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A Nonparametric inference for discrete backwards recurrence

times

Jankowski and Wellner (2009) investigated nonparametric methods of estimating a discrete

monotone non-increasing probability mass function. In this section we discuss their methods,

and how they can be used to estimate F̄ based on discrete current duration data (see Jankowski

and Wellner, 2009, for the code to implement this method).

Let Y = {Y1, Y2, . . . , Yn} denote the observed discrete current durations. The empirical

estimator of g is ĝE(y) = n−1
∑n

i=1 I(Yi = y), with empirical distribution function ĜE(y) =∑y
j=0 gE(j). To estimate g restricted maximum likelihood estimation is used. The restricted

likelihood is L(g) =
∏n
i=1 g(Yi) such that g ∈ P0, where P0 is the space of all probability mass
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functions such that g(j) ≥ g(k) for all j < k. The g that maximizes L(g) such that g ∈ P0,

denoted by ĝNP , is known as the Grenander estimator, and is defined as the left derivative at

y of the least concave majorant (LCM) of the empirical distribution function ĜE(y). One can

find ĝN by plotting ĜE , and identifying the M points that outline the LCM of ĜE denoted

by {yLj , ĜE(yLj )} for j = 0, 1, 2, . . . ,M , where {yL0 , ĜE(yL0 )} ≡ {−1, 0} is included to find the

left derivative at y = 0. For yLj < y ≤ yLj+1 we have

ĝNP (y) =
GE(yLj+1)−GE(yLj )

yLj+1 − yLj
,

and ĝNP (y) = 0 for all y > maxi=1,...,n(Yi). The LCM of ĜE can be found using the chull

function in R (R Core Team, 2013). The survivor function is then estimated as ˆ̄FNP (y) =

ĝNP (y)/ĝNP (0). Type I censoring, does not change ĝNP (y) for all y < τ . As a result, it is not

necessary to develop a separate estimator to account for censoring.

The Grenander estimator ĝNP has appealing asymptotic properties for discrete Y , such as

uniform consistency and weak convergence to a Gaussian process (see Theorem 2.4 and 3.8

of Jankowski and Wellner, 2009). The asymptotic uniform consistency of ĝ is a particularly

attractive feature. It doesn’t hold for the Grenander estimator when Y is continuous, and

adaptive methods are required. It appears that the continuous mapping theorem can be

applied to state that uniform consistency and weak convergence of ĝNP will hold for ˆ̄FNP (y)

for discrete T , though further work is needed to formally investigate the these properties.

B Expanded simulation studies

In this section we present expanded simulation studies of the proposed methods. In Section B.1,

we present results from simulation studies that used an asymmetric rounding mechanism where

‘rounding down’ is more prevalent then ‘rounding up’. In Section B.2, we compare the proposed

method to a Weibull AFT model. For both simulations, the current duration for the ith subject

was simulated by generating the unobserved total durations as Tij∼F for j = 1, 2, . . . ,K,

where K = min(k;
∑k

j=1 Tij > M) and M is a fixed large integer, replicating a renewal process
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in equilibrium with renewal distribution (see Feller, 1966, for details). For the continuous

F scenario the backward recurrence times were grouped with Yi = bM − TiK−1c. For the

discrete F̄ scenario the continuous Tij were grouped with T ∗ij = dTije and Yi = M − T ∗iK∗−1

where K∗ = min(k;
∑k

j=1 T
∗
ij > M). Here, F had hazard function λ(t|zi) = θγtγ−1 exp(β>zi)

with θ = 0.3 and α = 0.75, and zi = (zi1, zi2) were independently generated as Bernoulli(0.5)

and N(0, 0.52), respectively.

B.1 Properties Under Asymmetric Rounding

As mentioned in Section 2.3 of the text, the proposed piecewise constant model will account

for digit preference when rounding in the data is at random and people are equally likely to

round up as they are to round down (corresponding to the coarsening at random assumption,

see Heitjan and Rubin, 1991; Gill et al., 1997; Gill and Robins, 1997). This can also be seen

as symmetric rounding, and in this case the observations are essentially “unbiased” values.

However, if people round down more often then they round up the values for Y are negatively

biased which would result in negatively biased estimates of F̄ . We investigated the degree of

bias via simulation studies. The setting of the simulation was similar to that in Section 4.1

of the main text. We induced asymmetric rounding by making rounding down more likely

than rounding up. Specifically, if 4 ≤ Yi ≤ 5 then Yi was rounded to 6 with probability 0.2,

if 7 ≤ Yi ≤ 9 then Yi was rounded to 6 with probability 0.4, if 10 ≤ Yi ≤ 11 then Yi was

rounded to 12 with probability 0.4, if 13 ≤ Yi ≤ 18 then Yi was rounded to 12 with probability

0.6, if Yi > 18 then Yi was rounded up to the nearest multiple of 12 with probability 0.6, and

rounded down to nearest multiple of 12 with probability 0.8. As a result, for 4 ≤ Yi ≤ 9 people

were twice as likely to round down to 6 as they were to round up to 6.

The results of the asymmetric simulation are contained in Table 1. The bias in the estimates

of the survivor function did not appear to be affected by the true value of β. Further, the

estimates of β were relatively unbiased for both settings. It is evident from the simulation

results that there is negative bias in the estimates of the survivor function at the points of

digit preference when ‘rounding down’ is more prevalent than ‘round up.’ The degree of bias

is relatively small, however, the simulation results for the symmetric rounding showed a small
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Table 1: Summary of 1, 000 simulated samples with n = 250 for the piecewise constant models
when the digit preference is subjected to asymmetric rounding. The piecwise model was fit
with knot location {1, 2, 5, 8, 11, 18, Y(m)}. Displayed is the empirical bias (bias), empirical

standard deviation (sd), and ||F̄ − ˜̄F ||2 (l2).

true bias (sd) true bias (sd)
β1 -0.5 0.020 (0.088) 0.0 -0.001 (0.083)
β2 -0.5 -0.025 (0.213) 0.0 -0.000 (0.207)
F̄ (6) 0.317 -0.016 (0.049) 0.317 -0.010 (0.052)
F̄ (12) 0.145 -0.020 (0.022) 0.145 -0.025 (0.021)
F̄ (24) 0.039 -0.006 (0.014) 0.039 -0.002 (0.003)
l2 0.194 0.150

amount of positive bias. As a result, these results could be optimistic.

B.2 Comparison to Weibull AFT model

In this section, we present an expanded simulation study of the proposed methods, along with

a comparison to a Weibull accelerated failure time (AFT) model. In order to compare the

results of the proposed proportional hazards models to the AFT model some transformations

of the parameters is required. The AFT model and the proportional hazards model coincide

under a Weibull AFT and a PH model with a Weibull baseline hazard (the setting used in

Section 4 of the manuscript). That is, if we have the Weibull AFT

log(T ) = −(µ+ η>Z) + ε/γ, (1)

where ε has extreme value distribution, then the hazard function of T is

λ(t|Z) = θγtγ−1 exp(β>Z),

which satisfies the proportional hazards assumption where log(θ) = µγ and γηj = βj . The

AFT model gives estimates of µ, γ, and η, thus the estimate of η can be compared to the

estimate of β using the relationship γηj = βj . Our proposed model estimates β, so we could

theoretically compare γ̂η̂j with β̂j . However, when we fit the AFT model to Y the estimate of

4



γ does not coincide with the γ in (1). To see this notice that under (1) the survivor function

of T has the form

F̄ (t|Z) = exp
[
− exp

{
γ(µ+ η>Z)

}
tγ
]
, (2)

and E(T ) = exp{γ(µ+ η>Z)}−1/γΓ(1 + 1/γ). Note that

g(t|Z) =
F̄ (t|Z)

E(T )
=

exp
[
− exp

{
γ(µ+ η>Z)

}
tγ
]

exp{γ(µ+ η>Z)}−1/γΓ(1 + 1/γ)

will not be a Weibull density. Similarly, if Y is distributed according to a Weibull AFT it can

be shown that F̄ (y|Z) = g(y|Z)/g(0|Z) is not a Weibull survivor function. The estimates of

η based on T or Y are unbiased (as shown by Yamaguchi, 2003), but the estimates of µ and η

will vary based on which outcome is used. Using the notation of Section 2 in the manuscript,

P0 for the Weibull AFT corresponds to µ ∈ R, η ∈ Rp, and γ ≥ 1. Most AFT approaches do

not restrict the parameter space. Thus, we can have γ̂ < 1 and ĝ /∈ P0.

There are two ways we can compare the estimates from the AFT and proportional hazard

models. First, we can use the true value of γ and compare γη̂j with β̂j . This is an artificial

comparison since the the true value of γ will be unknown in an actual analysis. Second, if

the parameter vector β = 0 then η = 0 and the output of the models can be compared. In

Table 2, we present simulation results comparing our proposed piecewise and semiparametric

approaches to the AFT approach. For the AFT approach we present the summarized results

for the actual η̂ estimates (Standard AFT), and for the corrected γη̂ estimates (Corrected

AFT). The settings for the simulations, including the values of the parameters, were identical

for those in Section 4.2 of the manuscript. The Table contains the average estimated coefficient,

empirical standard deviation, and the l2 norm as given in Section 4 of the manuscript. Each

setting for the AFT model had at least one iteration where γ̂ < 1 and ĝ /∈ P0. In such

iterations F̂ (·|Z) could not be estimated, so the l2 norm could not be reported. We report the

number of iterations (out of 1,000) that where ĝ /∈ P0.

For the settings with β = 0 the estimates between the proposed approaches and the

standard AFT have relatively similar behavior. In the discrete scenario, the piecewise and

semiparametric approaches have slightly less variability and coverage probabilities that are
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Table 2: Summary of 1, 000 simulated samples with n = 250, and 500 for the piecewise constant,
semiparametric and Weibull AFT models under the discrete (true F is discrete) and continuous (true F
is continuous) scenarios. For the ‘Corrected AFT’ model the estimates of the coefficients are multiplied
by α to coincide with estimates from the proportional hazards model. Displayed is the average coefficient
(mean), empirical standard deviation (sd), empirical coverage probabilities (ecp), and l2 norm (l2).
For the AFT model we report the number of estimates where F̄ could not be estimated, i.e., ĝ /∈ P0.

Discrete F

Piecewise Semiparametric Standard AFT Corrected AFT

true mean(sd) ecp mean(sd) ecp mean(sd) ecp mean(sd) ecp

n=250

β1 -0.5 -0.505 (0.148) 0.964 -0.510 (0.162) 0.950 -0.685 (0.157) 0.739 -0.514 (0.118) 0.922

β2 -0.5 -0.507 (0.354) 0.951 -0.509 (0.368) 0.945 -0.690 (0.376) 0.895 -0.518 (0.282) 0.935

l2 0.068 0.053 32/1000 with ĝ /∈ P0

β1 0.0 -0.005 (0.143) 0.948 -0.002 (0.145) 0.950 0.004 (0.151) 0.937 0.003 (0.113) 0.937

β2 0.0 0.005 (0.349) 0.955 -0.003 (0.356) 0.947 0.006 (0.382) 0.935 0.005 (0.286) 0.935

l2 0.074 0.053 25/1000 with ĝ /∈ P0

n=500

β1 -0.5 -0.506 (0.105) 0.952 -0.507 (0.104) 0.956 -0.677 (0.106) 0.566 -0.508 (0.080) 0.934

β2 -0.5 -0.506 (0.252) 0.949 -0.505 (0.245) 0.965 -0.678 (0.262) 0.884 -0.508 (0.196) 0.944

l2 0.050 0.029 3/1000 with ĝ /∈ P0

β1 0.0 0.002 (0.095) 0.948 0.002 (0.097) 0.950 0.001 (0.110) 0.926 0.001 (0.083) 0.926

β2 0.0 0.007 (0.230) 0.965 -0.002 (0.241) 0.950 0.005 (0.256) 0.942 0.004 (0.192) 0.942

l2 0.050 0.034 1/1000 with ĝ /∈ P0

Continuous F

Piecewise Semiparametric Standard AFT Corrected AFT

true mean(sd) ecp mean(sd) ecp mean(sd) ecp mean(sd) ecp

n=250

β1 -0.5 -0.517 (0.129) 0.965 -0.511 (0.167) 0.949 -0.661 (0.146) 0.768 -0.496 (0.109) 0.952

β2 -0.5 -0.515 (0.318) 0.938 -0.510 (0.389) 0.952 -0.662 (0.356) 0.924 -0.496 (0.267) 0.947

l2 0.050 0.056 61/1000 with ĝ /∈ P0

β1 0.0 0.002 (0.124) 0.942 -0.003 (0.143) 0.953 0.004 (0.107) 0.943 0.006 (0.142) 0.943

β2 0.0 0.005 (0.305) 0.951 0.008 (0.375) 0.944 0.005 (0.279) 0.929 0.007 (0.372) 0.929

l2 0.064 0.049 67/1000 with ĝ /∈ P0

n=500

β1 -0.5 -0.513 (0.094) 0.948 -0.509 (0.115) 0.944 -0.664 (0.103) 0.608 -0.498 (0.077) 0.947

β2 -0.5 -0.511 (0.214) 0.948 -0.507 (0.259) 0.954 -0.679 (0.271) 0.859 -0.509 (0.203) 0.954

l2 0.032 0.026 13/1000 with ĝ /∈ P0

β1 0.0 0.004 (0.083) 0.946 -0.002 (0.100) 0.947 0.003 (0.105) 0.941 0.002 (0.079) 0.941

β2 0.0 -0.014 (0.201) 0.941 -0.017 (0.251) 0.957 0.002 (0.268) 0.931 0.002 (0.201) 0.951

l2 0.028 0.031 15/1000 with ĝ /∈ P0
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closer to the nominal 0.95 level than the standard AFT estimates. For the settings with

β = −0.5 the standard AFT estimates are larger in absolute value. Bias in these estimates is

expected since the true η 6= −0.5. In the discrete scenario, the corrected AFT estimates have

less bias, more variability, and coverage probabilities that are further from the nominal 0.95

level than the proposed approaches. In the continuous scenario, however, the corrected AFT

has less bias and variability with similar coverage probabilities than the proposed approaches.

A decrease in variability is expected for the AFT model since it is fully parametric.

C Semiparametric, and piecewise constant R code

In this section we give the R code (R Core Team, 2013) to run the semiparametric, and piecewise

constant backward recurrent Cox models (Cox, 1972) given in Sections 2 and 3 of the main

text. To obtain R code for a nonparametric estimator of g(·) see Jankowski and Wellner (2009).

In Section D we give code to implement and display the results of the semiparametric, and

piecewise constant backward recurrent Cox models from simulated data.

C.1 Log-likelihood for the semiparametric model

SP_BR_GC_like <- function(par,X,T,CEN,w=1){

## USAGE

# SP_BR_GC_like(par,X,T,CEN,w) in conjunction with an

# optimization program, such as optim or nls.

## ARGUMENTS

# par: The values of alpha, and beta to evaluate the log-

# likelihood. The length of alpha should be equal to the

# number of distinctly observed observations +1 when

# the largest censored observation is equal to the

# largest observation and number of distinctly observed

# observations otherwise.

# X: covariate matrix
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# T: vector current durations

# CEN: vector of indicators that a subject was not

# censored.

# w: weight function (optional).

## OUTPUT

# -sum(log(likelihood))

## DETAILS

# This program evaluates the semiparametric backward

# recurrent discrete Cox likelihood with censoring,

# corresponding to the negative log of equation (3.1).

if(length(w)==1){w <- rep(1,length(T))}

if(max(T[CEN==0]) == max(T)){

T_vals<- c(sort(unique(T[CEN==1])),max(T)+1)

}

if(max(T[CEN==0]) < max(T)){

T_vals<- sort(unique(T[CEN==1]))

}

len_p <- length(T_vals)-1

T_seq <- 1:max(T_vals)

alpha <- exp(par[1:len_p])

beta <- par[(len_p + 1):length(par)]

if(length(beta)==1){eta <- X*beta}

if(length(beta) >1){eta <- X%*%beta}

ful_alpha <- T_seq*0

ful_alpha[T_vals[T_vals>0]] <- alpha
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gamma <- cumsum(ful_alpha)

GAM_T <- T

GAM_T[T> 0] <- gamma[T[T>0]]

i_const <- numeric(0)

i_surv <- numeric(0)

for(i in 1:length(T)){

temp_vals<- c(1,exp(-gamma[-length(gamma)]*exp(eta[i])),

exp(-(gamma[length(gamma)-1]+c(1:1000)*alpha[length

(alpha)])*exp(eta[i])))

t_pmf <- temp_vals/sum(temp_vals)

t_surv <- 1 - sum(t_pmf[1:c(T[i]+1)])

i_surv <- c(i_surv,t_surv)

i_const <- c(i_const,sum(temp_vals))

}

like <- (CEN)*exp(-GAM_T*exp(eta))/i_const +

(1-CEN)*i_surv

llike <- w*log(like)

-sum(llike)

}

C.2 Log-likelihood for the piecewise constant model

SP_BR_Piece_like <- function(par,X,T,CEN,knots,w=1){

## USAGE

# SP_BR_GC_like(par,X,T,CEN,w) in conjunction with an
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# optimization program, such as optim or nls.

## ARGUMENTS

# par: The values c(gamma, beta) to evaluate the log-

# likelihood, resulting from equation (2.7). The length

# of gamma should be equal to the number of knots +1.

# X: covariate matrix

# T: vector current durations

# CEN: vector of indicators that a subject was not

# censored.

# knots: vector of knot locations.

# w: weight function (optional).

## OUTPUT

# -sum(log(likelihood))

## DETAILS

# This program evaluates the backward recurrent Cox

# likelihood with a piecewise constant specification

# baseline grouped hazard and censoring.

if(length(w)==1){w <- rep(1,length(T))}

T_vals<- c(sort(unique(T)),max(T))

len_p <- length(knots)+1

T_seq <- 1:max(T_vals)

alpha <- exp(par[1:len_p])

ex_parm <- alpha[length(alpha)]

beta <- par[(len_p + 1):length(par)]

if(length(beta)==1){eta <- X*beta}
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if(length(beta)>1){eta <- X%*%beta}

alph_vec <- numeric(0)

knots2 <- c(1,knots,max(T_vals))

for(k in 1:len_p){

alph_vec <- c(alph_vec,rep(alpha[k],(knots2[k+1]-

knots2[k])+1*I(k==1)))

}

ful_alpha <- alph_vec

gamma <- cumsum(ful_alpha)

GAM_T <- T

GAM_T[T> 0] <- gamma[T[T>0]]

i_const <- numeric(0)

i_surv <- numeric(0)

for(i in 1:length(T)){

temp_vals<- c(1,exp(-gamma*exp(eta[i])),exp(-

(gamma[length(gamma)]+c(1:1000)*ex_parm*exp(eta[i]))))

t_pmf <- temp_vals/sum(temp_vals)

t_surv <- 1 - sum(t_pmf[1:c(T[i]+1)])

i_surv <- c(i_surv,t_surv)

i_const <- c(i_const,sum(temp_vals))

}

like <- (CEN)*exp(-GAM_T*exp(eta))/i_const +

(1-CEN)*i_surv

like[!(like>0)] <- 0

llike <- w*log(like)
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-sum(llike)

}

C.3 Data Generation and Survival Estimation Programs

#Function for generating current duration data.

data_gen_cont_T <- function(eta,alpha,theta,Cen_V=1e100){

tau <- 11000

t <- 10000

T <- numeric(0)

for(i in 1:n){

S_t <- 0

S_vec <- 0

lambda_i <- theta*exp(eta[i])

t_len <- ceiling(1.1*tau/((1/lambda_i)^(1/alpha)*

gamma(1+1/alpha)))

while(S_t < tau){

r_u <- runif(t_len)

r_w <- ((-log(1-r_u)/lambda_i)^(1/alpha))

t_l <- cumsum(r_w)

S_t <- S_t + max(t_l)

S_vec <- c(S_vec,t_l)

}

A_t <-floor(t - max(S_vec[S_vec<=t]))

T <- c(T,A_t)

}

CEN <- 1*I(T<=Cen_V)
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T[T>Cen_V] <- Cen_V

return(list(T=T,CEN=CEN))

}

#Function for estimating the survival function

#of the total durations based on a fitted semi-

#parametric model.

est_surv_SP <- function(par_est,T,CEN){

if(max(T[CEN==0]) == max(T)){

T_vals<- c(sort(unique(T[CEN==1])),max(T)+1)

}

if(max(T[CEN==0]) < max(T)){

T_vals<- sort(unique(T[CEN==1]))

}

len_p <- length(T_vals)-1

T_seq <- 1:max(T_vals)

alpha.h <- exp(par_est[1:len_p])

beta.h <- par_est[(len_p + 1):length(par_est)]

ful_alpha <- T_seq*0

ful_alpha[T_vals[-1]] <- alpha.h

gamma <- cumsum(ful_alpha)

temp_vals<- c(1,exp(-gamma[-length(gamma)]),exp(-

(gamma[length(gamma)-1]+c(1:1000)*alpha.h[

length(alpha.h)])))

f_est <- temp_vals/sum(temp_vals)

surv_est <- f_est/f_est[1]

step_est_SP <- stepfun(1:max(T_vals),c(1,surv_est[1:
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max(T_vals)]),right=FALSE)

return(step_est_SP)

}

#Function for estimating the survival function

#of the total durations based on a fitted piece-

#wise constant model.

est_surv_PC <- function(par_est,T,CEN,knots){

T_vals <- sort(unique(T))

len_p <- length(knots)+1

T_seq <- 1:max(T_vals)

alpha.h <- exp(par_est[1:len_p])

ex_parm.h <- exp(par_est[len_p+1])

beta.h <- par_est[(len_p + 2):length(par_est)]

ex_parm <- par_est[len_p+1]

alph_vec <- numeric(0)

knots2 <- c(1,knots,max(T_vals))

for(k in 1:len_p){

alph_vec <- c(alph_vec,rep(alpha.h[k],(knots2[k+1]-

knots2[k])+1*I(k==1)))

}

ful_alpha <- alph_vec

gamma <- cumsum(ful_alpha)

i_const <- sum(c(1,exp(-gamma),exp(-(gamma[

length(gamma)]+c(1:1000)*ex_parm.h))))

f_est <- c(1/i_const,exp(-gamma)/i_const)

surv_est <- f_est/f_est[1]

step_est_PC <- stepfun(c(0,T_seq,max(T)+1),
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c(1,surv_est,0),right=FALSE)

return(step_est_PC)

}

D Example with Simulated Data

In this section we give an example of the semiparametric, and piecewise constant backward

recurrent Cox models from simulated data. The data is simulated under the Scenario discussed

in Section 2.2 of the main text. First load the log likelihoods from the previous section. Then

load the data generation, and survival estimation functions in Section C.3. After that the

following will estimate and display both models.

library(MASS)

int_vec <- 0:36

Cen_V <- 36

alpha <- 0.75

theta <- 0.3

set.seed(97)

true_surv <- exp(-theta*(int_vec)^alpha)

knots <- c(1,2,4,9,15,27)

n <- 250

X <- matrix(1,n,2)

X[,1] <- rbinom(n,1,0.5)

X[,2] <- rnorm(n)/5

beta <- c(-0.5,-0.5)

eta <- X%*%beta

alpha <- 0.75
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theta <- 0.3

# Generating the data

dat <- data_gen_cont_T(eta,alpha,theta,Cen_V)

T <- dat$T

CEN <- dat$CEN

# Estimating the parameters of the Semiparametric model.

par <- c(rep(-2,length(unique(T[CEN==1]))),beta)

fit.res2<- optim(par,SP_BR_GC_like,X=X,T=T,CEN=CEN,

method="BFGS",hessian=TRUE)

# Estimating the survival function of the total durations,

# for the semiparametric model.

var_est <- diag(ginv(fit.res2$hessian))

beta_var<- var_est[c(length(par)-length(beta)+1,

length(par))]

par_est <- fit.res2$par

beta.h <- par_est[c(length(par)-length(beta)+1,

length(par))]

step_est_SP <- est_surv_SP(par_est,T,CEN)

summat <- round(cbind(beta.h,sqrt(beta_var),beta.h-

1.96*sqrt(beta_var),beta.h+1.96*sqrt(beta_var)),4)

colnames(summat) <- c("EST","Std_Err","95% CI_L",

"95% CI_U")

# Estimating the parameters of the Piecewise model.

par <- c(seq(-2,-2.5,length.out=length(knots)+1),beta)

fit.res <- optim(par,SP_BR_Piece_like,X=X,T=T,CEN=CEN,
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knots=knots,method="BFGS",hessian=TRUE)

# Estimating the survival function of the total durations

# for the piecewise model.

var_est <- diag(ginv(fit.res$hessian))

beta_var<- var_est[c(length(par)-length(beta)+1,

length(par))]

par_est <- fit.res$par

beta.h <- par_est[c(length(par)-length(beta)+1,

length(par))]

step_est_PC <- est_surv_PC(par_est,T,CEN,knots)

summat <- rbind(summat,round(cbind(beta.h,sqrt(beta_var),

beta.h-1.96*sqrt(beta_var),beta.h+1.96*sqrt(beta_var)),4))

rownames(summat) <- c("SP_beta1","SP_beta2","PC_beta1",

"PC_beta2")

# Displaying the estimates of the survival functions and

# beta parameter estimates for the both models

plot(int_vec,step_est_SP(int_vec),type="l",ylim=c(0,1),

xlab="TIME",ylab="Survival Estimate",lwd=2,cex.lab=1.3)

lines(int_vec,c(true_surv),col=4,lwd=2)

lines(int_vec,step_est_PC(int_vec),col=3,lwd=2)

legend(25,0.8,legend=c("SP Estimate","PC Estimate",

"True"),col=c(1,3,4),lwd=2)

summat #Estimates and 95% CI’s for beta parameters
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