemented with protease inhibitors

(Complete mini, Roche). Blots were blocked with 5% BSA in $1 \times TBS 0.1\%$ Tween-20 (TBST) for 1 h and incubated with the primary antibody overnight at 4 °C (diluted in TBST according to the manufacturer's protocol). Primary antibodies were reactive to rabbit anti-Myh9 (1:500, HPA001644, Sigma); phosphorylated (P) Erk1/2 (1:1000, #9101, Cell Signaling), Erk1/2 (1:1000, #9102, Cell Signaling), mouse anti-p53 (1:500, #2524, Cell Signaling), mouse anti-p21(F5) (1:500; sc-6246, Santa Cruz), mouse anti-GAPDH (ab8245, 1:5000; Abcam), mouse anti-Chk2 (1:500, #611570, BD); rabbit anti-P-Chk1 (1:500, #12302P, Cell Signaling); mouse anti-Chk1 (1:1000, 2360S, Cell Signaling); rabbit anti-pSmad2 (Ser465/467) (1:1000, Cell Signaling) and mouse anti-Smad2/3 (610843, 1/500; BD). Blots were washed three times in TBST for 30 min, incubated with HRP-conjugated secondary antibodies (1:2,000; Promega) for 1h at room temperature, washed 3 times in TBST for 30 min and visualized using enhanced chemiluminescence (ECL).

p53/DNA damage responses.

For measurement of DNA damage response and p53 activation primary mouse keratinocytes were seeded at a cell density of 100,000 cells per well in a 6-well plate and allowed to grow for 24 h at 3% O2 till importantly 100% confluency. Cells were then treated with doxorubicin (1mM) as previously reported (*26, 27*). For experiments using blebbistatin, cells were pretreated with blebbistatin (4 μ M final concentration, Sigma B0560) 30 min prior to doxorubicin treatment. The Rock inhibitor Y27632 was used at 10 μ M (Sigma Y0503) (*28*), LatrunculinA was used at 2 μ M (Sigma L5163), LeptomycinB was used at 20nM (Sigma #9676) and the proteasome inhibitor MG132 was used at 3 μ M (Sigma M7449).

mRNA quantifications.

Newborn mouse epidermal keratinocytes were cultured in 0.05 mM Ca++ E-media supplemented with 15% serum (29). For lentiviral infections, cells were plated in 6-well dishes at 200,000 cells/well and incubated with lentivirus in the presence of polybrene (100mg/ml) overnight. After 2 days, infected cells were positively selected with puromycin (1mg/ml) for 3 days, and then processed for mRNA analysis. cDNAs were generated from 1µg of total RNA using the SuperScript Vilo cDNA synthesis kit (Life Technologies). Real-Time PCR was performed using the 7900HT Fast Real-Time PCR System (Applied Biosystems) and gene-specific and Ppib as well as Hprt1 control primers as well as the following primers for p53 target genes:

p21 (Cdkn1a) fwd primer	5'- GTGGCCTTGTCGCTGTCTT -3'
p21 (Cdkn1a) rev primer	5'- GCGCTTGGAGTGATAGAAATCTG -3'
Fas fwd primer	5'-CTGCGATGAAGAGCATGGTTT-3'
Fas rev primer	5'-CCATAGGCGATTTCTGGGAC-3'
Bax forward primer	5'-ATGCGTCCACCAAGAAGCTGA-3'

Bax reverse primer	5'-AGCAATCATCCTCTGCAGCTCC-'
Mdm2 forward primer	5'-TTCGGCCTTCTCCTCGCTGTCGTC -3'
Mdm2 reverse primer	5'-TGGCGTAAGTGAGCATTCTGGTGA -3'
Bax forward primer	5'-TGTGTGCGACACTGTGCTC-3'
Bax reverse primer	5'-TCGGCTAGGTAGCGGTAGTAG-3'
Hprt1 for primer	GATCAGTCAACGGGGGGACATAAA
Hprt1 rev primer	CTTGCGCTCATCTTAGGCTTTGT
Ppib for primer	GTGAGCGCTTCCCAGATGAGA
Ppib rev primer	TGCCGGAGTCGACAATGATG

Explant and Migration/Invasion Assay

Explant outgrowth migration assays were performed as described previously (*30*). Briefly, explants were cut using a 3-mm dermal biopsy punch (Miltex), placed on fibronectin-coated 35-mm, glass-bottomed plates (MatTek), and submerged in E-media containing 0.6 mM Ca++. Explant outgrowth was monitored daily.

Transwell migration assays were performed on 24-well plates. The underside of each Boyden chamber well was coated with 10 μ g/ml fibronectin and placed atop fibroblast-conditioned E-media containing 0.05 mM Ca++. A total of 50,000 keratinocytes/well were plated in 100 μ l E-medium containing 0.05 mM Ca++. Eight hours later, cells were washed off the top membrane and fixed on the bottom membrane. Cells were stained using H&E and counted under the microscope. Similarly, invasion assays were performed in precoated Matrigel invasion chamber (BD Biosciences).

Analysis of human HNSCC patient data

We analysed the publicly available data sets of the **The Cancer Genome Atlas** (TCGA: <u>http://cancergenome.nih.gov</u>). The cBioPortal for Cancer Genomics developed and maintained by the Computational Biology Center at Memorial Sloan-Kettering Cancer Center was used to mine the publicly available TCGA dataset on HNSCC (*31, 32*). To retrace the exact Kaplan-Meyer analysis please visit <u>http://bit.ly/13xxPuh</u> for the analysis of HNSCC patients stratified by the lowest (<5th percentile) *MYH9* expression versus the rest (\geq 5th percentile).

Statistical Analysis

All data were collected from experiments performed at least three times, and expressed as mean \pm standard deviation (s.d.) or standard error of the mean (s.e.m.). Differences between groups were assayed using two-tailed student t-test and Prism 5 (GraphPad Software). Differences were considered significant if p<0.05. Data were analyzed and statistics performed (unpaired two-tailed Student's t-test) in Prism5 (GraphPad). Significant differences between two groups are noted by asterisks or p-values.

Predicting functional impact score of mutations (Mutataion Assessor):

To assess the functional impact of *MYH9* mutations, we used the score of Mutation Assessor. This score assesses a mutation impact by a value of the entropic disordering caused by mutation in evolutionary conserved postions of multiple alignments of protein sequences (33). The score of Mutation Assessor have been compared in independent tests to the scores of many others prediction methods including the oldest and well recognized methods - Polyphen and Sift. It was shown that "MutationAssessor consistently provided the highest accuracies. For certain combinations metapredictors slightly improved the performance of included individual methods, but did not outperform MutationAssessor as stand-alone tool" (34). Additional studies showed that predicted high-scoring functional mutations as well as truncating mutations tend to be evolutionarily selected as compared to low-scoring and silent mutations. This result justifies prediction of mutations-drivers using a shorter list of predicted high-scoring functional mutations (35).

For all mutated genes, we assessed a number of functional mutations and computed a probability (Fisher test) of obtainting the observed numbers of predicted functional mutations by chance taking as a background distribution the distribution of predicted functional mutations and predicted non-functional mutations in all other genes. This approach was used recently (36).

The obtained P-values were adjusted for false discovery rate using Benjamini and Hochberg method. The statistically significant enrichment of the predicted functional mutations in a given gene as compared to the distribution of functional mutations across all other genes demonstrates the positive selection in tumor evolution and suggests that a given gene is a driver (*35*).

Among 302 sequenced HNSCCs, 16 missense MYH9 mutations surfaced (fig. S20A). Three quarters of these mutations were assessed as functional (fig. S20, B and C) by Mutation Assessor. We also assessed a probability to observe the predicted functional mutations by chance taking the distribution of predicted functionality of mutations in all other genes as a background. The significant enrichment of the predicted functional mutations demonstrates the positive selection in tumor evolution and suggests that a given gene is a driver (*35*). MYH9 was ranked 16th in the list of ~15,000 genes mutated in HNSCCs (p=0.000026, false discovery rate q=0.024) (Supplementary Table 2 and 3; fig. S21A).

MutationAssessor was used for example by the following projects:

The Cancer Genome Atlas Research Network. Nature (2011) "Integrated Genomic Analyses of Ovarian Carcinoma" (37)

The Cancer Genome Atlas Network. Nature (2008) "Comprehensive genomic characterization defines human glioblastoma genes and core pathways"(*38*)

Taylor et al. Cancer Cell (2010) "Integrative genomic profiling of human prostate cancer" (*39*)

Barretina et al. Nature Genetics (2010) "Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy" (40)

MutationAssessor was highlighted in: Lynda Chin, William Hahn, Gad Getz and Matthew Meyerson; Genes Dev. (2011) "Making sense of cancer genomic data" (41)

Supplementary Figures

Fig. S1. Strategy for using lentiviral-mediated *in utero* delivery of shRNAs to screen and study the effects of tumor suppressors on squamous cell carcinoma formation *in vivo*

(A) Kaplan-Meier analysis of tumor-free survival of mice of the indicated genotype transduced with an shRNA that efficiently targets *Brca1* #560. (n=6 for each genotype, p<0.0062, log-rank test between *TβRII*-cKO vs. *TβRII* fl/fl mice infected with shRNA targeting *Brca1*-#560). Note that on a *TβRII*-cKO background, *Brca1* shRNA-mediated initiation of tumor growth is greatly accelerated. (B) Representative images of *Brca1* shRNA-transduced *TβRII* fl/fl and *TβRII*-cKO mice showing lesions on backskin as well as in oral cavity, respectively. (C) Representative section of a *Brca1* knockdown tumor isolated from a *TβRII* fl/fl animal showing a well-differentiated SCC. (D) In vivo knockdown efficiency of *Brca1* shRNA #560 in skin and in SCC tumors as measured by quantitative RT-PCR. (n=3 ± SEM * p<0.05).

Fig. S2. Determining suitable viral titer and measuring lentiviral shRNA library representation

(A) Control lentivirus (pLKO), harboring an H2B-GFP reporter transgene and a U6driven scrambled shRNA control (Scr) expression vector was used in a dilution series to determine the appropriate dilution/titer required to selectively and stably transduce about 15-20% of surface ectoderm keratinocytes *in vivo* by ultrasound-guided *in utero* delivery to the amniotic sacs of living E9.5 embryos. Fluorescence activated cell sorting (FACS) analyses of epidermal keratinocytes isolated from transduced pups at E18.5 were used for quantifications. Comparative quantitative RT-PCR was then used to estimate the required dilution of the test lentiviral shRNA library needed to give rise to 15-20% of infection. Control lentivirus as well as the test lentiviral shRNA library had an initial titer of ~6x10⁹ cfu/ml and were diluted 40X for all subsequent infections. (**B**) Scatter plot of Illumina sequencing data, illustrating good correlation between the number of reads per shRNA in DNA isolated from the lentiviral plasmid library versus the actual shRNA representation in DNA isolated from transduced epidermal keratinocytes of mouse embryos 3 days after infection with the lentiviral library (R=non-parametric (Spearman) correlation coefficient).

Fig. S3. SCC formation in $T\beta RII$ -cKO mice infected with the shRNA library

(A) Histological sections of invasive SCC from oral cavity/lip of a transduced T β RIIcKO mouse. Different magnifications accentuate tumor heterogeneity, with welldifferentiated areas (typified by keratin pearls) adjacent to poorly-differentiated areas. Note invasion into subcutaneous muscle (arrowheads) as well as moderate atypia characterized by anisokaryosis and anisocytosis, hyperchromasia, and frequent large and prominent nucleoli. Mitoses were on average 10X more frequent than the surrounding WT tissue (arrows). (**B**) Representative immunofluorescence analyses for basal markers Keratin 5 and β 4-integrin, differentiation marker Loricrin, and proliferation marker Ki67 on tumor sections from adult *T\betaRII*-cKO mice that had been infected with the lentiviral shRNA library at E9.5 in utero.

Fig. S4. SCC formation in adult $T\beta RII$ -cKO mice derived from embryos whose surface ectoderm was infected with the shRNA library

(A to D) Representative H&E images of tumor sections showing invasive SCC arising from various transduced epithelial tissues as indicated. (A) At the mucocutaneous junction, a poorly demarcated neoplasm has invaded the dermis. The SCC is composed of nests and cords of basal cells exhibiting signs of squamous differentiation, notably eosinophilic keratin pearls. Some nests show evidence of stroma invasion associated with a desmoplastic stroma. Cellular atypia are minimal and mitoses are not observed within well-differentiated areas. The overlying epidermis is moderately hyperplastic and hyperkeratotic. The tumor is infiltrated by numerous neutrophils. (**B**) Backskin squamous cell carcinoma invading the underlying dermis and subcutaneous tissue. The SCC is welldemarcated, but in several areas, cells have detached from the main tumor and invaded into subcutaneous tissues. Invasive regions are characterized by small nests and cords of basal cells that have broken through the basement membrane and invaded adjacent stroma and muscle. This contrasts with nests of well-differentiated stratified squamous epithelium in the infundibular regions that are replete with keratinization. Throughout the tumor are scattered moderate to marked atypia characterized by fourfold anisokaryosis and anisocytosis, hyperchromasia, and variation in nucleolar size with frequent large and prominent nucleoli. Mitoses are prevalent at ~ 38 / ten 400x fields. (C) In this example, both cornea and eyelid are enlarged and their architecture is distorted by a poorly demarcated neoplasm composed of nests and cord of basal cells showing squamous differentiation and formation of keratin pearls. Some nests show evidence of stromal invasion associated with a desmoplastic stroma. Cellular atypia are minimal and mitoses are not observed. The overlying epidermis is moderately hyperplastic and hyperkeratotic. The tumor is infiltrated by numerous neutrophils. The cornea and conjunctiva are infiltrated by numerous neutrophils. In one eye, the lens is present in the section and shows swelling and liquefaction of lens fibers and posterior migration of lens epithelium. These tumors were often large, with involvement of both cornea and eyelids. The conjunctivitis and keratitis are ocular changes that appear to be secondary to expansion of the eyelid. (**D**) An SCC that has invaded subcutaneous tissues and the salivary gland. The tumor is a poorly demarcated and infiltrative neoplasm, composed of basal-like cells forming nests and cords supported by desmoplastic stroma. Cells are polygonal, have indistinct borders, and display a moderate amount of eosinophilic cytoplasm. They have ovoid nuclei with finely stippled chromatin and small nucleoli. There is threefold anisokaryosis, and an average of 12 mitoses per 400x fields. The skin shows a focally extensive area of epidermal hyperplasia, with focal epidermal ulceration with serocellular crusting. The dermis is infiltrated by moderate numbers of neutrophils and macrophages, and fewer lymphocytes.

Fig. S5. Formation of benign lesions in $T\beta RII$ -cKO mice derived from embryos whose surface ectoderm was infected with the shRNA library

(A to C) Representative H&E images of sections from affected $T\beta RII$ -cKO epithelial tissues of mice that were transduced as embryos with the lentiviral shRNA library. (A) Neoplasm of basal cell tumor that appeared to be benign based on histologic features. Note the well-demarcated epidermal neoplasm that extends deep into the underlying dermis. It is composed of thin cords and nests of basaloid cells surrounded by fibrous stroma. Epithelial cells display indistinct borders, a small amount of amphophilic cytoplasm, and oval nuclei with finely stippled chromatin and multiple small nucleoli. An average of 3 mitoses were seen for every ten 400x fields. Overlying epidermis and infundibular epithelium show moderate hyperplasia and orthokeratotic hyperkeratosis. A few mm from this tumor is a well-demarcated region of deep dermal and subcutaneous fibrosis. (**B**) This squamous papilloma displays an exophytic, well demarcated neoplasm, composed of a branching papillary structure and markedly proliferative, but well differentiated, epidermis. Note marked orthokeratotic hyperkeratosis supported by thin stalks of fibrovascular stroma. The proliferative epidermis shows occasional mild dysplasia. The stroma is focally infiltrated by moderate numbers of melanophages and/or melanocytes, and moderate numbers of lymphocytes. (C) Some lesions showed no signs of malignancy. In this example, only ulceration is seen, with moderate neutrophilic and histiocytic dermatitis and weak signs of epidermal hyperplasia, indicating that these lesions are likely to be preneoplastic. Note focally extensive areas of mild epidermal hyperplasia, with multifocal epidermal ulceration associated and serocellular crusting and dermal necrosis. The superficial, mid and deep dermis is multifocally infiltrated by small to moderate numbers of neutrophils and macrophages, and fewer lymphocytes.

Fig. S6. *Trp53* knockdown triggeres SCC development in *TβRII*-cKO mice

(A) In vivo knockdown efficiency of *Trp53* shRNAs in skin as measured by quantitative RT-PCR. (n=3 ± SEM * p<0.05; ** p<0.001). (B) Kaplan-Meier analysis of tumor-free survival of mice of the indicated genotype transduced with an shRNA that efficiently targets *Trp53* (#361). Of note, *Trp53* shRNA-transduced T β RII-cKO mice show a median tumour-free survival of 147 days. (n=6 for each genotype, p<0.0047, log-rank test).

Fig. S7. *Myh9* knockdown delays hair follicle downgrowth and impedes eyelid closure.

(A) Quantitative RT-PCR of *Myh9* mRNA in primary murine keratinocytes infected with various *Myh9*-shRNA lentiviruses. (n=3 \pm SEM * p<0.005) (B) Immunoblot analysis of protein lysates from epidermal keratinocytes of newborn mice transduced in utero with indicated *Myh9*-shRNAs. (C) Myosin-IIa immunohistochemistry of skin sections from

these mice transduced at E9.5 with scrambled-control or Myh9 #504 shRNAs, and examined at birth. Note loss of myosin-IIa and impaired hair follicle down-growth in Myh9-knockdown animals. (**D**) Newborn mice reveal "Open Eyes at Birth" phenotype indicative of an impediment to eyelid closure during embryonic development. Inset shows that mice were efficiently transduced with the lentivirus, as judged by expression of the reporter H2B-RFP fusion protein. (**E**) 8 day-old Myh9 shRNA-transduced mice show sparse and delayed hair growth compared to scrambled shRNA transduced littermate controls.

Fig. S8. *Myh9* knockdown does not interfere with tissue homeostasis in skin in young animals

(A to D) Fluorescence microscopy of frozen skin sections from *Myh9* knockdown *T\betaRII*-cKO and *T\betaRII* fl/fl mice at one (A and B) or three (C and D) months of age. Mice had been transduced *in utero* at E9.5 with lentivirus expressing an H2B-RFP reporter and either Myh9 #504 or scrambled shRNAs. Note that transduced regions (RFP+) show grossly normal immunolabeling for (A) Keratin 14 (K14) in the basal cells of interfollicular epidermis and hair follicles, and (B) Keratin 10 (K10) specific for terminally differentiating epidermis. In older animals, sparse areas of epithelial thickening were noted, concomitant with expanded K14 expression (C) and induction of K6, associated with a hyperproliferative state (D).

Fig. S9. Validation of *Myh9* as a tumor suppressor

(A) Sections of tumors from $T\beta RII$ -cKO mice, transduced with shRNAs targeting *Brca1* or *Myh9*, respectively, and immunolabeled for myosin-IIa (absent in the epithelium of *Myh9* #504 shRNA-targeted SCCs). (**B** to **D**) Immunofluorescence microscopy of frozen tissue sections from tumors arising spontaneously in $T\beta RII$ -cKO mice that had been transduced as embryos with *Myh9* shRNAs. Note architecture of poorly differentiated SCCs with (**B**) β 4-integrin and K5-expressing nodules, (**C**) high proliferation rates in the basal layer as indicated by nuclear Ki67 and (**D**) reduced expression of differentiation markers such as Loricrin. (**E** to **H**) H&E of paraffin sections of these tumors confirmed their identity as poorly differentiated squamous cell carcinomas that invade into (**E**) subcutaneous fat, (**F**) skeletal muscle, (**G**) salivary gland and (**H**) locally draining lymph node.

Fig. S10. Genetic ablation of Myh9 phenocopies Myh9 shRNA knock-down

(A) Western Blot analysis of keratinocytes purified from Myh9 fl/fl K14-Cre (Myh9-cKO) mice and control littermates shows target-specific reduced expression of myosin-IIa. (B) Anti-myosin-IIa immunolabeling of skin sections of wild-type and K14-Cre conditionally targeted Myh9-cKO animals. Note the antibody specificity and the recapitulation of the impediment to hair follicle down-growth, also seen with Myh9 knock-down animals. (C) Histology of skin sections of double mutant ($Myh9/T\beta RII$ iKO) mice generated by inducing K14-driven CreER with topical application of tamoxifen. Note grossly normal skin morphology. (**D**) Representative $Myh9/T\beta RII$ iKO animal as well as H&E section showing a poorly differentiated skin SCC that has invaded through the skeletal muscle into the deep subcutaneous structures and lymph nodes. (**E**) Representative $Myh9/T\beta RII$ iKO animal as well as H&E section showing a moderately differentiated invasive anogenital squamous cell carcinoma that has invaded the colonic epithelium. The colonic epithelium is not neoplastic, but is ulcerated and inflamed with some reactive changes.

Fig. S11. Myh9 regulates epidermal outgrowth from skin explants

(**A** and **B**) Representative phase-contrast and epifluorescence images of (**A**) $T\beta RII$ fl/fl and (**B**) $T\beta RII$ -cKO skin explants from E18.5 embryos infected at E9.5 with scrambledcontrol or shRNAs construct targeting *Myh9*. Viral constructs harbored reporter genes encoding either membranous GFP (mGFP) or H2B-RFP. Epidermal outgrowth was monitored for 48 hr and was significantly increased in *Myh9* shRNA-transduced keratinocytes compared to scrambled control transduced explants of $T\beta RII$ -proficient and deficient cells. White dotted lines mark leading edges; red arrows denote distance between explant and its leading edge. (**C** and **D**) Quantifications of epidermal outgrowth from skin explants of (**C**) $T\beta RII$ fl/fl and (**D**) $T\beta RII$ -cKO mice transduced with indicated knock-down constructs. (n=3 ± SEM * p<0.05, two-tailed t test between scrambled and each *Myh9* knock-down construct)

Fig. S12. *Myh9* knockdown enhances keratinocyte migration in a scratch wound assay *in vitro*.

(A) Shown are representative temporal phase-contrast and RFP epifluorescence images of scratch wound assays on keratinocytes infected in vitro with scrambled-control or *Myh9* shRNAs #504. Yellow arrows indicate the extent of wound closure. H2B-RFP marks transduced keratinocytes as shown in the last panel. (B and C) Transwell migration assays through Boyden chambers coated with (B) fibronectin (migration assay) or with (C) Matrigel ECM (invasion assay). *Myh9*-deficiency markedly increases migration and invasion towards fibroblast-conditioned medium (bottom chamber), irrespective of T β RII-cKO status. (n=3 ± SEM * p<0.05 and ** p<0.005, two-tailed t test between scrambled and each Myh9- knockdown construct).

Fig. S13. *Myh9* regulates oncogenic *H-Ras*-driven but not *Trp53*-driven tumorigenesis

(A) Kaplan-Meier analysis of tumor-free survival of DMBA/TPA treated (*H-Ras*induced) syngenic CD1 mice transduced with the indicated shRNA. (n=6 for each genotype, p<0.0005, log-rank test between scrambled control and each Myh9 shRNA infected mice). (B) Representative images of CD1 mice, transduced *in utero* with either scrambled control or *Myh9* shRNA #504 12-weeks after DMBA-treatment. (C) Tumor multiplicity of DMBA/TPA-treated CD1 mice transduced with the indicated shRNA. (n=6 for each genotype). (**D**) SCC conversion frequency in syngenic CD1 mice transduced with the indicated shRNA 20-weeks after DMBA-treatment. (**E**) Representative H&E as well as myosin-IIa IHC images of tumors from CD1 mice transduced in utero with either scrambled control or Myh9 shRNAs #504 20-weeks after DMBA-treatment. (**F**) Kaplan-Meier analysis of tumor-free survival of mice of the indicated genotype transduced with two shRNAs that efficiently target Myh9. (n=6 for each genotype, p=ns, log-rank test). Note that whether mice are singly mutant for Trp53, singly deficient for Myh9 or doubly mutant for Trp53/Myh9, their Kaplan-Meier profiles for SCCs are comparable. (**G**) Kaplan-Meier analysis of tumor-free survival of mice of the indicated genotype transduced with shRNAs that efficiently target Myh9 or Trp53. (n<6 for each genotype). Note that whether mice conditionally null for $T\betaRII$ are also singly deficient for Trp53, singly deficient for Myh9 or SCCs are comparable.

Fig. S14. Myh9 regulates p53.

(A) p53 and p21 expression after treatment with DNA damage response drug doxorubicin (Dox; 1µM). Primary mouse epidermal keratinocytes were transduced with the different Myh9 shRNAs as indicated. Myosin-IIa and GAPDH levels are indicated as control. (B) p53 and p21 expression after treatment with DNA-damage-response inducer doxorubicin (1µM) in Myh9fl/fl keratinocytes after adenoviral-Cre-mediated *Myh9* ablation (KO). Myosin-IIa and GAPDH levels are shown as controls. (C) Quantification of p53 in nuclei of the skin of *Myh9* cKO and control mice 6 hours after treatment g-irradiation (5Gy) as shown in Fig. 3B. Plotted is the corrected total cell fluorescence (CTCF) per cell and the median with interquartile range. (p < 0.0001; Mann Whitney test). (D) Representative images showing p53 expression in the skin of *Myh9* knock-down (H2B-RFP labeled) mice either left untreated or 6 hours after γ -irradiation (5Gy). Note that p53 staining is only observed in basal, keratin 5 positive cells. Note also that H2B-RFP labeled *Myh9* shRNA #507-infected cells do not show efficient nuclear p53 staining. Mosaic analysis shows that the effect shown is cell-intrinsic.

Fig. S15. *Myh9* ablation does not affect EGF signaling.

(A) *Myh9* knockdown keratinocytes efficiently respond to EGF. Western Blot of phosphorylated (activated) Erk after EGF stimulation (20ng/ml) of *T* β *RII* fl/fl (wt) and *T* β *RII*-cKO (KO) keratinocytes infected in vitro with various *Myh9* knockdown constructs.

Fig. S16. *Myh9* but not Myh10 or Myh14 regulates p53 in *T\betaRII*-wt and also in *T\betaRII*-cKO keratinocytes.

(A) p53 and p21 expression after treatment with DNA-damage-response inducer doxorubicin $(1\mu M)$ in wt keratinocytes after shRNA-mediated knockdown of *Myh9*,

Myh10 and *Myh14*. GAPDH levels are shown as controls. (**B**) qRT-PCR analysis confiming efficient shRNA-mediated knockdown of *Myh9*, *Myh10* and *Myh14*. (**C**) p53 and p21 expression after doxorubicin (Dox; 1µM) treatment of *TβRII*-cKO keratinocytes transduced by lentiviral delivery of Myh9 shRNAs and Cre recombinase. Myosin-IIa and GAPDH levels are indicated as control. (**D**) Western Blot of phosphorylated (activated) P-SMAD2 in *TβRII* fl/fl keratinocytes transduced with indicated lentiviral constructs. Note that as expected, LV-Cre mediated targeting of *TβRII* resulted in loss of P-SMAD2 activity downstream of TGFβ Receptor signaling. Myosin-IIa, total SMAD2, activated phosphorylated P-ERK and total ERK are shown as controls. (**E**) qPCR analysis of *TβRII* to verify LV-Cre mediated ablation of *TβRII* gene expression.

Fig. S17. Optimal p53 activity following DNA damage depends upon myosin-IIa's ATPase activity and its role in p53 nuclear retention

(A) p53 expression in mouse keratinocytes treated with myosin ATPase inhibitor blebbistatin (4 μ M) and with doxorubicin (Dox; 1 μ M). GAPDH levels are indicated as control. (B) Western Blot of p53 in mouse keratinocytes treated with vehicle, blebbistatin, Rock inhibitor Y27632 or latrunculinB. Activated phosphorylated H2AX (γ H2AX) as well as activated phosphorylated Chk1 and Chk2 show normal initial DDR activation. Note activation-dependent mobility shift of Chk2. Total Chk1 and GAPDH are shown as controls. (C) MG132 rescues *Myh9* phenotype. (D) Nuclear export inhibitor LeptomycinB rescues the *Myh9* knockdown phenotype and restores *p53* accumulation after DNA damage.

Fig. S18. Expression of myosin-IIa in human HNSCC and skin SCCs

(A) Myosin-IIa Western Blot of primary *Myh9*-cKO keratinocytes to validate the efficacy of the myosin-IIa antibody. Representative images of myosin-IIa immunohistochemistry of human skin as well as representative images of myosin-IIa immunohistochemistry of human SCC samples showing variability in myosin-IIa staining ranging from negative to weak, moderate and strong. K14 immunohistochemistry internally controlled for epithelial areas and tissue quality. (B) Analysis of human skin SCCs with respect to tumor grading and then stratified according to presence or absence of myosin-IIa expression. (C) Analysis of human skin SCCs with respect to absence or presence of TGF β signaling as assessed by immunolabeling for T β RII and active P-SMAD2 and stratified according to presence or absence.

Fig. S19. High *MYH9* expression does not correlate with shortned human HNSCC survival

(A) Raw RNAseq data of HNSCC samples in the TCGA database showing the spread of *MYH9* RNA expression in all samples across the cohort of 303 patient samples. Graph delineates the z-score of *MYH9* mRNA expression defined as the relative expression of an individual gene and tumor to the gene's expression distribution in a reference

population, which is all tumors that are diploid for the gene in question. The returned value indicates the number of standard deviations away from the mean of expression in the reference population (z-score). This measure is useful to determine whether a gene is up- or down-regulated relative to the normal samples or all other tumor samples. In Fig. 4C we used the bottom 5th percentile, which equaled samples with a z-score of -1.6 or less (all samples below the red line) to perform the Kaplan-Meier survival analysis. Interestingly, this analysis also shows quite some HNSCC cases with upregulation of MYH9 mRNA expression - top 33 tumors (or top 11%) out of our cohort of 303 HNSCCs. (B) Kaplan-Meier survival analysis of of HNSCC cases with MYH9 mRNA upregulation (above 1.6 standart deviations or more indicated by the red line in fig. S19A). In contrast to the data for the low MYH9 expression, these patients do not show any survival disadvantage/advantage when compared to the rest of the cohort. (C) Kaplan-Meier survival analysis of of HNSCC cases with MYH9 mRNA upregulation, MYH9 amplifications or gains. Of note, amplifications are defined as larger chromosomal amplifications while gains are defined as local amplifications. No survival disadvantage/advantage. (D) Kaplan-Meier survival analysis of of HNSCC cases with MYH9 hemizygousity. No survival disadvantage/advantage. (E) Kaplan-Meier survival analysis of of HNSCC cases with MYH9 mutations. No survival disadvantage/advantage.

Fig. S20. Mutations in myosin-IIa in human HNSCCs

(A) Schematic of human myosin-IIa delineating the N-terminal SH3-like domain, the myosin head domain with the ATPase function, the ATP binding pockets P-loop (P) and switch region I and II (I and II), the IQ-calmodulin binding domain and the myosin tail. Missense mutations as well as deletions are given with their respective functional impact score overhead. Note that most of the mutations are within the ATPase domain clustering in and around the switch-II region (p=0.0015; Fisher test corrected for false discovery rate). Of note, mutations of the conserved A454 (blue) residue have been shown in Dictyostelium myosin to abrogate ATPase function. E457K (red) mutant myosin was tested and shown to have an effect on DDR-induced p53 activation (fig. S221). (B) List of MYH9/myosin-IIa mutations found in HNSCCs and their computed functional impact score (www.mutationassessor.org). (C) Multiple sequence alignment of human, dog, mouse, rat, chicken MYH9 and Dyctyostelium discoideum myosin-2 heavy chain. Multiple sequence alignment by MAFFT v7.058b (E-INSi strategy, Blosum 62, Offset value 0.123) and visualization using Jalview 2.8.

Fig. S21. Prevalence of *MYH9* somatic mutations and hemizygosity in human cancers.

(**A**) Mutational spectrum of *MYH9* across 19 human tumor types and 1000 human cancer cell lines (midified from cBioPortal: <u>http://www.cbioportal.org/public-portal/</u>). Statistics shown were mined from the TCGA databases.

Fig. S22. Mutations within the ATPase domain of MYH9 impair p53 activation.

(A) Representative immunofluorescence images of phalloidin and anti-GFP stainined mouse keratinocytes expressing either wildtype human EGFP-*MYH9* or mutant human EGFP-*MYH9* (E457K). (B) p53 expression in primary mouse keratinocytes infectd with either vector control lentivirus or lentivirus harboring wildtype human EGFP-*MYH9* (wt) or mutant human EGFP-*MYH9* (E457K) or (E530K) and treated with with DDR-inducer doxorubicin (Dox; 1 μ M). GAPDH levels are indicated as control.

Fig. S23. *Trp53* mutations and p53 inactivating mutations are not mutually exclusive in HNSCCs.

OncoPrints visualizing p53 pathway alterations across the TCGA data base for (A) HNSCCs and (B) glioblastomas visually identifying trends in mutual exclusivity or cooccurence between *Trp53* and its negative regulators *MDM2* and *MDM4* as well as *MYH9*. The individual genes are represented as rows, and individual patients are represented as columns. Tables present the statistics and tendency towards mutual exclusivity and co-occorance. Of note, it seems that in HNSCCs *Tp53* mutations are not necessarily mutually exclusive with other p53 inactivating mutations/alterations, such as *MDM2*, *MDM4* and *MYH9*. To re-trace the exact analysis please visit: http://bit.ly/175U255 for HNSCC analysis and http://bit.ly/1fFcqUN for gliobastoma analysis.

Invasive SCC at oral mucocutaneous junction

Β

Α

Tumor #52: Invasive SCC at mucocutaneous junction

Tumor #50: Invasive SCC of the eyelid and cornea, mucocutaneous junction

Tumor #69: Subcutaneous tissues and salivary gland: Invasive SCC

Figure S4

Δ

С

D

Lesion #64 & 65: ulceration with moderate neutrophilic and histiocytic dermatitis and weak signs of epidermal hyperplasia

Figure S5

С

Β

TGFbRII cKO scrambled TGFbRII cKO Trp53 shRNA #361

EGF (20ng/ml) 0min 1min 5min <u>30min 120mi</u> 240 min Myh9 KD + + + + - + -_ -+ -+ --+ + + -+ -Myolla P-Erk Erk ---------==

- +

 $T\beta RII$: wt KO wt KO wt KO wt KO wt KO wt KO

Figure S15

GAPDH

control Cre

Conservation

←EGFP-MYH9
←MYH9 (endogenous)

p53 GAPDH ———

Figure S22

Myolla

Β

Α

A

HNSCC: p53 mutations and p53 inactivating mutations are not mutually exclusive

Case Set: Sequenced Tumors: All (Next-Gen) sequenced samples (306 samples)

Altered in 222 (73%) of cases

TP53	709	%										
мүнэ	4	%									ш	
MDM2	6	%										
MDM4	29	%										
			A	mpli	ficatio	Home	ozygous D	eletion Mutati	on			
						Gene	TP53	MDM2	МҮН9	MDM4	Legend	
						TP53		0.070863	0.415401	0.162199	Strong tendency towards mutual exclusivity (0 < Odds Ratio < 0.1)	
						-		0.070005	0.415401	0.102155	Some tendency towards mutual exclusivity ($0.1 < Odds Ratio < 0.5$)	
						MDM2	2		0.531626	0.749961	No association (0.5 < Odds Ratio < 2)	
						мүнэ				0 803702	Tendency toward co-occurrence (2 < Odds Ratio < 10)	
						0.003702	Strong tendendency towards co-occurrence (Odds Ratio > 10)					
						MDM4	•				No events recorded for one or both genes	
								-				

Glioblastoma: p53 mutations and p53 inactivating mutations are mutually exclusive

Case Set: Sequenced Tumors: All (Next-Gen) sequenced samples (283 samples)

Altered in 125 (44%) of cases

Gene	Construct	Clone	gene	14	64	TRCN0000022614	Amhr2
1	1	TRCN0000179370	1500026B10Rik		65	TRCN0000022615	Amhr2
	2	TRCN0000179624	1500026B10Rik		66	TRCN0000022616	Amhr2
	3	TRCN0000179770	1500026B10Rik		67	TRCN0000022617	Amhr2
	4	TRCN0000184447	1500026B10Rik		68	TRCN0000022618	Amhr2
	5	TRCN0000184474	1500026B10Rik	15	69	TRCN0000090053	Ank3
2	6	TRCN0000126479	2010107G23Rik		70	TRCN0000090054	Ank3
	7	TRCN0000126480	2010107G23Rik		71	TRCN0000090055	Ank3
	8	TRCN0000126481	2010107G23Rik		72	TRCN0000090056	Ank3
	9	TRCN0000126482	2010107G23Rik		73	TRCN0000090057	Ank3
•	10	TRCN0000126483	2010107G23Rik	16	74	TRCN0000090263	Anln
3	11	TRCN0000176661	2310057J16Rik		75 70	TRCN000090264	Anin
	12	TRCN0000177579	2310057J16RIK		76 77	TRCN0000090265	Anin
	13	TRCN0000182145	2310057J16RIK	47	//	TRCN0000090266	Anin Anvo2
	14	TRCN0000182145	2310057J10RIK	17	/ð 70	TRCN0000110725	Anxa3
4	10	TRCN0000102733	2310037J10RIK		79	TRCN0000110720	Anxa3
4	10	TRCN0000113435	Abcab		00 91	TRCN0000110727	Anxa3
	18	TRCN0000113430	Abcab		82	TRCN0000110720	Anxa3
	10	TRCN0000113438	Abca6	18	83	TRCN0000012278	Anaf1
	20	TRCN0000113439	Abca6	10	84	TRCN0000012280	Anaf1
5	21	TRCN0000113440	Abca9		85	TRCN0000012281	Apaf1
Ũ	22	TRCN0000113442	Abca9		86	TRCN0000012282	Apaf1
	23	TRCN0000113443	Abca9	19	87	TRCN0000026148	Ar
	24	TRCN0000113444	Abca9		88	TRCN0000026177	Ar
6	25	TRCN0000105260	Abcd4		89	TRCN0000026189	Ar
	26	TRCN0000105261	Abcd4		90	TRCN0000026195	Ar
	27	TRCN0000105262	Abcd4		91	TRCN0000026211	Ar
	28	TRCN0000105263	Abcd4	20	92	TRCN0000022609	Araf
	29	TRCN0000105264	Abcd4		93	TRCN0000022610	Araf
7	30	TRCN0000087968	Abi3		94	TRCN0000022611	Araf
	31	TRCN0000087969	Abi3		95	TRCN0000022612	Araf
	32	TRCN0000087970	Abi3		96	TRCN0000022613	Araf
	33	TRCN0000087971	Abi3	21	97	TRCN0000109960	Arhgef12
_	34	TRCN0000087972	Abi3		98	TRCN0000109961	Arhgef12
8	35	TRCN0000022604	Acvr1c		99	TRCN0000109962	Arhgef12
	36	TRCN0000022605	Acvr1c		100	TRCN0000109963	Arhgef12
	37	TRCN0000022606	Acvr1c	00	101	TRCN0000109964	Arnget12
	38	TRCN000022607	ACVITC	22	102	TRCN0000075553	Att5
0	39	TRCN0000022000	Adamta12		103	TRCN0000075555	Ali5
9	40	TPCN0000032274	Adamte 12		104	TRCN0000075555	All5 Alf5
	41	TPCN0000032275	Adamte 12		105	TPCN0000075557	All5 Alf5
	42	TRCN0000032270	Adamts12	23	100	TRCN0000073537	Δtm
	44	TRCN0000032278	Adamts12	20	108	TRCN0000012644	Atm
10	45	TRCN0000114956	Adcv8		109	TRCN0000012645	Atm
10	46	TRCN0000114957	Adcv8		110	TRCN0000012646	Atm
	47	TRCN0000114958	Adcv8		111	TRCN0000012647	Atm
	48	TRCN0000114959	Adcv8	24	112	TRCN0000101520	Atp10d
	49	TRCN0000114960	Adcv8		113	TRCN0000101521	Atp10d
11	50	TRCN0000086608	Aff3		114	TRCN0000101522	Atp10d
	51	TRCN0000086609	Aff3		115	TRCN0000101523	Atp10d
	52	TRCN0000086610	Aff3	25	116	TRCN0000115396	Azin1
	53	TRCN0000086612	Aff3		117	TRCN0000115397	Azin1
12	54	TRCN0000071348	Ahctf1		118	TRCN0000115398	Azin1
	55	TRCN0000071349	Ahctf1		119	TRCN0000115399	Azin1
	56	TRCN0000071350	Ahctf1		120	TRCN0000115400	Azin1
	57	TRCN0000071351	Ahctf1	26	121	TRCN0000070508	Barx2
	58	TRCN0000071352	Ahctf1		122	TRCN0000070509	Barx2
13	59	IRCN0000101420	Allc		123	IRCN0000070510	Barx2
	60	TRCN0000101421	Allc		124	IRCN0000070511	Barx2
	61 62	TRCN0000101422	AllC	07	125	TRCN0000070512	Barx2
	0∠ 62	TRCN0000101423	Allo	27	126		
	03	TRUNUUUU101424	AllC	1	127	IKCN000004679	BCIZ

 Table S1. Genes and shRNA construct included in the shRNA library

	128	TRCN000004680	Bcl2	41	195	TRCN0000012243	Casp8
	129	TRCN000004681	Bcl2		196	TRCN0000012244	Casp8
28	130	TRCN0000042553	Bcl3		197	TRCN0000012245	Casp8
	131	TRCN0000042554	Bcl3		198	TRCN0000012246	Casp8
	132	TRCN0000042555	Bcl3		199	TRCN0000012247	Casp8
	133	TRCN0000042556	Bcl3	42	200	TRCN0000042568	Cbl
	134	TRCN0000042557	Bcl3		201	TRCN0000042569	Cbl
29	135	TRCN0000012563	Bmi1		202	TRCN0000042570	Cbl
	136	TRCN0000012564	Bmi1		203	TRCN0000042571	Cbl
	137	TRCN0000012565	Bmi1		204	TRCN0000042572	Cbl
	138	TRCN0000012566	Bmi1	43	205	TRCN0000071028	Cbx1
	139	TRCN0000012567	Bmi1		206	TRCN0000071029	Cbx1
30	140	TRCN0000025877	Bmp2		207	TRCN0000071030	Cbx1
	141	TRCN0000025878	Bmp2		208	TRCN0000071031	Cbx1
	142	TRCN0000025923	Bmp2		209	TRCN0000071032	Cbx1
	143	TRCN0000025939	Bmp2	44	210	TRCN0000071048	Cbx5
	144	TRCN0000025949	Bmp2		211	TRCN0000071049	Cbx5
31	145	TRCN0000025875	Bmp4		212	TRCN0000071050	Cbx5
	146	TRCN0000025905	Bmp4		213	TRCN0000071051	Cbx5
	147	TRCN0000025922	Bmp4		214	TRCN0000071052	Cbx5
	148	TRCN0000025936	Bmp4	45	215	TRCN0000176503	Ccdc39
	149	TRCN0000025957	Bmp4		216	TRCN0000176967	Ccdc39
32	150	TRCN0000022619	Bmpr1a		217	TRCN0000177337	Ccdc39
	151	TRCN0000022620	Bmpr1a		218	TRCN0000182114	Ccdc39
	152	TRCN0000022621	Bmpr1a		219	TRCN0000182268	Ccdc39
	153	TRCN0000022622	Bmpr1a	46	220	TRCN0000011978	Ccnd3
	154	TRCN0000022623	Bmpr1a		221	TRCN0000011979	Ccnd3
33	155	TRCN0000022529	Bmpr2		222	TRCN0000011980	Ccnd3
	156	TRCN0000022530	Bmpr2		223	TRCN0000011981	Ccnd3
	157	TRCN0000022531	Bmpr2	47	224	TRCN0000119627	Cd320
	158	TRCN0000022532	Bmpr2		225	TRCN0000119629	Cd320
	159	TRCN0000022533	Bmpr2		226	TRCN0000119630	Cd320
34	160	TRCN000009687	Bnip3		227	TRCN0000119631	Cd320
	161	TRCN000009688	Bnip3	48	228	TRCN000065353	Cd44
	162	TRCN000009689	Bnip3		229	TRCN000065354	Cd44
	163	TRCN000009690	Bnip3		230	TRCN000065355	Cd44
	164	TRCN000009691	Bnip3		231	TRCN000065356	Cd44
35	165	TRCN0000022589	Braf		232	TRCN0000065357	Cd44
	166	TRCN0000022590	Braf	49	233	TRCN0000030109	Cdc14b
	167	TRCN0000022591	Braf		234	TRCN0000030110	Cdc14b
	168	TRCN0000022592	Braf		235	TRCN0000030111	Cdc14b
	169	TRCN0000022593	Braf		236	TRCN0000030112	Cdc14b
36	170	TRCN0000042558	Brca1		237	TRCN0000030113	Cdc14b
	171	TRCN0000042559	Brca1	50	238	TRCN0000042578	Cdh1
	172	TRCN0000042560	Brca1		239	TRCN0000042579	Cdh1
	173	TRCN0000042561	Brca1		240	TRCN0000042580	Cdh1
	174	TRCN0000042562	Brca1		241	TRCN0000042581	Cdh1
37	175	TRCN0000071008	Brca2		242	TRCN0000042582	Cdh1
	176	TRCN0000071009	Brca2	51	243	TRCN0000094534	Cdh12
	177	TRCN0000071010	Brca2		244	TRCN0000094535	Cdh12
	1/8	TRCN0000071011	Brca2		245	TRCN0000094536	Cdh12
~~	179	TRCN0000071012	Brca2		246	TRCN0000094537	Cdh12
38	180	TRCN0000103285	C130053K05Rik	= 0	247	TRCN0000094538	Cdh12
	181	TRCN0000103286	C130053K05Rik	52	248	TRCN0000094729	Cdh4
	182	TRCN0000103287	C130053K05Rik		249	TRCN0000094730	Cdh4
	183	TRCN0000103288	C130053K05RIK		250	TRCN000094731	Can4
~~	184	TRCN0000103289	C130053K05Rik		251	TRCN0000094732	Cdh4
39	185	TRCN0000024114	Camk1d	50	252	TRCN000094733	Cdh4
	100	TRON0000024115		53	253		
	187	TRCN000024116			254	TRCN000094895	Can5
	188	TRON0000024117			255		
40	109		Carrie Corra		200		
40	190		Udi∠ Car2	51	201		Cdb7
	102		Car2	54	200 250		
	102		Car2		209		
	10/	TRCN0000114404	Car2		200		Cdb7
	134	11010000114403	Jaiz	1	201	1110110000034707	Juil

	262	TRCN0000094788	Cdh7	69	329	TRCN0000012348	Chuk
55	263	TRCN0000023174	Cdk4		330	TRCN0000012349	Chuk
	264	TRCN0000023175	Cdk4		331	TRCN0000012350	Chuk
	265	TRCN0000023176	Cdk4		332	TRCN0000012351	Chuk
	200	TRCN0000023177		70	333	TRCN0000012352	Chuk Clog2
56	207	TRCN0000023178	Cuk4 Cdkn1a	70	334	TRCN000009708	Clca2
50	269	TRCN0000042585	Cdkn1a		336	TRCN0000069709	Clca2
	270	TRCN0000042586	Cdkn1a		337	TRCN0000069711	Clca2
	271	TRCN0000042587	Cdkn1a		338	TRCN0000069712	Clca2
	272	TRCN0000054898	Cdkn1a	71	339	TRCN0000069738	Clic1
	273	TRCN0000054899	Cdkn1a		340	TRCN0000069739	Clic1
	274	TRCN0000054900	Cdkn1a		341	TRCN0000069740	Clic1
	275	TRCN0000054901	Cdkn1a		342	TRCN0000069741	Clic1
	276	TRCN0000054902	Cdkn1a	72	343	TRCN0000023189	Clk3
57	277	TRCN0000071063	Cdkn1b		344	TRCN0000023190	Clk3
	278	TRCN0000071064			345	TRCN0000023191	CIK3
	279	TRCN0000071066			340	TRCN0000023192	CIKS
58	281	TRCN0000042588	Cdkn1c	73	348	TRCN0000023193	Clk4
00	282	TRCN0000042589	Cdkn1c	10	349	TRCN0000023195	Clk4
	283	TRCN0000042590	Cdkn1c		350	TRCN0000023196	Clk4
	284	TRCN0000042592	Cdkn1c		351	TRCN0000023197	Clk4
59	285	TRCN0000077813	Cdkn2a		352	TRCN0000023198	Clk4
	286	TRCN0000077815	Cdkn2a	74	353	TRCN0000094734	Clstn2
	287	TRCN0000077816	Cdkn2a		354	TRCN0000094735	Clstn2
60	288	TRCN0000042598	Cdkn2b		355	TRCN0000094736	Clstn2
	289	TRCN0000042599	Cdkn2b		356	TRCN0000094737	Clstn2
	290	TRCN0000042600	Cdkn2b	75	358	TRCN0000094738	Cistri2
	291	TRCN0000042602	Cdkn2b	75	359	TRCN0000039014	Cntn1
61	293	TRCN0000085088	Cdkn2d		360	TRCN0000039016	Cntn1
•	294	TRCN0000085089	Cdkn2d		361	TRCN0000039017	Cntn1
	295	TRCN0000085090	Cdkn2d		362	TRCN0000039018	Cntn1
	296	TRCN0000085091	Cdkn2d	76	363	TRCN0000113645	Cntn3
	297	TRCN000085092	Cdkn2d		364	TRCN0000113646	Cntn3
62	298	TRCN0000071654	Cebpd		365	TRCN0000113647	Cntn3
	299	TRCN0000071655	Cebpd		366	TRCN0000113648	Cntn3
60	300	TRCN0000071657	Cebpa	77	367	TRCN0000113649	Cntn3
63	301	TRCN0000094949	Celsi 3 Celsi 3	11	360	TRCN0000094359	Chinap I Chthap1
	303	TRCN0000094951	Celsr3		370	TRCN0000094361	Cntnap1
	304	TRCN0000094952	Celsr3		371	TRCN0000094362	Cntnap1
	305	TRCN0000094953	Celsr3		372	TRCN0000094363	Cntnap1
64	306	TRCN0000179809	Cep55	78	373	TRCN0000094969	Cntnap2
	307	TRCN0000182908	Cep55		374	TRCN0000094970	Cntnap2
	308	TRCN0000183083	Cep55		375	TRCN0000094971	Cntnap2
	309	TRCN0000183560	Cep55		376	TRCN0000094972	Cntnap2
65	310	TRCN0000012648	Chek1	70	377	TRCN0000094973	Cntnap2
	311	TRCN0000012649	Chek I Chek 1	79	3/8	TRCN0000094539	Chinap4
	312	TRCN0000012050	Chek1	80	380	TRCN0000094540	Col1a1
	314	TRCN0000012652	Chek1	00	381	TRCN0000090504	Col1a1
66	315	TRCN0000012653	Chek2		382	TRCN0000090505	Col1a1
	316	TRCN0000012654	Chek2		383	TRCN0000090506	Col1a1
	317	TRCN0000012655	Chek2		384	TRCN0000090507	Col1a1
	318	TRCN0000012656	Chek2	81	385	TRCN0000090043	Col1a2
	319	TRCN0000012657	Chek2		386	TRCN0000090044	Col1a2
67	320	TRCN0000103290	Chpt1		387	TRCN0000090045	Col1a2
	321	IRCN0000103292	Chpt1		388	IRCN000090046	Col1a2
	322	TRCN0000103293	Chpt1	60	300 300		
68	১∠১ ३२४	TRCN0000103294	Chrd	δZ	390 301		Col22a1
00	325	TRCN0000025906	Chrd		392	TRCN0000091165	Col22a1
	326	TRCN0000025914	Chrd		393	TRCN0000091166	Col22a1
	327	TRCN0000025932	Chrd		394	TRCN0000091167	Col22a1
	328	TRCN0000025944	Chrd	83	395	TRCN0000091483	Col3a1

	396	TRCN0000091484	Col3a1		463	TRCN0000099476	Defb6
	397	TRCN0000091485	Col3a1		464	TRCN0000099477	Defb6
	398	TRCN0000091486	Col3a1		465	TRCN0000099478	Defb6
	399	TRCN0000091487	Col3a1	98	466	TRCN0000028845	DII1
84	400	TRCN0000031319	Cpxm2		467	TRCN0000028864	DII1
	401	TRCN0000031320	Cpxm2		468	TRCN0000028865	DII1
	402	TRCN0000031321	Cpxm2		469	TRCN0000028890	DII1
	403	TRCN0000031322	Cpxm2		470	TRCN0000028910	DII1
	404	TRCN0000031323	Cpxm2	99	471	TRCN0000028875	DII3
85	405	TRCN0000105235	Crabp2		472	TRCN0000028879	DII3
	406	TRCN0000105236	Crabp2		473	TRCN0000028896	DII3
	407	TRCN0000105237	Crabp2		474	TRCN0000028907	DII3
	408	TRCN0000105238	Crabp2		475	TRCN0000028924	DII3
	409	TRCN0000105239	Crabp2	100	476	TRCN0000028894	DII4
86	410	TRCN0000042603	Crk		477	TRCN0000028916	DII4
	411	TRCN0000042604	Crk		478	TRCN0000028928	DII4
	412	TRCN0000042606	Crk	101	479	TRCN0000070598	DIx2
	413	TRCN0000042607	Crk		480	TRCN0000070599	DIx2
87	414	TRCN0000023734	Csk		481	TRCN0000070600	DIx2
	415	TRCN0000023735	Csk		482	TRCN0000070601	Dlx2
	416	TRCN0000023736	Csk		483	TRCN0000070602	Dlx2
	417	TRCN0000023737	Csk	102	484	TRCN0000070608	DIx3
	418	TRCN0000023738	Csk		485	TRCN0000070609	DIx3
88	419	TRCN0000087303	Csmd3		486	TRCN0000070610	DIx3
	420	TRCN0000087304	Csmd3		487	TRCN0000070611	DIx3
	421	TRCN0000087305	Csmd3		488	TRCN0000070612	DIx3
	422	TRCN0000087306	Csmd3	103	489	TRCN0000070628	DIx5
	423	TRCN0000087307	Csmd3		490	TRCN0000070629	DIx5
89	424	TRCN0000080278	Cst6		491	TRCN0000070630	DIx5
	425	TRCN0000080279	Cst6		492	TRCN0000070632	DIx5
	426	TRCN0000080280	Cst6	104	493	TRCN0000086488	Dmrta2
	427	TRCN0000080281	Cst6		494	TRCN0000086489	Dmrta2
	428	TRCN0000080282	Cst6		495	TRCN0000086490	Dmrta2
90	429	TRCN0000039019	Ctcf		496	TRCN0000086491	Dmrta2
	430	IRCN0000039020	Ctcf	105	497	TRCN000008562	Dnajb9
	431	IRCN0000039021	Ctcf		498	TRCN0000008563	Dnajb9
	432	IRCN0000039022	Ctcf		499	IRCN000008564	Dnajb9
04	433	TRCN0000039023	Ctcf		500	TRCN000008565	Dnajb9
91	434	TRCN0000109665	Ctgr	400	501	TRCN000008566	Dnajby
	435	TRCN0000109666	Ctgf	106	502	TRCN0000039024	Dnmt1
	430	TRCN0000109667	Ctgr		503	TRCN0000039025	Dnmti
	437	TRCN0000109668	Cigi		504	TRCN0000039026	Drimt 1
00	438	TRCN0000109669	Ctgr		505	TRCN0000039027	Dnmti
92	439	TRCN000005308	CXCI14	107	500	TRCN0000039028	Drimt 1
	440	TRCN000005369	CXCI14	107	507	TRCN0000039029	Dnmt2
	441	TRCN000005370	Cxcl14 Cxcl14		500	TRCN0000039030	Drinit2
	442	TRCN000005371	Cxcl14 Cxcl14		509	TRCN0000039031	Drinit2
02	443	TRCN0000005372	Cxcl14		510	TRCN0000039032	Drinitz
93	444	TPCN0000067250	Cxcl2	108	512	TPCN0000039033	Driniz Drimt3a
	445	TPCN0000007259	Cxcl2	100	512	TPCN0000039034	Drimba Drimt3a
	440	TPCN0000007200	Cxcl2		517	TPCN0000039035	Drimba Drimt3a
04	447 118	TPCN0000028678	Cxcr4		515	TPCN0000039030	Drimba Drimt3a
34	440	TPCN0000028078	Cxcr4		516	TPCN0000039037	Drimba Drimt3a
	449	TPCN0000028704	Cxcr4	100	517	TPCN0000039030	Drimba Drimt3l
	450	TRCN0000028724	Cxcr4	109	518	TRCN0000039104	Dnmt3l
	452	TPCN0000028750	Cxcr4		510	TPCN0000039105	Dnmt3l
05	452	TRCN0000028750	Cyp/f16		519	TRCN0000039100	Drimt3
95	455	TPCN0000125700	Cyp4110 Cyp4f16		520	TPCN0000039107	Drimio Drimt31
	454	TPCN0000125701	Cyp4110 Cyp4f16	110	522	TPCN0000054348	Duen/
	455	TRCN0000125702	Cyp4110 Cyp4f16	110	522	TRCN0000054348	Dusp4
96	450	TPCN0000123703	Ddv3v		523	TRCN0000054349	Dusp4
30	458	TRCN0000103751	Ddx3x		525	TRCN000054351	Dusp 4 Duen/
	450	TRCN0000103752	Ddx3x		526	TRCN0000054352	Duep/
	460	TRCN0000103753	Ddx3x	111	527	TRCN000003470	Eafr
	461	TRCN0000103754	Ddx3x		528	TRCN0000023480	Fafr
97	462	TRCN000009475	Defh6		520	TRCN000023481	Fafr
01	102		20100	1	020		-9"

	530	TRCN0000023482	Egfr		597	TRCN0000095696	Ezh1
	531	TRCN0000023483	Egfr		598	TRCN0000095697	Ezh1
	532	TRCN0000055218	Egfr		599	TRCN000095698	Ezh1
	533	TRCN0000055219	Egfr	125	600	TRCN0000039039	Ezh2
	534	TRCN0000055220	Egfr		601	TRCN0000039040	Ezh2
	535	TRCN0000055221	Egfr		602	TRCN0000039041	Ezh2
	536	TRCN0000055222	Egfr		603	TRCN0000039042	Ezh2
112	537	TRCN000009749	Egln3		604	TRCN0000039043	Ezh2
	538	TRCN000009750	Egln3	126	605	TRCN0000105190	Fabp3
	539	TRCN000009751	Egln3		606	TRCN0000105191	Fabp3
	540	TRCN000009752	Egln3		607	TRCN0000105192	Fabp3
	541	TRCN000009753	EgIn3		608	TRCN0000105193	Fabp3
113	542	TRCN0000081623	Egr1	407	609	TRCN0000105194	Fabp3
	543	TRCN000081624	Egr1	127	610	TRCN0000105185	Fabp4
	544	TRCN000081625	Egrí		611	TRCN0000105186	Fabp4
	545	TRCN000081626	Egrí		612	TRCN0000105187	Fabp4
111	546	TRCN0000081627	Egri		613	TRCN0000105188	Fabp4
114	547	TRCN0000081678	Egr2		614	IRCN0000105189	гарр4
	548 540	TRCN0000081679	Egr2	100	615	NW_010634.1-	Fabre
	549	TRCN0000081680	Egr2	128	015		гаррэ
	550	TRCN0000001601	Egiz Egiz		646	NW_010034.1-	
115	551	TRCN0000081082	Egiz		617	59251C1 TBCN0000011804	Fabp5
115	552		⊑III ⊑hf		618	TPCN0000011894	Fabp5
	555	TECN0000081789	Elli Ehf		610	TRCN0000011890	Fabp5
	555	TPCN0000081790	⊑III ⊑hf	120	620	TPCN0000011897	Fabpo Fade2
	556	TRCN0000081791	Elli	129	621	TRCN0000114330	Fausz Fade2
116	557	TRCN0000081938	Elf5		622	TRCN0000114338	Fade2
110	558	TRCN0000081930	Elf5		623	TRCN0000114330	Fade2
	559	TRCN0000081940	Elf5	130	624	TRCN0000173476	Fancm
	560	TRCN0000081940	Elf5	150	625	TRCN0000173798	Fancm
	561	TRCN0000081942	Elf5		626	TRCN0000175001	Fancm
117	562	TRCN0000042643	Elk3		627	TRCN0000176065	Fancm
	563	TRCN0000042644	Flk3		628	TRCN0000176066	Fancm
	564	TRCN0000042645	Elk3	131	629	TRCN0000094844	Fath
	565	TRCN0000042646	Elk3		630	TRCN0000094845	Fath
	566	TRCN0000042647	Elk3		631	TRCN0000094846	Fath
118	567	TRCN0000023679	Epha7		632	TRCN0000094847	Fath
	568	TRCN0000023680	Epha7		633	TRCN0000094848	Fath
	569	TRCN0000023681	Epha7	132	634	TRCN0000012828	Fbxw7
	570	TRCN000023682	Epha7		635	TRCN0000012829	Fbxw7
	571	TRCN0000023683	Epha7		636	TRCN0000012830	Fbxw7
119	572	TRCN0000092273	Eps8		637	TRCN0000012831	Fbxw7
	573	TRCN0000092274	Eps8		638	TRCN0000012832	Fbxw7
	574	TRCN0000092275	Eps8	133	639	TRCN000004653	Ffar1
	575	TRCN0000092276	Eps8		640	TRCN000004654	Ffar1
	576	TRCN0000092277	Eps8		641	TRCN000004655	Ffar1
120	577	TRCN0000190945	Esm1	134	642	TRCN000009606	Flt1
	578	TRCN0000192471	Esm1		643	TRCN000009607	Flt1
	579	TRCN0000192502	Esm1		644	TRCN000009608	Flt1
	580	TRCN0000192617	Esm1		645	TRCN000009609	Flt1
121	581	TRCN0000026176	Esr1		646	TRCN000009610	Flt1
	582	TRCN0000026184	Esr1	135	647	TRCN000023739	Flt3
	583	TRCN0000026197	Esr1		648	TRCN0000023740	FIt3
	584	TRCN0000026201	Esr1		649	TRCN0000023741	Flt3
100	585	TRCN0000026214	Esr1		650	TRCN0000023742	FIt3
122	586	TRCN0000026150	Esr2	100	651	TRCN0000023743	FIt3
	587	TRCN0000026170	Esr2	136	652	TRCN0000023754	Flt4
	588	TRCN0000026192	ESIZ		653	TRCN0000023755	
400	589	TRCN0000026215	ESIZ		654	TRCN0000023756	
123	59U				000		F114
	502			127	000		r-ii4 Emn?
	592			137	659	TRCN0000120512	Emp2
	501				650	TRCN0000120513	Emp2
124	505	TRCN0000111729	⊑⊼004 F7h1		660	TRCN0000120514	Fmn?
127	596	TRCN000005695	Ezh1		661	TRCN0000120516	Fmn2

138	662	TRCN000084288	Foxj2		729	TRCN0000103432	Gsta4
	663	TRCN0000084289	Foxj2		730	TRCN0000103433	Gsta4
	664	TRCN0000084290	Foxj2		731	TRCN0000103434	Gsta4
	665	TRCN0000084291	Foxj2	152	732	TRCN0000103240	Gstm1
	666	TRCN0000084292	Foxj2		733	TRCN0000103241	Gstm1
139	667	TRCN0000072003	Foxp1		734	TRCN0000103242	Gstm1
	668	TRCN0000072004	Foxp1		735	TRCN0000103243	Gstm1
	669	TRCN0000072005	Foxp1		736	TRCN0000103244	Gstm1
	670	TRCN0000072006	Foxp1	153	737	TRCN0000103160	Gstm2
	671	TRCN0000072007	Foxp1		738	TRCN0000103161	Gstm2
140	672	TRCN0000108925	Fscn1		739	TRCN0000103162	Gstm2
110	673	TRCN0000108926	Escn1		740	TRCN0000103163	Gstm2
	674	TRCN0000108927	Fscn1		741	TRCN0000103164	Gstm2
	675	TRCN0000108928	Fscn1	154	742	TRCN0000028854	Hes1
	676	TRCN0000108929	Fscn1	104	743	TRCN0000028855	Hes1
141	677	TRCN0000085478	Gata3		744	TRCN0000028881	Hes1
141	678	TRCN0000085479	Cata3		745	TRCN0000020001	Hoe1
	670	TPCN0000085480	Galas Cata3		745	TPCN0000028923	
	600	TRCN0000085480	Galas Coto?	155	740	TRCN0000026927	NGS I Lliat1h2hh
	601	TRCN000005461	Galas Coto?	155	747	TRCN0000090954	Hist 11201
140	001	TRCN0000003462	Galas		740	TRCN0000096955	Histinzon
142	082	TRCN000008823	Gjb5		749	TRCN000096956	HIST HIZDU
	683	TRCN000068824	GJD5		750	TRCN000096957	HIST1n2bn
	684	TRCN000068825	GJD5	450	751	TRCN000096958	HIST INZON
	685	TRCN000068826	GJD5	156	752	TRCN0000126044	Hmga2
	686	TRCN0000068827	Gjb5		753	TRCN0000126045	Hmga2
143	687	TRCN0000027955	Gpr56		754	TRCN0000126046	Hmga2
	688	IRCN0000027962	Gpr56		755	IRCN0000126047	Hmga2
	689	TRCN0000027970	Gpr56		756	TRCN0000126048	Hmga2
	690	TRCN0000027988	Gpr56	157	757	TRCN0000075583	Hmgb2
	691	TRCN0000027999	Gpr56		758	TRCN0000075584	Hmgb2
144	692	TRCN0000076528	Gpx2		759	TRCN0000075585	Hmgb2
	693	TRCN0000076529	Gpx2		760	TRCN0000075586	Hmgb2
	694	TRCN0000076530	Gpx2		761	TRCN0000075587	Hmgb2
	695	TRCN0000076531	Gpx2	158	762	TRCN0000070789	Hoxa4
	696	TRCN0000076532	Gpx2		763	TRCN0000070790	Hoxa4
145	697	TRCN0000103545	Grhl3		764	TRCN0000070791	Hoxa4
	698	TRCN0000103546	Grhl3		765	TRCN0000070792	Hoxa4
	699	TRCN0000103547	Grhl3	159	766	TRCN0000012518	Hoxa5
	700	TRCN0000103548	Grhl3		767	TRCN0000012519	Hoxa5
	701	TRCN0000103549	Grhl3		768	TRCN0000012520	Hoxa5
146	702	TRCN0000103040	Grid1		769	TRCN0000012521	Hoxa5
	703	TRCN0000103041	Grid1		770	TRCN0000012522	Hoxa5
	704	TRCN0000103042	Grid1	160	771	TRCN0000070863	Hoxb6
	705	TRCN0000103043	Grid1		772	TRCN0000070864	Hoxb6
	706	TRCN0000103044	Grid1		773	TRCN0000070865	Hoxb6
147	707	TRCN0000012613	Gsk3b		774	TRCN0000070866	Hoxb6
	708	TRCN0000012614	Gsk3b		775	TRCN0000070867	Hoxb6
	709	TRCN0000012615	Gsk3b	161	776	TRCN0000070888	Hoxb9
	710	TRCN0000012616	Gsk3b		777	TRCN0000070889	Hoxb9
	711	TRCN0000012617	Gsk3b		778	TRCN0000070890	Hoxb9
148	712	TRCN0000103310	Gsta1		779	TRCN0000070891	Hoxb9
	713	TRCN0000103311	Gsta1		780	TRCN0000070892	Hoxb9
	714	TRCN0000103312	Gsta1	162	781	TRCN0000070908	Hoxc13
	715	TRCN0000103313	Gsta1	102	782	TRCN0000070909	Hoxc13
	716	TRCN0000103314	Gsta1		783	TRCN0000070910	Hove13
149	717	TRCN0000103295	Gsta2		784	TRCN0000070911	Hoxc13
140	718	TRCN0000103296	Geta2	163	785	TRCN0000070038	Hove6
	710	TRCN0000103297	Geta2	100	786	TRCN0000070930	Hove6
	720	TRCN0000103298	Gsta2		787	TRCN0000070939	Hoyce
	720	TPCN0000103200	Ceta2		788	TPCN0000070940	Hove6
150	721	TRCN0000103299	Gsta2		700	TRCN0000070941	
150	1 22 700		Gota2	164	700		
	123	TDCN0000103201	Coto?	104	790		
	124		Gsido Coto?		700		
	120		Gstab		192		
151	120		Gstad	165	193		
12.1	121		Gsta4	105	794		
	728	TRUNUUUU103431	Gsta4		795	TRUNUUUUU/0469	похая

	796	TRCN0000070470	Hoxd9		863	TRCN0000028869 Jag1	
	797	TRCN0000070471	Hoxd9		864	TRCN0000028887 Jag1	
	798	TRCN0000070472	Hoxd9		865	TRCN0000028933 Jag1	
166	799	TRCN0000034379	Hras1	180	866	TRCN0000028871 Jag2	!
	800	TRCN0000034380	Hras1		867	TRCN0000028877 Jag2	!
	801	TRCN0000034381	Hras1		868	TRCN0000028897 Jag2	
	802	TRCN0000034382	Hras1		869	TRCN0000028906 Jag2	
	803	TRCN0000034383	Hras1	181	870	TRCN0000075548 Jub	
167	804	TRCN0000071433	ld1		871	TRCN0000075549 Jub	
	805	TRCN0000071435	ld1		872	TRCN0000075550 Jub	
	806	TRCN0000071437	ld1		873	TRCN0000075551 Jub	
168	807	TRCN0000071438	ld3		874	TRCN0000075552 Jub	
	808	TRCN0000071439	ld3	182	875	TRCN0000055203 Jun	
	809	TRCN0000071440	ld3		876	TRCN0000055204 Jun	
	810	TRCN0000071444	ld4		877	TRCN0000055205 Jun	
169	811	TRCN000023489	laf1r		878	TRCN0000055206 Jun	
	812	TRCN0000023490	laf1r		879	TRCN0000055207 Jun	
	813	TRCN000023491	laf1r	183	880	TRCN0000069668 Kctd	8
	814	TRCN0000023492	laf1r		881	TRCN000069669 Kctd	8
	815	TRCN0000023493	laf1r		882	TRCN000069670 Kctd	8
170	816	TRCN000096759	laf2hn2		883	TRCN0000069671 Kctd	8
	817	TRCN000096760	laf2hn2		884	TRCN000069672 Kctd	8
	818	TRCN0000096761	laf2hn2	184	885	TRCN0000023744 Kdr	0
	819	TRCN000096762	laf2hn2	104	886	TRCN000023745 Kdr	
	820	TRCN0000096763	laf2bp2		887	TRCN000023746 Kdr	
171	821	TRCN0000012858	lafbn2		888	TRCN000023747 Kdr	
171	822	TRCN0000012859	lafbn2		889	TRCN0000023748 Kdr	
	823	TRCN0000012860	lafbn2	185	800	TRCN0000071468 Kif15	5
	824	TRCN0000012861	lafbn2	105	801	TRCN0000071460 Kifts	;
	825	TPCN0000012862	lafbn2		802	TPCN0000071409 Kifts	;
172	826	TPCN0000026867	Ikhkh		803	TPCN0000071470 Kifts	;
172	827	TPCN0000026801	IKDKD		801	TPCN0000071471 Kirs	;
	027 929	TPCN0000026894	IKDKD	186	805	TPCN0000071472 Kirs	,
	820	TPCN0000020034	IKDKD	100	806	TPCN0000075550 Kiis	
	830	TRCN0000020915	IKDKD		807	TPCN0000075560 Kif3	
172	030	TDCN0000020945	lkbka		000	TPCN0000075561 Kif2	
175	001		lkbkg		090	TDCN0000075501 KIIS	
	032 022		lkbkg	107	000	TRCN0000075502 KIIS	
	000		IKDKG	107	900	TRCN0000034364 KIds	
	034		IKDKG		901	TRCN0000034365 Kids	
171	835		IKDKG		902	TRCN0000034380 Kias	
174	830		11112		903	TRCN0000034387 Kias	
	837		11112	400	904		
	838	TRCN0000068250	111r2	188	905		
	839	TRCN000068251	111r2		906	TRCN000022525 Ksr1	
	840	TRCN000068252	li1r2		907	TRCN0000022527 Ksr1	
175	841	TRCN0000085328	Irf6	400	908	TRCN000022528 Ksr1	
	842	TRCN000085329	IIII6	189	909	TRCN000022594 Ksr2	
	843	TRCN000085330	Into		910	TRCN000022595 Ksr2	
	844	TRCN0000085331	Irf6		911	TRCN000022596 Ksr2	
	845	TRCN0000085332	Inf6		912	IRCN0000022597 Ksr2	
176	846	TRCN0000070478	Irx1		913	IRCN0000022598 Ksr2	
	847	TRCN0000070479	Irx1	190	914	TRCN0000075563 Lasp	1
	848	IRCN0000070480	Irx1		915	IRCN0000075564 Lasp	1
	849	TRCN0000070481	lrx1		916	TRCN0000075565 Lasp	1
	850	TRCN0000070482	lrx1		917	TRCN0000075566 Lasp	1
177	851	TRCN0000070403	Irx4		918	TRCN0000075567 Lasp	1
	852	TRCN0000070404	lrx4	191	919	TRCN0000022704 Lats2	2
	853	TRCN0000070405	lrx4		920	TRCN0000022705 Lats2	2
	854	TRCN0000070406	lrx4		921	TRCN0000022706 Lats2	2
	855	TRCN0000070407	lrx4		922	TRCN0000022707 Lats2	2
178	856	TRCN0000070418	lrx5		923	TRCN0000022708 Lats2	2
	857	TRCN0000070419	lrx5	192	924	TRCN0000012673 Lef1	
	858	TRCN0000070420	lrx5		925	TRCN0000012674 Lef1	
	859	TRCN0000070421	lrx5		926	TRCN0000012675 Lef1	
	860	TRCN0000070422	lrx5		927	TRCN0000012676 Lef1	
179	861	TRCN0000028850	Jag1		928	TRCN0000012677 Lef1	
	862	TRCN0000028860	Jag1	193	929	TRCN0000067908 Lefty	/1

	930	TRCN0000067909	Lefty1		997	TRCN0000012759	Map4k1
	931	TRCN0000067911	Lefty1		998	TRCN0000012761	Map4k1
	932	TRCN0000067912	Lefty1		999	TRCN0000012762	Map4k1
194	933	TRCN0000070533	Lhx2	208	1000	TRCN0000055223	Mapk14
	934	TRCN0000070534	Lhx2		1001	TRCN0000055224	Mapk14
	935	TRCN0000070535	Lhx2		1002	TRCN0000055225	Mapk14
	936	TRCN0000070536	Lhx2		1003	TRCN0000055226	Mapk14
	937	TRCN0000070537	Lhx2		1004	TRCN0000055227	Mapk14
195	938	TRCN0000095669	Limd1	209	1005	TRCN0000023184	Mapk3
	939	TRCN0000095670	Limd1		1006	TRCN0000023185	Mapk3
	940	TRCN0000095671	Limd1		1007	TRCN0000023186	Mapk3
	941	TRCN0000095672	Limd1		1008	TRCN0000023187	Mapk3
	942	TRCN0000095673	Limd1		1009	TRCN0000023188	Mapk3
196	943	TRCN0000084373	Lmo4	210	1010	TRCN0000023179	Mapk4
	944	TRCN0000084374	Lmo4		1011	TRCN0000023180	Mapk4
	945	TRCN0000084375	Lmo4		1012	TRCN0000023181	Mapk4
	946	TRCN0000084376	Lmo4		1013	TRCN0000023182	Mapk4
	947	TRCN0000084377	Lmo4		1014	TRCN0000023183	Mapk4
197	948	TRCN0000070438	Lmx1a	211	1015	TRCN0000023199	Mapk6
	949	TRCN0000070439	Lmx1a		1016	TRCN0000023200	Mapk6
	950	TRCN0000070440	Lmx1a		1017	TRCN0000023201	Mapk6
	951	TRCN0000070441	l mx1a		1018	TRCN0000023202	Mapk6
	952	TRCN0000070442	I mx1a		1019	TRCN0000023203	Mapk6
198	953	TRCN0000119622	I rp1	212	1020	TRCN0000012599	Mapk8ip1
100	954	TRCN0000119623	Lrp1		1021	TRCN0000012600	Mank8in1
	955	TRCN0000119624	Lrp1	213	1021	TRCN000004691	Mcl1
	956	TRCN0000119625	Lrp1	210	1022	TRCN0000004692	McI1
	957	TRCN0000119626	Lrn1		1024	TRCN000004693	Mcl1
199	958	TRCN0000119607	Lrp1		1024	TRCN000004694	Mcl1
100	950	TRCN0000119608	Lipib Lin1h		1020	TRCN0000004695	Mcl1
	955	TRCN0000119600	Lipib Lipib	214	1020	TRCN0000012068	Mef2c
	900	TRCN0000119610	Lipib Lipib	214	1027	TRCN0000012069	Mef2c
	962	TRCN0000119611	Lipib Lipib		1020	TRCN0000012003	Mef2c
200	063	TRCN0000119611	Lipio Lipio		1023	TRCN0000012070	Mef2c
200	967	TRCN0000119633	Lip 4 Lin/		1030	TRCN0000012071	Mef2c
	90 4 065	TPCN0000119033	Lip 4 Lrp4	215	1031	TPCN0000012072	Meis1
	066	TPCN0000119635	Lip 4 Lip4	210	1032	TPCN0000012524	Meis1
	900	TPCN0000119035	LIP4 Lrp4		1033	TRCN0000012524	Mois1
201	068	TPCN0000119030	Lip 4 Lip6		1034	TPCN0000012525	Meis1
201	060	TPCN0000109300	Lipo		1035	TRCN0000012520	Mois1
	909	TRCN0000109301	Lipo	216	1030	TRCN0000012527	MIL
	970	TRCN0000109302	Lipo	210	1037	TRCN00000225999	
	971	TRCN0000109303	Lipo		1030	TRCN0000022000	
202	972	TRCN0000109364	Lipo		1039	TRCN0000022601	
202	973	TRCN0000108455			1040	TRCN0000022602	
	974	TRCN0000108456	LIIC4C	047	1041	TRCN0000022603	
	975	TRCN0000108457	LffC4C	217	1042	TRCN0000034424	
	976	TRCN0000108458	Lrrc4c	040	1043	TRCN0000034428	Mill'I
000	977	TRCN0000108459	LffC4C	218	1044	TRCN0000032834	Mmp16
203	978	TRCN0000102225			1045	TRCN0000032835	Mmp16
	979	TRCN0000102226			1046	TRCN0000032836	Wimp16
	980	TRCN0000102227	Lrmp1		1047	TRCN0000032837	Mmp16
	981	TRCN0000102229	Lrmp1		1048	TRCN0000032838	Mmp16
204	982	TRCN0000189740	Lybgbc	219	1049	TRCN0000071523	Morf4I1
	983	TRCN0000190117	Lybgbc		1050	TRCN0000071524	Morf4I1
	984	TRCN0000193012	Ly6g6c		1051	TRCN0000071525	Morf4I1
~~-	985	TRCN0000202432	Lybgbc		1052	TRCN0000071526	Morf4I1
205	986	TRCN0000012608	Map2k7		1053	TRCN0000071527	Morf4I1
	987	TRCN0000012609	Map2k7	195	1054	TRCN0000012663	Mre11a
	988	IRCN0000012610	Map2k7		1055	IRCN0000012664	Mre11a
	989	TRCN0000012611	Map2k7		1056	TRCN0000012665	Mre11a
	990	TRCN0000012612	Map2k7		1057	TRCN0000012667	Mre11a
206	991	TRCN0000012763	Map3k14	196	1058	TRCN0000070623	Msx1
	992	TRCN0000012764	Map3k14		1059	TRCN0000070624	Msx1
	993	TRCN0000012765	Map3k14		1060	TRCN0000070625	Msx1
	994	TRCN0000012766	Map3k14		1061	TRCN0000070626	Msx1
	995	TRCN0000012767	Map3k14		1062	TRCN0000070627	Msx1
207	996	TRCN0000012758	Map4k1	197	1063	TRCN0000075943	Mthfd1I

	1064	TRCN0000075944	Mthfd1I	20)9	1131	TRCN0000075348	Nfix
	1065	TRCN0000075945	Mthfd1I			1132	TRCN0000075349	Nfix
	1066	TRCN0000075946	Mthfd1I			1133	TRCN0000075350	Nfix
	1067	TRCN0000075947	Mthfd1I			1134	TRCN0000075351	Nfix
198	1068	TRCN0000042513	Mvc			1135	TRCN0000075352	Nfix
	1069	TRCN0000042514	Mvc	21	10	1136	TRCN0000096119	Nfkbia
	1070	TRCN0000042515	Mvc			1137	TRCN0000096120	Nfkbia
	1071	TRCN0000042516	Myc			1138	TRCN0000096121	Nfkbia
	1072	TRCN0000042517	Mvc			1139	TRCN0000096122	Nfkbia
	1073	TRCN0000054853	Mvc			1140	TRCN0000096123	Nfkbia
	1074	TRCN0000054854	Mvc	21	11	1141	TRCN0000025895	Notch1
	1075	TRCN0000054855	Myc			1142	TRCN0000025902	Notch1
	1076	TRCN0000054856	Mvc			1143	TRCN0000025908	Notch1
199	1077	TRCN0000011993	Mvef2			1144	TRCN0000025918	Notch1
	1078	TRCN0000011994	Mvef2			1145	TRCN0000025935	Notch1
	1079	TRCN0000011995	Mvef2	21	12	1146	TRCN0000012063	Nr1d2
	1080	TRCN0000011996	Myef2			1147	TRCN0000012064	Nr1d2
	1081	TRCN0000011997	Mvef2			1148	TRCN0000012065	Nr1d2
200	1082	TRCN0000071503	Myh9			1149	TRCN0000012066	Nr1d2
	1083	TRCN0000071504	Mvh9			1150	TRCN0000012067	Nr1d2
	1084	TRCN0000071505	Mvh9	21	13	1151	TRCN0000034389	Nras
	1085	TRCN0000071506	Mvh9			1152	TRCN0000034390	Nras
	1086	TRCN0000071507	Myh9			1153	TRCN0000034391	Nras
201	1087	TRCN0000125409	Nav1			1154	TRCN0000034392	Nras
	1088	TRCN0000125410	Nav1			1155	TRCN0000034393	Nras
	1089	TRCN0000125411	Nav1	21	14	1156	TRCN0000025299	Nrk
	1090	TRCN0000125412	Nav1	_	•••	1157	TRCN0000025300	Nrk
	1091	TRCN0000125413	Nav1			1158	TRCN0000025301	Nrk
202	1092	TRCN0000009791	Nedd9			1159	TRCN0000025302	Nrk
	1093	TRCN0000009792	Nedd9			1160	TRCN0000025303	Nrk
	1094	TRCN000009793	Nedd9	21	15	1161	TRCN0000029859	Nrp1
	1095	TRCN0000009794	Nedd9	_		1162	TRCN0000029860	Nrp1
	1096	TRCN000009795	Nedd9			1163	TRCN0000029861	Nrp1
203	1097	TRCN0000087559	Neto1			1164	TRCN0000029862	Nrp1
	1098	TRCN0000087560	Neto1			1165	TRCN0000029863	Nrp1
	1099	TRCN0000087561	Neto1	21	16	1166	TRCN0000028974	Nrp2
	1100	TRCN0000087562	Neto1			1167	TRCN0000028975	Nrp2
204	1101	TRCN0000086943	Neto2			1168	TRCN0000028976	Nrp2
	1102	TRCN0000086944	Neto2			1169	TRCN0000028977	Nrp2
	1103	TRCN0000086945	Neto2			1170	TRCN0000028978	Nrp2
	1104	TRCN0000086946	Neto2	21	17	1171	TRCN0000094624	Nrxn1
	1105	TRCN0000086947	Neto2	_		1172	TRCN0000094625	Nrxn1
205	1106	TRCN0000034339	Nf1			1173	TRCN0000094626	Nrxn1
	1107	TRCN0000034340	Nf1			1174	TRCN0000094627	Nrxn1
	1108	TRCN0000034341	Nf1			1175	TRCN0000094628	Nrxn1
	1109	TRCN0000034342	Nf1	21	18	1176	TRCN0000094486	Nrxn2
	1110	TRCN0000034343	Nf1	_		1177	TRCN0000094487	Nrxn2
206	1111	TRCN0000075343	Nfe2l1			1178	TRCN0000094488	Nrxn2
200	1112	TRCN0000075344	Nfe2l1	21	19	1179	TRCN0000094189	Nrxn3
	1113	TRCN0000075345	Nfe2l1	_		1180	TRCN0000094190	Nrxn3
	1114	TRCN0000075346	Nfe2l1			1181	TRCN0000094191	Nrxn3
	1115	TRCN0000075347	Nfe2l1			1182	TRCN0000094192	Nrxn3
207	1116	TRCN0000012128	Nfe2l2			1183	TRCN0000094193	Nrxn3
201	1117	TRCN0000012129	Nfe2l2	22	20	1184	TRCN0000114176	Nudt14
	1118	TRCN0000012120	Nfe2l2		_0	1185	TRCN0000114177	Nudt14
	1110	TRCN0000012130	Nfe2l2			1186	TRCN0000114178	Nudt14
	1120	TPCN0000012131	Nfo2l2			1100	TPCN0000114170	Nudt14
	1120	TPCN0000012132	NICZIZ NICZIZ			1107	TPCN0000114179	Nudt14
	1121	TRCN0000054659	Nfe2l2	22	21	1180	TRCN0000174100	Numa1
	1122		Nfo2l2	22	- '	1100	TRCN0000072120	Numat
	1120		NICZIZ			1100		Numo1
	1124		NICZIZ			1100		Numat
208	1120		NICZIZ	0	22	1102		
200	1120		Nifib	22		1104		Oas II Oas 1f
	1127 1129	TRCN0000012009	Nifib			1105	TRCN0000075840	Oas II Oas 1f
	1120	TRCN0000012090	Nfib			1106		Oas II Oas 1f
	1129		Nitib			1100		Oas II Oas 1f
	1130	11/01/00/01/2092	UIII	1		1191	11/01/00/00/ 0042	Jasli

223	1198	TRCN0000071193	Orc3l		1265	TRCN0000123361	Pkp4
	1199	TRCN0000071194	Orc3l		1266	TRCN0000123362	Pkp4
	1200	TRCN0000071195	Orc3l		1267	TRCN0000123363	Pkp4
	1201	TRCN0000071197	Orc3I	238	1268	TRCN0000076908	Plcb1
224	1202	TRCN0000025154	Pak3		1269	TRCN0000076909	Plcb1
	1203	TRCN0000025155	Pak3		1270	TRCN0000076910	Plcb1
	1204	TRCN0000025156	Pak3		1271	TRCN0000076911	Plcb1
	1205	TRCN0000025157	Pak3		1272	TRCN0000076912	Plcb1
	1206	TRCN0000025158	Pak3	239	1273	TRCN0000105980	Ppp1r9a
225	1207	TRCN0000032809	Pappa2		1274	TRCN0000105981	Ppp1r9a
	1208	TRCN0000032810	Pappa2		1275	TRCN0000105982	Ppp1r9a
	1209	TRCN0000032811	Pappa2		1276	TRCN0000105983	Ppp1r9a
	1210	TRCN0000032812	Pappa2		1277	TRCN0000105984	Ppp1r9a
	1211	TRCN0000032813	Pappa2	240	1278	TRCN0000081058	Ppp3ca
226	1212	TRCN0000012573	Pbx1		1279	TRCN0000081059	Ppp3ca
	1213	TRCN0000012574	Phx1		1280	TRCN0000081060	Ppp3ca
	1214	TRCN0000012577	Pbx1		1281	TRCN0000081061	Ppp3ca
227	1215	TRCN0000094899	Pcdh15		1282	TRCN0000081062	Ppp3ca
	1216	TRCN0000094900	Pcdh15	241	1283	TRCN0000085193	Prdm9
	1217	TRCN0000094901	Pcdh15		1284	TRCN0000085194	Prdm9
	1218	TRCN0000094902	Pcdh15		1285	TRCN0000085195	Prdm9
	1210	TRCN0000034302	Pcdh15		1286	TRCN0000085196	Prdm0
228	1213	TRCN0000034903	Pelo		1287	TRCN0000085190	Prdm0
220	1220	TRCN0000111681	Pelo	242	1288	TRCN0000001048	Prickle?
	1221	TRCN0000111682	Pelo	272	1280	TRCN0000091049	Pricklo2
	1222	TRCN0000111683	Pelo		1203	TRCN0000091049	Prickle2
	1220	TRCN0000111684	Pclo		1200	TRCN0000091051	Prickle2
229	1225	TRCN0000174416	Pdnn		1201	TRCN000091052	Prickle2
225	1226	TRCN0000174621	Pdon	243	1293	TRCN0000022875	Prkca
	1227	TRCN0000175972	Pdnn	240	1200	TRCN000022878	Prkca
	1228	TRCN0000176005	Pdon		1295	TRCN0000022754	Prkci
230	1229	TRCN000025977	Par	244	1296	TRCN0000022755	Prkci
	1230	TRCN0000025996	Par		1297	TRCN0000022756	Prkci
	1231	TRCN0000026003	Par		1298	TRCN0000022757	Prkci
	1232	TRCN0000026032	Par		1299	TRCN0000022758	Prkci
231	1233	TRCN0000055083	Phlda2	245	1300	TRCN0000022717	Prka2
	1234	TRCN0000055084	PhIda2		1301	TRCN0000022718	Prka2
	1235	TRCN0000055085	Phlda2	246	1302	TRCN0000115318	Prom1 (CD133)
	1236	TRCN0000055086	Phlda2		1303	TRCN0000115316	Prom1 (CD133)
	1237	TRCN0000055087	Phlda2		1304	TRCN0000115317	Prom1 (CD133)
232	1238	TRCN0000088628	Pik3ap1		1305	TRCN0000115319	Prom1 (CD133)
	1239	TRCN0000088629	Pik3ap1		1306	TRCN0000115320	Prom1 (CD133)
	1240	TRCN0000088630	Pik3ap1	247	1307	TRCN0000025359	Prpf4b
	1241	TRCN0000088631	Pik3ap1		1308	TRCN0000025360	Prpf4b
	1242	TRCN0000088632	Pik3ap1		1309	TRCN0000025361	Prpf4b
233	1243	TRCN0000025614	Pik3ca		1310	TRCN0000025362	Prpf4b
	1244	TRCN0000025615	Pik3ca		1311	TRCN0000025363	Prpf4b
	1245	TRCN0000025616	Pik3ca	248	1312	TRCN0000012113	Psip1
	1246	TRCN0000025617	Pik3ca		1313	TRCN0000012114	Psip1
	1247	TRCN0000025618	Pik3ca		1314	TRCN0000012115	Psip1
234	1248	TRCN0000024584	Pip5k1a		1315	TRCN0000012116	Psip1
	1249	TRCN0000024585	Pip5k1a		1316	TRCN0000012117	Psip1
	1250	TRCN0000024586	Pip5k1a	249	1317	TRCN0000042538	Ptch1
	1251	TRCN0000024587	Pip5k1a		1318	TRCN0000042539	Ptch1
	1252	TRCN0000024588	Pip5k1a		1319	TRCN0000042540	Ptch1
235	1253	TRCN0000054653	Pitx1		1320	TRCN0000042541	Ptch1
	1254	TRCN0000054654	Pitx1		1321	TRCN0000042542	Ptch1
	1255	TRCN0000054655	Pitx1	250	1322	TRCN0000028989	Pten
	1256	TRCN0000054656	Pitx1		1323	TRCN0000028991	Pten
	1257	TRCN0000054657	Pitx1		1324	TRCN0000028993	Pten
236	1258	TRCN0000072083	Pkd1	251	1325	TRCN0000011913	Ptgds
	1259	TRCN0000072084	Pkd1		1326	TRCN0000011914	Ptgds
	1260	TRCN0000072085	Pkd1		1327	TRCN0000011915	Ptgds
	1261	FRCN0000072086	Pkd1		1328	TRCN0000011916	Ptgds
007	1262	1 RCN0000072087	Pkd1	070	1329	IRCN0000011917	Ptgds
237	1263	TRCN0000123359	РКр4	252	1330	TRCN000067938	Ptgs2
	1264	TRCN0000123360	₽кр4	1	1331	TRCN000067939	Ptgs2

	1332	TRCN0000067940	Ptgs2		1399	TRCN0000042552	Rel
	1333	TRCN0000067941	Ptgs2	263	1400	TRCN0000120627	Reln
	1334	TRCN0000067942	Ptgs2		1401	TRCN0000120628	Reln
253	1335	TRCN0000023484	Ptk2		1402	TRCN0000120629	Reln
	1336	TRCN0000023485	Ptk2		1403	TRCN0000120630	Reln
	1337	TRCN0000023486	Ptk2		1404	TRCN0000120631	Reln
	1338	TRCN000023487	Ptk2	264	1405	TRCN0000071343	Rest
	1339	TRCN000023488	Ptk2		1406	TRCN0000071344	Rest
254	1340	TRCN000081068	Ptprz1		1407	TRCN0000071345	Rest
	1341	TRCN0000081069	Ptprz1		1408	TRCN0000071346	Rest
	1342	TRCN0000081070	Ptprz1		1409	TRCN0000071347	Rest
	1343	TRCN0000081071	Ptprz1	265	1410	TRCN0000106155	Rims2
	1344	TRCN0000081072	Ptprz1		1411	TRCN0000106156	Rims2
255	1345	TRCN0000100435	Rab31		1412	TRCN0000106157	Rims2
	1346	TRCN0000100436	Rab31		1413	TRCN0000106158	Rims2
	1347	TRCN0000100437	Rab31		1414	TRCN0000106159	Rims2
	1348	TRCN0000100438	Rab31	266	1415	TRCN0000022634	Rink4
	1349	TRCN0000100439	Rab31	200	1416	TRCN0000022635	Rink4
256	1350	TRCN0000055188	Rac1		1417	TRCN0000022636	Rink4
200	1351	TRCN0000055189	Rac1		1/18	TRCN0000022637	Ripk4
	1352	TPCN0000055100	Pac1		1/10	TPCN0000022037	Dink4
	1002	TRCN0000055190		267	1420	TRCN0000022030	Dyfn2
	1254	TRCN0000055191		207	1420	TRCN0000027509	Exfo2
257	1334	TRCN0000055192			1421	TRCN0000027517	Extp3
257	1300	TRCN0000012056	Rausi		1422	TRCN0000027525	RXIP3
	1350	TRCN0000012659	Rad51		1423	TRCN0000027528	RXID3
	1357	TRCN000012660	Rad51	000	1424	TRCN0000027574	RXTp3
	1358	TRCN0000012661	Rad51	268	1425	TRCN0000011858	S100a4
	1359	TRCN000012662	Rad51		1426	TRCN0000011859	S100a4
258	1360	TRCN0000012628	Raf1		1427	TRCN0000011860	S100a4
	1361	TRCN0000012629	Raf1		1428	TRCN0000011861	S100a4
	1362	TRCN0000012630	Raf1		1429	TRCN0000011862	S100a4
	1363	TRCN0000012631	Raf1	269	1430	TRCN0000072043	S100a9
	1364	TRCN0000012632	Raf1		1431	TRCN0000072044	S100a9
	1365	TRCN0000055138	Raf1		1432	TRCN0000072045	S100a9
	1366	TRCN0000055139	Raf1		1433	TRCN0000072046	S100a9
	1367	TRCN0000055140	Rafi	070	1434	TRCN0000072047	S100a9
	1368	TRCN0000055141	Raf1	270	1435	TRCN0000071628	Sfrs3
050	1369	TRCN0000055142	Rafi		1436	TRCN0000071629	SIIS3
259	1370	TRCN0000071953	Rapger3		1437	TRCN0000071630	SIIS3
	13/1	TRCN0000071954	Rapger3		1438	TRCN0000071631	SIIS3
	1372	TRCN0000071955	Rapgels	074	1439	TRCN0000071032	SIIS3 Ofro7
	13/3	TRCN0000071956	Rapgel3	271	1440	TRCN0000071933	SIIS/
	1374	TRCN0000071957	Rapgers		1441	TRCN0000071934	SIIS/
	1375	TRCN0000077653	Rasa1		1442	TRCN0000071935	Strs/
	1376	TRCN0000077654	Rasa1		1443	TRCN0000071936	Strs/
	1377	TRCN0000077655	Rasa1	070	1444	TRCN0000071937	Strs/
	1378	TRCN0000077656	Rasa1	272	1445	TRCN0000022884	Sgk
	1379	TRCN0000077657	Rasa1		1446	TRCN0000022885	Sgk
260	1380	TRCN0000042543	Rb1		1447	TRCN0000022886	Sgk
	1381	TRCN0000042544	Rb1		1448	TRCN0000022887	Sgk
	1382	TRCN0000042545	Rb1	273	1449	TRCN0000022879	Sgk2
	1383	TRCN0000042546	Rb1		1450	TRCN0000022880	Sgk2
	1384	TRCN0000042547	Rb1		1451	TRCN0000022881	Sgk2
	1385	TRCN0000055378	Rb1		1452	TRCN0000022882	Sgk2
	1386	TRCN0000055379	Rb1		1453	TRCN0000022883	Sgk2
	1387	TRCN0000055380	Rb1	274	1454	TRCN0000011953	Si
	1388	TRCN0000055381	Rb1		1455	TRCN0000011954	Si
	1389	TRCN0000055382	Rb1		1456	TRCN0000011955	Si
261	1390	TRCN0000071273	Rbl2		1457	TRCN0000011956	Si
	1391	TRCN0000071274	Rbl2		1458	TRCN0000011957	Si
	1392	TRCN0000071275	Rbl2	275	1459	TRCN0000042563	Ski
	1393	TRCN0000071276	Rbl2		1460	TRCN0000042564	Ski
	1394	TRCN0000071277	Rbl2		1461	TRCN0000042565	Ski
262	1395	TRCN0000042548	Rel		1462	TRCN0000042566	Ski
	1396	TRCN0000042549	Rel		1463	TRCN0000042567	Ski
	1397	TRCN0000042550	Rel	276	1464	TRCN0000079543	Slc16a1
	1398	TRCN0000042551	Rel		1465	TRCN0000079544	Slc16a1

	1466	TRCN0000079545	Slc16a1		1533	TRCN0000054700	Spp1
	1467	TRCN0000079546	Slc16a1		1534	TRCN0000054701	Spp1
	1468	TRCN0000079547	Slc16a1		1535	TRCN0000054702	Spp1
277	1469	TRCN0000079308	Slc6a2	290	1536	TRCN0000098415	Sprr1b
	1470	TRCN0000079309	Slc6a2		1537	TRCN0000098416	Sprr1b
	1471	TRCN0000079310	Slc6a2		1538	TRCN0000098417	Sprr1b
	1472	TRCN0000079311	Slc6a2		1539	TRCN0000098418	Sprr1b
	1473	TRCN0000079312	Slc6a2		1540	TRCN0000098419	Sprr1b
278	1474	TRCN0000079253	Slco3a1	301	1541	TRCN0000065478	Spry1
	1475	TRCN0000079254	Slco3a1		1542	TRCN0000065479	Spry1
	1476	TRCN0000079255	Slco3a1		1543	TRCN0000065480	Spry1
	1477	TRCN0000079256	Slco3a1		1544	TRCN0000065481	Spry1
	1478	TRCN0000079257	Slco3a1		1545	TRCN0000065482	Spry1
279	1479	TRCN0000106575	Slit1	302	1546	TRCN0000103591	Spry2
	1480	TRCN0000106576	Slit1		1547	TRCN0000103592	Spry2
	1481	TRCN0000106577	Slit1		1548	TRCN0000103593	Spry2
	1482	TRCN0000106578	Slit1		1549	TRCN0000103594	Spry2
	1483	TRCN0000106579	Slit1	303	1550	TRCN0000065538	Spry3
280	1484	TRCN0000120817	Slit2		1551	TRCN000065539	Spry3
	1485	TRCN0000120818	Slit2		1552	TRCN000065540	Spry3
	1486	TRCN0000120819	Slit2		1553	TRCN0000065541	Spry3
	1487	TRCN0000120820	Slit2		1554	TRCN0000065542	Spry3
	1488	TRCN0000120821	Slit2	304	1555	TRCN0000065934	Spry4
281	1489	TRCN0000114071	Slitrk3		1556	TRCN0000065935	Spry4
	1490	TRCN0000114073	Slitrk3		1557	TRCN000065936	Spry4
	1491	TRCN0000114074	Slitrk3		1558	TRCN0000065937	Spry4
	1492	TRCN0000114075	Slitrk3	305	1559	TRCN0000103170	Sptlc2
282	1493	TRCN0000025884	Smad1		1560	TRCN0000103171	Sptlc2
	1494	TRCN0000025910	Smad1		1561	TRCN0000103172	Sptlc2
	1495	TRCN0000025933	Smad1		1562	TRCN0000103173	Sptlc2
	1496	TRCN0000025963	Smad1		1563	TRCN0000103174	Sptlc2
283	1497	TRCN0000025881	Smad4	306	1564	TRCN0000125734	Steap1
	1498	TRCN0000025885	Smad4		1565	TRCN0000125735	Steap1
	1499	TRCN0000025900	Smad4		1566	TRCN0000125736	Steap1
	1500	TRCN0000025953	Smad4		1567	TRCN0000125737	Steap1
284	1501	TRCN0000025891	Smad9		1568	IRCN0000125738	Steap1
	1502	TRCN0000025893	Smad9	307	1569	IRCN0000023729	Styk1
	1503	TRCN000025912	Smad9		1570	TRCN0000023730	Styk1
	1504	TRCN0000025913	Smad9		15/1	TRCN0000023731	Styki
205	1505	TRCN0000025937	Smad9		1572	TRCN0000023732	Styk1
285	1500	TRCN0000071398	Smarca2	200	1573	TRCN0000023733	SLYK I
	1507	TRCN0000071399	Smarca2	300	1574	TRCN0000072040	
	1508	TRCN0000071400	Smarca2		15/5	TRCN0000072049	Sub1
	1509	TRCN0000071401	Smarca2		1570	TRCN0000072050	Sub1
206	1510	TRCN0000071402	Smarcaz Sov2		1577	TRCN0000072051	Sub1
200	1511	TPCN0000085740	SOX2	300	1570	TRCN0000072052	Sued2
	1512	TRCN0000085750	S0X2	309	1580	TRCN0000125999	Susd2
	1513	TRCN0000085750	S0X2		1581	TRCN0000120000	Susd2
	1515	TRCN0000085752	Sox2		1582	TRCN0000120001	Susd2
287	1516	TRCN0000086338	Snic		1583	TRCN0000120002	Susd2
201	1517	TRCN0000086339	Spic	310	1584	TRCN0000120005	Svne1
	1518	TRCN0000086340	Spic	010	1585	TRCN0000108876	Syne1
	1510	TRCN0000086341	Spic		1586	TRCN0000108877	Syne1
	1520	TRCN0000086342	Spic		1587	TRCN0000108878	Syne1
288	1520	TRCN0000087743	Spic Spink5		1588	TRCN0000108879	Syne1
200	1522	TRCN0000087744	Spink5	311	1580	TRCN0000042573	Tal1
	1522	TRCN0000087745	Spink5	011	1500	TRCN0000042574	Tal1
	1524	TRCN0000087746	Spink5		1591	TRCN0000042575	Tal1
	1525	TRCN0000087747	Spink5		1592	TRCN0000042576	Tal1
289	1526	TRCN0000009601	Spp1		1593	TRCN0000042577	Tal1
200	1527	TRCN000009602	Spp1	312	1594	TRCN0000176581	Tanc1
	1528	TRCN0000009603	Spp1	~	1595	TRCN0000176582	Tanc1
	1529	TRCN0000009604	Spp1		1596	TRCN0000178012	Tanc1
	1530	TRCN000009605	Spp1		1597	TRCN0000178631	Tanc1
	1531	TRCN0000054698	Spp1	313	1598	TRCN0000012093	Tcf4
	1532	TRCN0000054699	Spp1		1599	TRCN0000012094	Tcf4

	1600	TRCN0000012095	Tcf4	1	1667	TRCN0000012750	Trp63
	1601	TRCN0000012096	Tcf4		1668	TRCN0000012751	Trp63
	1602	TRCN0000012097	Tcf4		1669	TRCN0000012752	Trp63
314	1603	TRCN0000012178	Tcf7l2	329	1670	TRCN0000012753	Trp73
	1604	TRCN0000012179	Tcf7l2		1671	TRCN0000012754	Trp73
	1605	TRCN0000012180	Tcf7l2		1672	TRCN0000012755	Trp73
	1606	TRCN0000012181	Tcf7l2		1673	TRCN0000012756	Trp73
315	1607	TRCN0000075508	Tcfap2c		1674	TRCN0000012757	Trp73
	1608	TRCN0000075509	Tcfap2c	330	1675	TRCN0000094629	Tspan6
	1609	TRCN0000075510	Tcfap2c		1676	TRCN0000094630	Tspan6
	1610	TRCN0000075511	Tcfap2c		1677	TRCN0000094631	Tspan6
	1611	TRCN0000075512	Tcfap2c		1678	TRCN0000094632	Tspan6
316	1612	TRCN0000086223	Tcfap2e		1679	TRCN0000094633	Tspan6
	1613	TRCN0000086224	Tcfap2e	331	1680	TRCN0000094474	Tspan8
	1614	TRCN0000086225	Tcfap2e		1681	TRCN0000094475	Tspan8
	1615	TRCN0000086227	Tcfap2e		1682	TRCN0000094477	Tspan8
317	1616	TRCN0000071308	Terf2ip		1683	TRCN0000094478	Tspan8
	1617	TRCN0000071309	Terf2ip	332	1684	TRCN0000088743	Ttn
	1618	TRCN0000071310	Terf2ip		1685	TRCN0000088744	Ttn
	1619	TRCN0000071311	Terf2ip		1686	TRCN0000088745	Ttn
	1620	TRCN0000071312	Terf2ip		1687	TRCN0000088746	Ttn
318	1621	TRCN0000054809	Tgfbi		1688	TRCN0000088747	Ttn
	1622	TRCN0000054811	Tgfbi	333	1689	TRCN0000071573	Usf2
319	1623	TRCN0000022624	Tgfbr2		1690	TRCN0000071574	Usf2
	1624	TRCN0000022625	Tgfbr2		1691	TRCN0000071575	Usf2
	1625	TRCN0000022626	Tgfbr2		1692	TRCN0000071576	Usf2
	1626	TRCN0000022627	Tgfbr2		1693	TRCN0000071577	Usf2
	1627	TRCN0000022628	Tgfbr2	334	1694	TRCN0000042608	Vav1
320	1628	TRCN0000075523	Tgif2		1695	TRCN0000042609	Vav1
	1629	TRCN0000075524	Tgif2		1696	TRCN0000042610	Vav1
	1630	TRCN0000075525	Tgif2		1697	TRCN0000042611	Vav1
	1631	TRCN0000075526	Tgif2		1698	TRCN0000042612	Vav1
	1632	TRCN0000075527	Tgif2	335	1699	TRCN0000027068	Vdr
321	1633	TRCN0000042593	Tiam1		1700	TRCN0000027098	Vdr
	1634	TRCN0000042595	Tiam1		1701	TRCN0000027101	Vdr
	1635	TRCN0000042596	Tiam1		1702	TRCN0000027104	Vdr
	1636	TRCN0000042597	Tiam1		1703	TRCN0000027123	Vdr
322	1637	TRCN0000112785	Tm4sf1	336	1704	TRCN0000066818	Vegfa
	1638	TRCN0000112786	Tm4sf1		1705	TRCN0000066819	Vegfa
	1639	TRCN0000112787	Tm4sf1		1706	TRCN0000066820	Vegfa
	1640	TRCN0000112788	Tm4sf1		1707	TRCN0000066821	Vegfa
	1641	TRCN0000112789	Tm4sf1		1708	TRCN0000066822	Vegfa
323	1642	TRCN0000174268	Tm7sf3	337	1709	TRCN0000097084	Was
	1643	TRCN0000174778	Tm7sf3		1710	TRCN0000097085	Was
	1644	TRCN0000193418	Tm7sf3		1711	TRCN0000097086	Was
	1645	TRCN0000193467	Tm7sf3		1712	TRCN0000097087	Was
	1646	TRCN0000193517	Tm7sf3		1713	TRCN0000097088	Was
324	1647	TRCN0000110735	Tnc	338	1714	TRCN0000012403	Wasf1
	1648	TRCN0000110736	Tnc		1715	TRCN0000012404	Wasf1
	1649	TRCN0000110737	Tnc		1716	TRCN0000012405	Wasf1
	1650	TRCN0000110738	Tnc		1717	TRCN0000012406	Wasf1
	1651	TRCN0000110739	Tnc		1718	TRCN0000012407	Wasf1
325	1652	TRCN0000023749	Tnk2	339	1719	TRCN0000099640	Wasl
	1653	TRCN0000023750	Tnk2		1720	TRCN0000099641	Wasl
	1654	TRCN0000023751	Tnk2		1721	TRCN0000099642	Wasl
	1655	TRCN0000023752	Tnk2		1722	TRCN0000099643	Wasl
	1656	TRCN0000023753	Tnk2		1723	TRCN0000099644	Wasl
326	1657	TRCN0000070163	Tnpo2	340	1724	TRCN0000183172	Waspip
	1658	TRCN0000070164	ľnpo2		1725	TRCN0000183384	Waspip
	1659	TRCN0000070165	Tnpo2		1726	TRCN0000184459	Waspip
	1660	TRCN0000070166	Tnpo2		1727	TRCN0000195856	Waspip
	1661	TRCN0000070167	Tnpo2	341	1728	TRCN0000115481	Wdr63
327	1662	TRCN0000012362	Trp53		1729	TRCN0000115482	Wdr63
	1663	TRCN0000054551	Trp53		1730	TRCN0000115483	Wdr63
	1664	TRCN0000054552	Trp53		1731	TRCN0000115484	Wdr63
328	1665	TRCN0000012748	Trp63		1732	TRCN0000115485	Wdr63
	1666	TRCN0000012749	Trp63	342	1733	TRCN0000080203	Wfdc1

	1734	TRCN000080204	Wfdc1		1749	TRCN0000095865	Yap1
	1735	TRCN0000080205	Wfdc1		1750	TRCN0000095866	Yap1
	1736	TRCN0000080206	Wfdc1		1751	TRCN0000095867	Yap1
	1737	TRCN0000080207	Wfdc1		1752	TRCN0000095868	Yap1
343	1738	TRCN0000080198	Wfdc2	346	1753	TRCN0000071943	Zfp503
	1739	TRCN0000080199	Wfdc2		1754	TRCN0000071944	Zfp503
	1740	TRCN0000080200	Wfdc2		1755	TRCN0000071945	Zfp503
	1741	TRCN0000080201	Wfdc2		1756	TRCN0000071946	Zfp503
	1742	TRCN0000080202	Wfdc2		1757	TRCN0000071947	Zfp503
344	1743	TRCN0000042113	Wwox	347	1758	TRCN0000096684	Zic1
	1744	TRCN0000042114	Wwox		1759	TRCN0000096685	Zic1
	1745	TRCN0000042115	Wwox		1760	TRCN000096686	Zic1
	1746	TRCN0000042116	Wwox		1761	TRCN0000096687	Zic1
	1747	TRCN0000042117	Wwox		1762	TPCN000006688	Zic1
345	1748	TRCN0000095864	Yap1		1702		

Table S2. List of genes mutated in 306 HNSCC patients ranked by statistical significance of enrichment of these genes with predicted functional mutations. Number of genes displayed: 16.

MM is a number of missense mutations

TM is a number of truncating mutations

SM is a number of silent mutations

FIS≥2 is a number of missense mutations with the predicted functional score bigger than 2 [PMID: 21727090 PMCID: PMC3177186]

DD and D are, respectively, numbers of homozygous and hemizygous deletions

AA and A are, respectively, numbers DNA copy amplifications and DNA copy gains;

P-val (FIS \geq 2) is a probability to observe the obtained enrichment of predicted functional mutations in a given gene by chance taking as a background distribution the distribution of predicted functional mutations in all other genes. The significant enrichment of the functional mutations in a given gene as compared to the distribution of functional mutations across all other genes demonstrates the positive selection in tumor evolution and suggests that a given gene is a driver.

Q-val (FIS≥2) are P-values adjusted for false discovery rate by Benjamini and Hochberg method with values below 0.1 being considered significant.

Gene	Cytoband	TS/OG	G CG	Samples	MM	тм	SM	FIS≥2.0	P val (FIS≥2.0)	Q val (FIS≥2.0)
TP53	17p13.1	1	9	302	171	128	6	160	0	0
NOTCH1	9q34.3	1	10	302	43	31	7	33	0	0
DNAH5	5p15.2	0	0	302	48	14	20	32	0	0
NFE2L2	2q31.2	0	2	302	24	0	0	24	0	0
CASP8	2q33.1	1	4	302	15	18	0	12	0	0
MYH8	17p13.1	0	0	302	21	2	4	15	0.000001	0.002
SMARCA4	19p13.2	1	4	302	16	1	1	12	0.000003	0.006
FAT1	4q35.2	1	1	302	22	89	2	13	0.000006	0.009
RAC1	7p22.1	0	4	302	10	0	0	9	0.000006	0.011
CUL3	2q36.2	0	0	302	9	5	1	8	0.000006	0.011
HIST1H2BD	6p22.1	0	0	302	6	1	0	6	0.000009	0.012
SCN3A	2q24.3	0	1	302	16	2	3	13	0.00001	0.016
PCDHGA1	5q31.3	0	0	302	10	2	1	9	0.00002	0.023
PRPF6	20q13.33	0	1	302	9	0	2	8	0.00002	0.023
EP300	22q13.2	0	10	302	22	8	1	14	0.00002	0.023
MYH9	22q12.3	0	5	302	16	2	4	12	0.00003	0.024

Table S3. Statistics of genomic alterations of *MYH9* across 10 cancer types found in the TCGA data set.

Gene	Cytoband	Cancer type	Samples	ММ	тм	SM	FIS>=2.0	DD	D	АА	Α	Cancers with DFTM enrichment	Cancers with FM enrichment	Cancers with FTM enrichment
MYH9	22q12.3	BLCA/ LUSC/ GBM/ KIRC/ COADREAD /UCEC/ HNSC/ BRCA/ OVC/ LUAD	3081	102	24	28	58	5	1076	16	323	LUSC	LUSC/ COADREAD/ UCEC/ HNSC	LUSC/ COADREAD / UCEC/ HNSC/ BRCA/ LUAD

Please, see table 2 for abbreviations.

FM - significant enrichment of predicted functional mutations FTM significant enrichment of predicted functional and truncating mutations DFTM - significant enrichment of predicted functional, truncating mutations and deletion

BLCA: bladder carcinoma; LUSC: lung squamous cell carcinoma; GBM: gliobastoma; KIRC: Kidney Renal Papillary Cell Carcinoma; COADREAD: colorectal carcinoma; UCEC: cervical SCC & endocervical carcinoma; HNSCC: head and neck SCC; BRCA: breast carcinoma; OVC: ovarian carcinoma; LUAD; lung adenocarcinoma

Table S4. Full list of cancer types with their respective percentage of MYH9 hemizygosity

Human Cancers:	MYH9		MYH9
	hemizygosity		hemizygosity
HNSCC	15%	Lung Adenocarcinoma	40%
		Lung Squamous Cell Carcinoma	9%
A suite Marshaid I subservis	10/	Lymphoid Neoplasm Diffuse Large B-	
Acute Myelola Leukemia	1%0	cell Lymphoma	6%
Bladder Urothelial Carcinoma	35%	Ovarian Serous Cystadenocarcinoma	79%
Brain Lower Grade Glioma	10%	Pancreatic Adenocarcinoma	15%
Breast Invasive Carcinoma	46%	Prostate Adenocarcinoma	8%
Cervical Squamous Cell Carcinoma and	2(0/		
Endocervical Adenocarcinoma	20%	Sarcoma	42%
Colon and Rectum Adenocarcinoma	34%	Skin Cutaneous Melanoma	10%
Glioblastoma Multiforme	38%	Stomach Adenocarcinoma	29%
Kidney Renal Clear Cell Carcinoma	8%	Thyroid Carcinoma	17%
Kidney Renal Papillary Cell Carcinoma	26%	Uterine Corpus Endometrial Carcinoma	11%
	Tumor		Tumor
Mouse:	incidence		incidence
heterozygous Myh9 iKO TbRII-iKO mice	~26%	homozygous Myh9 iKO TbRII-iKO mice	100%

References

- C. R. Leemans, B. J. Braakhuis, R. H. Brakenhoff, The molecular biology of head and neck cancer. *Nat. Rev. Cancer* 11, 9–22 (2011). <u>doi:10.1038/nrc2982</u> <u>Medline</u>
- N. Stransky, A. M. Egloff, A. D. Tward, A. D. Kostic, K. Cibulskis, A. Sivachenko, G. V. Kryukov, M. S. Lawrence, C. Sougnez, A. McKenna, E. Shefler, A. H. Ramos, P. Stojanov, S. L. Carter, D. Voet, M. L. Cortés, D. Auclair, M. F. Berger, G. Saksena, C. Guiducci, R. C. Onofrio, M. Parkin, M. Romkes, J. L. Weissfeld, R. R. Seethala, L. Wang, C. Rangel-Escareño, J. C. Fernandez-Lopez, A. Hidalgo-Miranda, J. Melendez-Zajgla, W. Winckler, K. Ardlie, S. B. Gabriel, M. Meyerson, E. S. Lander, G. Getz, T. R. Golub, L. A. Garraway, J. R. Grandis, The mutational landscape of head and neck squamous cell carcinoma. *Science* 333, 1157–1160 (2011). doi:10.1126/science.1208130
- N. Agrawal, M. J. Frederick, C. R. Pickering, C. Bettegowda, K. Chang, R. J. Li, C. Fakhry, T. X. Xie, J. Zhang, J. Wang, N. Zhang, A. K. El-Naggar, S. A. Jasser, J. N. Weinstein, L. Treviño, J. A. Drummond, D. M. Muzny, Y. Wu, L. D. Wood, R. H. Hruban, W. H. Westra, W. M. Koch, J. A. Califano, R. A. Gibbs, D. Sidransky, B. Vogelstein, V. E. Velculescu, N. Papadopoulos, D. A. Wheeler, K. W. Kinzler, J. N. Myers, Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. *Science* 333, 1154–1157 (2011). doi:10.1126/science.1206923 Medline
- S. Beronja, G. Livshits, S. Williams, E. Fuchs, Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. *Nat. Med.* 16, 821–827 (2010). <u>doi:10.1038/nm.2167</u> <u>Medline</u>
- T. R. Berton, T. Matsumoto, A. Page, C. J. Conti, C. X. Deng, J. L. Jorcano, D. G. Johnson, Tumor formation in mice with conditional inactivation of Brca1 in epithelial tissues. *Oncogene* 22, 5415–5426 (2003). doi:10.1038/sj.onc.1206825 Medline
- 6. G. Guasch, M. Schober, H. A. Pasolli, E. B. Conn, L. Polak, E. Fuchs, Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. *Cancer Cell* **12**, 313–327 (2007). <u>doi:10.1016/j.ccr.2007.08.020 Medline</u>
- 7. S. L. Lu, H. Herrington, D. Reh, S. Weber, S. Bornstein, D. Wang, A. G. Li, C. F. Tang, Y. Siddiqui, J. Nord, P. Andersen, C. L. Corless, X. J. Wang, Loss of transforming growth

factor-β type II receptor promotes metastatic head-and-neck squamous cell carcinoma. *Genes Dev.* **20**, 1331–1342 (2006). <u>doi:10.1101/gad.1413306 Medline</u>

- 8. M. Schober, E. Fuchs, Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. *Proc. Natl. Acad. Sci. U.S.A.* 108, 10544–10549 (2011). doi:10.1073/pnas.1107807108 Medline
- 9. C. Caulin, T. Nguyen, G. A. Lang, T. M. Goepfert, B. R. Brinkley, W. W. Cai, G. Lozano, D. R. Roop, An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. *J. Clin. Invest.* 117, 1893–1901 (2007).
 <u>doi:10.1172/JCI31721 Medline</u>
- 10. D. Schramek, A. Kotsinas, A. Meixner, T. Wada, U. Elling, J. A. Pospisilik, G. G. Neely, R. H. Zwick, V. Sigl, G. Forni, M. Serrano, V. G. Gorgoulis, J. M. Penninger, The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. *Nat. Genet.* 43, 212–219 (2011). doi:10.1038/ng.767 Medline
- 11. B. Reva, Y. Antipin, C. Sander, Predicting the functional impact of protein mutations: Application to cancer genomics. *Nucleic Acids Res.* 39, e118 (2011). doi:10.1093/nar/gkr407 Medline
- C. T. Murphy, R. S. Rock, J. A. Spudich, A myosin II mutation uncouples ATPase activity from motility and shortens step size. *Nat. Cell Biol.* 3, 311–315 (2001). <u>doi:10.1038/35060110 Medline</u>
- S. Demehri, A. Turkoz, R. Kopan, Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. *Cancer Cell* 16, 55–66 (2009). doi:10.1016/j.ccr.2009.05.016 Medline
- 14. C. C. DuFort, M. J. Paszek, V. M. Weaver, Balancing forces: Architectural control of mechanotransduction. *Nat. Rev. Mol. Cell Biol.* **12**, 308–319 (2011). <u>doi:10.1038/nrm3112 Medline</u>
- 15. A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, J. A. Käs, Are biomechanical changes necessary for tumour progression? *Nat. Phys.* 6, 730–732 (2010). doi:10.1038/nphys1800

- S. Beronja, P. Janki, E. Heller, W.-H. Lien, B. E. Keyes, N. Oshimori, E. Fuchs, RNAi screens in mice identify physiological regulators of oncogenic growth. *Nature* 501, 185–190 (2013). doi:10.1038/nature12464
- 17. P. Levéen, J. Larsson, M. Ehinger, C. M. Cilio, M. Sundler, L. J. Sjöstrand, R. Holmdahl, S. Karlsson, Induced disruption of the transforming growth factor β type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. *Blood* 100, 560–568 (2002). doi:10.1182/blood.V100.2.560 Medline
- V. Vasioukhin, L. Degenstein, B. Wise, E. Fuchs, The magical touch: Genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. *Proc. Natl. Acad. Sci. U.S.A.* 96, 8551–8556 (1999). doi:10.1073/pnas.96.15.8551 Medline
- 19. S. Srinivas, T. Watanabe, C. S. Lin, C. M. William, Y. Tanabe, T. M. Jessell, F. Costantini, Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. *BMC Dev. Biol.* 1, 4 (2001). doi:10.1186/1471-213X-1-4 Medline
- S. Beronja, G. Livshits, S. Williams, E. Fuchs, Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. *Nat. Med.* 16, 821–827 (2010). doi:10.1038/nm.2167 Medline
- 21. S. Beronja, E. Fuchs, RNAi-mediated gene function analysis in skin. *Methods Mol. Biol.* 961, 351–361 (2013). doi:10.1007/978-1-62703-227-8_23 Medline
- 22. G. Guasch, M. Schober, H. A. Pasolli, E. B. Conn, L. Polak, E. Fuchs, Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. *Cancer Cell* **12**, 313–327 (2007). <u>doi:10.1016/j.ccr.2007.08.020</u> <u>Medline</u>
- 23. J. Moffat, D. A. Grueneberg, X. Yang, S. Y. Kim, A. M. Kloepfer, G. Hinkle, B. Piqani, T. M. Eisenhaure, B. Luo, J. K. Grenier, A. E. Carpenter, S. Y. Foo, S. A. Stewart, B. R. Stockwell, N. Hacohen, W. C. Hahn, E. S. Lander, D. M. Sabatini, D. E. Root, A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. *Cell* 124, 1283–1298 (2006). <u>doi:10.1016/j.cell.2006.01.040</u> <u>Medline</u>
- S. Beronja, G. Livshits, S. Williams, E. Fuchs, Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. *Nat. Med.* 16, 821–827 (2010). doi:10.1038/nm.2167 Medline

- 25. S. Beronja, P. Janki, E. Heller, W. H. Lien, B. E. Keyes, N. Oshimori, E. Fuchs, RNAi screens in mice identify physiological regulators of oncogenic growth. *Nature* 501, 185–190 (2013). doi:10.1038/nature12464 Medline
- 26. S. E. Williams, S. Beronja, H. A. Pasolli, E. Fuchs, Asymmetric cell divisions promote Notch-dependent epidermal differentiation. *Nature* 470, 353–358 (2011). <u>doi:10.1038/nature09793</u> <u>Medline</u>
- 27. D. Schramek, A. Kotsinas, A. Meixner, T. Wada, U. Elling, J. A. Pospisilik, G. G. Neely, R. H. Zwick, V. Sigl, G. Forni, M. Serrano, V. G. Gorgoulis, J. M. Penninger, The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. *Nat. Genet.* 43, 212–219 (2011). doi:10.1038/ng.767 Medline
- 28. D. Schramek, A. Leibbrandt, V. Sigl, L. Kenner, J. A. Pospisilik, H. J. Lee, R. Hanada, P. A. Joshi, A. Aliprantis, L. Glimcher, M. Pasparakis, R. Khokha, C. J. Ormandy, M. Widschwendter, G. Schett, J. M. Penninger, Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. *Nature* 468, 98–102 (2010). doi:10.1038/nature09387 Medline
- 29. C. Blanpain, W. E. Lowry, A. Geoghegan, L. Polak, E. Fuchs, Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. *Cell* **118**, 635–648 (2004). doi:10.1016/j.cell.2004.08.012 Medline
- 30. M. Schober, S. Raghavan, M. Nikolova, L. Polak, H. A. Pasolli, H. E. Beggs, L. F. Reichardt, E. Fuchs, Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. *J. Cell Biol.* **176**, 667–680 (2007). doi:10.1083/jcb.200608010 Medline
- 31. E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva, A. P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. *Cancer Discov* 2, 401–404 (2012). <u>doi:10.1158/2159-8290.CD-12-0095</u> Medline
- 32. J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, Y. Sun, A. Jacobsen,R. Sinha, E. Larsson, E. Cerami, C. Sander, N. Schultz, Integrative analysis of complex

cancer genomics and clinical profiles using the cBioPortal. *Sci. Signal.* **6**, pl1 (2013). doi:10.1126/scisignal.2004088 Medline

- 33. B. Reva, Y. Antipin, C. Sander, Predicting the functional impact of protein mutations: application to cancer genomics. *Nucleic Acids Res.* 39, e118 (2011). doi:10.1093/nar/gkr407 Medline
- 34. F. Gnad, A. Baucom, K. Mukhyala, G. Manning, Z. Zhang, Assessment of computational methods for predicting the effects of missense mutations in human cancers. *BMC Genomics* 14 (suppl. 3), S7 (2013). <u>Medline</u>
- 35. B. Reva, Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers. *BMC Genomics* 14 (suppl. 3), S8 (2013). doi:10.1186/1471-2164-14-S3-S8 Medline
- 36. A. Gonzalez-Perez, N. Lopez-Bigas, Functional impact bias reveals cancer drivers. *Nucleic Acids Res.* 40, e169 (2012). doi:10.1093/nar/gks743 Medline
- 37. Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma.
 Nature 474, 609–615 (2011). <u>doi:10.1038/nature10166</u>
- 38. Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature* 455, 1061–1068 (2008). doi:10.1038/nature07385
- 39. B. S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao, B. S. Carver, V. K. Arora, P. Kaushik, E. Cerami, B. Reva, Y. Antipin, N. Mitsiades, T. Landers, I. Dolgalev, J. E. Major, M. Wilson, N. D. Socci, A. E. Lash, A. Heguy, J. A. Eastham, H. I. Scher, V. E. Reuter, P. T. Scardino, C. Sander, C. L. Sawyers, W. L. Gerald, Integrative genomic profiling of human prostate cancer. *Cancer Cell* 18, 11–22 (2010). doi:10.1016/j.ccr.2010.05.026 Medline
- 40. J. Barretina, B. S. Taylor, S. Banerji, A. H. Ramos, M. Lagos-Quintana, P. L. Decarolis, K. Shah, N. D. Socci, B. A. Weir, A. Ho, D. Y. Chiang, B. Reva, C. H. Mermel, G. Getz, Y. Antipin, R. Beroukhim, J. E. Major, C. Hatton, R. Nicoletti, M. Hanna, T. Sharpe, T. J. Fennell, K. Cibulskis, R. C. Onofrio, T. Saito, N. Shukla, C. Lau, S. Nelander, S. J. Silver, C. Sougnez, A. Viale, W. Winckler, R. G. Maki, L. A. Garraway, A. Lash, H. Greulich, D. E. Root, W. R. Sellers, G. K. Schwartz, C. R. Antonescu, E. S. Lander, H. E.

Varmus, M. Ladanyi, C. Sander, M. Meyerson, S. Singer, Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. *Nat. Genet.* **42**, 715–721 (2010). <u>doi:10.1038/ng.619 Medline</u>

L. Chin, W. C. Hahn, G. Getz, M. Meyerson, Making sense of cancer genomic data. *Genes Dev.* 25, 534–555 (2011). <u>doi:10.1101/gad.2017311 Medline</u>