
Supplementary Web Appendix to the article: Pooling

Designs for Outcomes Under a Gaussian Random

Effects Model

Yaakov Malinovsky, Paul S. Albert, and Enrique F. Schisterman

Section 3: Random Effects Model

We denote Y = (Y11, . . . , Y1n, . . . , Yl1, . . . , Yln). Maximum likelihood estimation of the mean

and the variance components of Model (1) depends on distribution assumptions. Using the

normality assumptions, we can write

Y ∼ MVN (µ1N , V ) ,

where MVN denotes a multivariate normal distribution, 1N is a vector of size N with every

element equal to unity, N = ln, and V is a block-diagonal matrix of size ln × ln with l

identical matrices V0 = σ2In + σ2
AJn comprising the main diagonal, where Jn = 1n1

′
n and In

is the identity matrix of size n. In addition, we denote Y = (Y11, . . . , Y1n, . . . , Yl1, . . . , Yln),

and the log-likelihood function is then defined as:

logL
(
Y ;µ, σ2

e , σ
2
A

)
= −N

2
(2π)− 1

2
log|V | − 1

2
(Y − µ1N)

′ V −1 (Y − µ1N)

= −N

2
(2π)− l(n− 1)

2
log(σ2

e)−
l

2
log(σ2

e + nσ2
A)

− 1

2σ2
e

(
SSE +

σ2
e

σ2
e + nσ2

A

{
SSA+ ln (Y·· − µ)2

})
,

where SSE =
∑l

i=1

∑n
j=1 (Yij − Yi·)

2, SSA = n
∑l

i=1 (Yi· − Y··)
2, Yi· =

1
n

∑n
j=1 Yij, and

Y·· =
1
ln

∑l
i=1

∑n
j=1 Yij.

Mean and variance component estimation as well as random effects prediction for Model (1)
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can be found in Searle et al. (1992). Using the above likelihood function and its first and

second derivatives, we calculate the maximum likelihood estimators (MLE) of parameters.

We define τ 2 = σ2
e + nσ2

A. The maximum likelihood equations are those equations obtained

by equating to zero the partial derivatives of log-likelihood with respect to µ, σ2
e , and τ 2. Let

the symbols µ̇, σ̇2
e , and τ̇ 2 represent solutions to the maximum likelihood equations. Direct

calculations show that

µ̇ = Y.., σ̇2
e =

SSE

l(n− 1)
, τ̇ 2 =

SSA

l
, and σ̇2

A =
τ̇ 2 − σ̇2

e

n
,

where SSE =
∑l

i=1

∑n
j=1 (Yij − Yi·)

2, SSA = n
∑l

i=1 (Yi· − Y··)
2, Yi· =

1
n

∑n
j=1 Yij, and

Y·· =
1
ln

∑l
i=1

∑n
j=1 Yij.

We denote the MLE of µ, σ2
e , σ

2
A, and τ 2 by µ̃, σ̃2

e , σ̃
2
A, and τ̃ 2, respectively (MLE of the vari-

ance components defined in the (0,∞) parameter space). The MLE’s of the three parameters

are µ̃ = µ̇ and

if σ̇2
A ≥ 0, then σ̃2

A = σ̇2
A, and σ̃2

e = σ̇2
e

if σ̇2
A < 0, then σ̃2

A = 0, and σ̃2
e =

SST

ln
,

where SST =
∑l

i=1

∑n
j=1 (Yij − Y··)

2. (Searle et al. (1992), Herbach (1959)).

The joint asymptotic distributions (when l → ∞) of µ̃, σ̃2
e and τ̃ can be obtained directly

from the distributions of Y.., SSE, and SSA by using the multivariate Central Limit Theorem

(see, for example, Lehmann and Casella (1998)).

The asymptotic variance matrix is the inverse of the information matrix and can be

written as

V ar
[ (

µ̃, σ̃2
e , τ̃

2
)′ ] ≃


τ2

ln
0 0

0 2σ4
e

l(n−1)
0

0 0 2τ4

l

 .
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Section 6: Robustness to the Additive Gaussian Assumption

We consider the following model

Yij

∣∣ |Ai| ∼ Gamma(α, β), α = µ+ |Ai|, β = 1, Ai ∼ N(0, σ2
A), µ ≥ 0.

Here,

E(Yij) = µ+ E (|Ai|) = µ+ σA

√
2/π,

V ar(Yij) = V ar
(
E(Yij

∣∣|Ai|)
)
+ E

(
V ar(Yij

∣∣|Ai|)
)
= V ar(|Ai|) + µ+ E(|Ai|)

= σ2
A (1− 2/π) + µ+ σA

√
2/π,

cov(Y11, Y12) = cov (E(Y11|A1), E(Y12|A1)) + E
(
cov(Y11, Y12

∣∣A1)
)

= V ar(|A1|) = σ2
A (1− 2/π) , and

ICC = γ = corr(Y11, Y12) =
(1− 2/π)σ2

A

(1− 2/π)σ2
A + µ+

√
2/πσA

. (S0)

Section 8: Discussion

Technical Variation

The designs considered in Section 2 of the paper assume that there is no technical variation.

In some studies, technical variation may be sizable (for example, if the laboratory assay

process results in substantial measurement error). This error should be distinguished from

the biological error of measuring repeated samples across time on the same subject. In this

section, we explore the implications of assuming no technical variation when this variation

could be sizable. Here, we assume that we observe the vector Y ∗∗ = Y ∗ + eM , where the

technical variation eM is assumed to be normally distributed with zero mean and variance

σ2
M . In this case, the ICC is γ =

σ2
A

σ2
A + σ2

e + σ2
M

.

In the above model the parameters are identifiable only for a non-symmetric pooling

design or for a symmetric design when we assume that σ2
M is known or estimated from a
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small pilot study. In practice, σ2
M could be estimated from a small pilot study where an assay

is repeated multiple times on the same sample or from the literature. We could then plug in

the estimator for σ2
M into the appropriate likelihood to estimate the other parameters.

Through simulations we compare Designs I, T, and 2 (Figure 1) for estimating γ in the

case where σ2
M is assumed known. We fix σ2

e to be one. We chose γ to be 0.5, 0.7, 0.9

and σ2
M = 0.01, 0.25, 0.5. These nine different combinations of the couple γ and σ2

M define

parameter σ2
A. We set l = 1000, n = 4. For Design T we consider designs where we pool

every 2 repeated measurements, and for Design I we consider designs where we pool every

2 individuals (see Figure 1). Further, we consider the non-symmetric design 2 where some

pooling is done over individuals, while other pooling is done across time points (Figure 1).

Assuming that σ2
M is known, we estimate σ2

e and σ2
A using maximum-likelihood estimation for

each Design T and I. We then use a known or plug-in estimator of σ2
M to estimate γ. For each

γ and σ2
M combination we repeat this process 1000 times. Table 1R present these simulation

results. We present the MLE of the ICC, relative bias,
E(γ̃)− γ

γ
in percentages, and RdF for

each Design d. From Table 1R, as expected, we can see that the relative biases of all three

designs are close to zero and that Design T is more efficient than Design I. Further, similar

to our results where technical variation was assumed negligible, the efficiency of Design 2 is

between those of Designs T and I.
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Table 1R: Technical Variation, l = 1000, n = 4, σ2
e = 1 and 1000 Monte-Carlo simulations. In

this case, the ICC is γ = σ2
A/(σ

2
A + σ2

e + σ2
M ). It follows from Result 1 and Result 2 that under

normal assumptions, RTF = 1.17, RIF = 2.

γ̃
E(γ̃)− γ

γ
100%

γ σ2
M σ2

A T I 2 T I 2 RTF RIF R2F

0.1 1.1 0.500 0.499 0.499 -0.055 -0.261 -0.149 1.69 2.06 2.11

0.5 0.25 1.25 0.501 0.500 0.500 0.268 0.039 -0.028 1.99 2.15 2.03

0.5 1.50 0.500 0.500 0.500 0.055 -0.057 -0.015 2.35 2.82 2.59

0.1 2.57 0.701 0.698 0.699 0.117 -0.257 -0.088 1.63 2.18 1.86

0.7 0.25 2.92 0.700 0.699 0.699 -0.040 -0.113 -0.079 1.82 2.44 1.86

0.5 3.50 0.699 0.699 0.699 -0.179 -0.100 -0.153 2.29 2.58 2.56

0.1 9.9 0.900 0.900 0.900 -0.046 -0.009 0.018 1.53 1.98 1.54

0.9 0.25 11.25 0.900 0.900 0.900 -0.007 -0.008 0.005 1.81 2.08 1.87

0.5 13.5 0.900 0.900 0.900 -0.024 -0.003 -0.004 2.08 2.36 2.34
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Model with the Center Effect

We extend Model (1) to the following 2-way random nested model:

(i) Yijk = µ+ ai + bij + eijk,

where i = 1, . . . , L (center), j = 1, . . . , l (individuals) and k = 1, . . . , n (repeated

measurements).

Model (i) corresponds to the situation where individual specimens come from different centers

and interest is on estimating the intraclass correlation coefficient. The ICC for this nested

model is γ = corr(Y111, Y112) =
σ 2
a+σ 2

b

σ 2
a+σ 2

b +σ 2
e
, where σ 2

a is the between-centers variation, σ 2
b is the

between-subjects variation, and σ 2
e is the within-subjects variation. Using the Delta method

it is possible to calculate the variance of the MLE of the ICC under the full model and under

balanced Designs I and T. However, it is impossible to compare them as in the simple case

of Model (1). We therefore performed a simulation study to examine this situation. The

results are presented in Table 1R. For this nested model we generated ai, bij, eijk from the a

normal distributions with expectation 0. We fix σ2
e = 1, γ = 0.75 and set l = 200, n = 8.

For Design T we consider designs where we pool every 4 repeated measurements, and for

Design I we consider designs where we pool every 4 individuals. We calculated the relative

efficiencies of Designs F, T, and I. For each γ we repeated this process 1000 times. Table 2R

presents the simulation results, where we compare the relative efficiency between all pairs

of designs (e.g., T vs F, I vs F, and I vs T). Under the normal assumptions without the

center effect (σ 2
a = 0), it follows from Result 1 and Result 2 that V arT (γ̃)/V arF (γ̃) = 1.75,

V arI(γ̃)/V arF (γ̃) = 4 and V arI(γ̃)/V arT (γ̃) = 2.286. The practical implications of these

results are as follows.

• The T and I designs are more efficient than the full design under Model (i). These

relative efficiencies increase with σ 2
a .
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Table 2R:

σ 2
a lab V arT (γ̃)/V arF (γ̃) V arI(γ̃)/V arF (γ̃) V arI(γ̃)/V arT (γ̃)

3 1.82 3.45 1.90

0.01 25 1.53 3.24 2.24

1000 1.51 3.46 2.29

3 1.24 1.91 1.52

0.3 25 1.26 2.04 1.62

1000 1.45 1.95 1.35

• Although the T design is always better than the I design, the efficiency of gain T vs I

decreases as σ 2
a increases.

Although it is impossible to fully examine this question for all hierarchical structures, these

conclusions appear to hold for additional sources of variation.

Proofs

Proof of Result 1 Recall that Model (1) becomes:

Y ∗
pj = µ+ Ap + epj,

with Ap ∼ N (0, σ2
A/k) and epj ∼ N (0, σ2/k), where p = 1, . . . , PI and j = 1, . . . , n. We

then apply Equation (2) with with appropriate re-parameterizations, (with within-subject

variance σ2
e/k, between-subject variance σ2

A/k, number of individuals is PI , and number

of repeated measurements is n) to obtain Equation (5). From the first-order Taylor series

expansion of a scalar-valued function of two variables, we have:

V ar (γ̃) = V ar

(
σ̃2
A

σ̃2
A + σ̃2

e

)
≃ (σ2

e)
2

(σ2
A + σ2

e)
4V ar

(
σ̃2
A

)
+

(σ2
A)

2

(σ2
A + σ2

e)
4V ar

(
σ̃2
e

)
− 2

σ2
eσ

2
A

(σ2
A + σ2

e)
4Cov

(
σ̃2
A, σ̃

2
e

)
. (S1)
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Equation (6) follows from combining Equation (S1) with Equation (5).

Proof of Result 2 Recall that Model (1) becomes:

Y ∗
ip = µ+ Ai + eip,

with Ai ∼ N (0, σ2
A) and eip ∼ N (0, σ2

e/k), where p = 1, . . . , PT and i = 1, . . . , l. We apply

Equation (2) with with appropriate re-parameterizations, (with within-subject variance σ2
e/k,

between-subject variance σ2
A, number of initials is l, and number of repeated measurements

is PT ) to obtain Equation (7). Equation (8) follows from combining Equation (S1) with

Equation (7).

Proof of Result 3 It is easy to see that Equation (10) is a quadratic equation in x,

Ax2 + Bx + C = 0 with A < 0, B > 0, C > 0. From Descartes’ rule of signs, it follows that

Equation (10) has one positive root.

Proof of Result 4 Let Y ∗
ip be the average value of measurements of individual i, i = 1, . . . , l

in p-th pooling (p = 1, . . . , P ) of size kip (kip ≥ 1),
∑P

p=1 kip = ni. Let Y ∗ = (Y ∗
1 , . . . , Y

∗
l ),

where Y ∗
i = (Y ∗

i1, . . . , Y
∗
iP ), i = 1, . . . , l. From Equation (4) with the given pooling design,

it follows that Y ∗
i ∼ MVN (µ1P , V

∗
i ), i = 1, . . . , l and Y ∗

1 , . . . , Y
∗
l are independent with

V ∗
i = σ2

ediag
(

1
ki1

, . . . , 1
kiP

)
+ σ2

AJP , where JP = 1P1
′
P . Applying a standard linear algebra

calculation (see, for example, Rao (1973)), we have

V ∗−1
i = 1/σ2

ediag (ki1, . . . , kiP )−
1

σ2
e

σ2
A

σ2
e + niσ2

A

(ki1, . . . , kiP )
′ (ki1, . . . , kiP )

and |V ∗
i | =

(σ2
e)

P−1∏P
p=1 kip

(
σ2
e + niσ

2
A

)
.
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Therefore,

L∗ = logL
(
Y ∗
1 , . . . , Y

∗
l ;µ, σ

2
e , σ

2
A

)
= − lP

2
(2π)− 1

2

l∑
i=1

log|V ∗
i | −

1

2

l∑
i=1

(Y ∗
i − µ1P )

′ V ∗−1
i (Y ∗

i − µ1P )

= − l(P − 1)

2
log(σ2

e)−
1

2

l∑
i=1

log(σ2
e + niσ

2
A)

− 1

2σ2
e

(
l∑

i=1

P∑
p=1

kip(Y
∗
ip − µ)2 −

l∑
i=1

niσ
2
A

σ2
e + niσ2

A

ni(Yi· − µ)2

)
+ Cons

= − l(P − 1)

2
log(σ2

e)−
1

2

l∑
i=1

log(σ2
e + niσ

2
A)

− 1

2σ2
e

(
l∑

i=1

P∑
p=1

kip(Y
∗
ip − Yi·)

2 +
l∑

i=1

(
1− niσ

2
A

σ2
e + niσ2

A

){
ni(Y

∗
ip − Y··)

2 + ni(Y·· − µ2)
})

+ Cons

= − l(P − 1)

2
log(σ2

e)−
1

2

l∑
i=1

log(τ 2i )−
SSE∗

2σ2
e

− 1

2

l∑
i=1

SSA∗
i

τ 2i
− 1

2

l∑
i=1

ni(Y·· − µ)2

τ 2i
+ Cons,

where τ 2i = σ2
e + niσ

2
A, SSE∗ =

∑l
i=1

∑P
p=1 kip(Y

∗
ip − Yi·)

2 and SSA∗
i = ni(Y

∗
ip − Y··)

2.

Calculating the information matrix using the second derivatives of log-likelihood L∗, we

obtain the information matrix under design, which we will call Design T∗:

IT ∗
(
µ̃, σ̃ 2

e , σ̃
2
A

)
=

1

2


2
∑l

i=1
ni

τ2i
, 0, 0

0, l(P−1)
σ4
e

+
∑l

i=1
1
τ4i
,
∑l

i=1
ni

τ4i

0,
∑l

i=1
ni

τ4i
,

∑l
i=1

n2
i

τ4i

 , τ 2i = σ2
e+niσ

2
A, i = 1, . . . , l.

Result 4 follows by noticing that the above information matrix does not depend on the values

of pooled group sizes, kip, i = 1, . . . , l; p = 1, . . . , P , and depends only on the number of

pooled groups P for each individual i = 1, . . . l.

Proof of Result 5 From direct calculations (see, for example, Searle et al. (1992)) it

follows that under the full data design, which we call Design F∗, the information matrix
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under the unbalanced fixed design is,

IF ∗
(
µ̃, σ̃ 2

e , σ̃
2
A

)
=

1

2


2
∑l

i=1
ni

τ2i
, 0, 0

0,
∑l

i=1(ni−1)

σ4
e

+
∑l

i=1
1
τ4i
,
∑l

i=1
ni

τ4i

0,
∑l

i=1
ni

τ4i
,

∑l
i=1

n2
i

τ4i

 .

We have,

IF ∗
(
µ̃, σ̃ 2

e , σ̃
2
A

)
− IT ∗

(
µ̃, σ̃ 2

e , σ̃
2
A

)
=


0, 0, 0

0, 1
2

∑l
i=1(ni−1)−l(P−1)

σ4
e

0

0, 0, 0

 .

From the fact that EG(ni) = n for all i, Result 5 follows.
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