
Supplementary figures:  

 
Figure S1: Spatiotemporal patterns in PER2::LUC bioluminescence in SCN for all slices, 
analyzed in three hour intervals.  Time zero was defined by the trough of the first cycle 
(indicated by black arrows), and the pseudocolored images are normalized to the brightest slice.  



The mean brightness time series for bioluminescence for each slice is shown to the right of each 
row. As noted in text, the analyses performed in this paper assess the amplitude of oscillation and 
are not sensitive to the baseline brightness of the image. While the y-axes have been uniformly 
scaled, due to the different lengths of the time series, the x-axes have different scales.  The color 
scale is shown on the right side of the last panel.   
 

Figure S2:  For each WT slice, we show (from left to right) the “map” showing the top six 
clusters produced by the k-medoids algorithm, and the mean brightness time series for each 



clusters, following previous work (Foley et al., 2011). In addition, we provide the Fourier power 
spectrum for each cluster.  The color scale is shown on the right side of the first “map”.  Note 
that,  due to the different lengths of the time series, the x-axes have different scales. 
 

Figure S3: The results of the k-medoid analysis for all WT samples are shown for the 
automatically determined ROIs.  In the first three columns, from left to right, we show the “map” 
of the top six clusters in the tissue, the mean signals over the clusters, and the Fourier power 
spectra. The right hand panels show the same analyses for manually identified cells.  Note that, 
due to the different lengths of the time series, the x-axes have different scales. 
 



Figure S4:  Similarly to Figure S3, we show the results of the k-medoid analysis for all Cry-null 
samples with automatically determined ROIs.  In the first three columns, from left to right, we 
show the top six clusters in the tissue, the mean signals over the clusters, and the Fourier power 
spectra. The right hand panels show the same analyses for manually identified cells.  Note that, 
due to the different lengths of the time series, the x-axes have different scales. 
 



 
Figure S5: We show the same analyses as in Figure 6 for the right lobes of the SCN in that 
Figure.  



 

 
Figure S6: We show the results of following the procedure used to create Figure 6 for all 
additional WT animals (left lobes). 
 



 
Figure S7:  We show the results of following the procedure used to create Figure 6 for the left 

lobes of all additional Cry-null SCN (top rows) and one VPAC2-null SCN (last row). 



 
Supplemental Movies: The spectral embedding movies show the link between spatial and 

temporal organization in a WT and CRY-null slice, depicting changes over the entire recording 

period.  The images in the top row are taken from the same slice shown in Figure 6A. The “clock 

face” on the left side of the top row, shows the spectral embedding, where the white circles are 

associated with spatial locations with the highest bioluminescence.  The “clock hand” gives the 

mean direction of the white circles.  On the right side of the top row, the spatial locations in the 

SCN are also denoted by white pixels.  In both images, the other locations are colored according 

to the clusters given by spectral clustering.  In each case, the movie runs over the entire time 

series (in Figure 6 only 8 instances in time have been selected for display).  The bottom row 

traces the progress through the mean time series for the SCN as the movie progresses.   

 

SM1 corresponds to the slice in Figure 6A and SM2 corresponds to Figure 6B. The spectral 

embedding analysis supports the results of cluster analysis and further demonstrates the 

occurrence of repeated local temporal features: in particular there is a recurrent ‘start’ impetus 

that exists in both WT and Cry-null slices. 

 
 
 
The similarity graph of an SCN 

The spectral cluster analyses in this paper are based on a graph theoretic model of the SCN. The 

similarity graph represents the SCN as a graph consisting of a collection of nodes and edges 

between those nodes.  For our application, we choose nodes to be the superpixels (described in 

the main text) and we place an edge between two nodes weighted according to the similarity of 

their temporal brightness profiles computed according some chosen function, such as correlation 



or cosine distance.  While we give the technical details below, the basic idea is that superpixels 

with similarly shaped time series will have connections with high weights between them while 

superpixels with significantly differently shaped time series will have low or zero weight 

connections. 

 
Spectral Clustering Algorithm  

This algorithm decomposes the tissue into regions with coherent behavior of luminescence time 

series subject to an important constraint, which is that spectral clustering produces a solution to 

the N-Cut problem, a graph decomposition optimization.  The algorithm follows from an 

analysis of the eigendata of the graph Laplacian associated to a graph. The techniques here are 

standard and a complete discussion may be found in von Luxberg’s tutorial (von Luxburg, 2007).  

Here we summarize briefly the variant of the technique used in our analyses.  First, we generate 

an adjacency matrix, A, for a weighted undirected graph, as described in detail in the section 

below. Then we construct the graph Laplacian, 𝐼 − 𝐷−12𝐴𝐷−12, where I is the identity matrix and 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗  with all other entries being zero.  This defines the so-called symmetrized graph 

Laplacian (note that there are several other definitions of the graph Laplacian). Second, we 

compute the eigenvalues and eigenvectors of L.  It is well known (Chung, 1997) that the number 

of zero eigenvalues equals the number of connected components and, as the matrix is symmetric, 

L has a full complement of real eigenvalues.  All of our graphs have one connected component 

and we order the eigenvalues from smallest to largest: 

0 = 𝜆0 <  𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 

The first nontrivial eigenvalue, λ1, is called the Fiedler value (Fiedler, 1968) and 

describes the algebraic connectivity of the graph.  To finish the implementation of spectral 



clustering, we determine the number, l, of significant eigenvalues we wish to use.  In the 

literature, this determination is often done using domain knowledge or estimation from a scree 

plot - we used the latter (see the main text for parameter estimation).  Using the l associated 

eigenvectors, we construct the spectral embedding using the entries of eigenvectors associated to 

the first l nonzero eigenvalues as coordinates in ℝ𝑙.  This embedding provides the geometric 

basis for spectral clustering – nodes are considered close to one another if they are close in this 

space, even if they are quite distant in other ways (e.g. spatially distant).  Our last step in spectral 

clustering is to apply k-means to the spectral embedding to cluster the nodes together.  To use 

spectral clustering we must specify three parameters, the scale parameter σ (described below), 

the number of eigenvectors l, and the number of clusters k. 

 

Spectral embedding: Similarity model of the SCN  

The spectral embedding is a mapping of the superpixels to the plane which allows us to see the 

extent to which the temporal and spatial structures of PER2 concentrations in the SCN are 

linked.  Key to encoding the link between temporal and spatial structures in the spectral 

embedding is choosing a good adjacency matrix for our graph model of the functional 

connectivity SCN.  To specify our adjacency matrix, we need to specify a notion of dissimilarity 

between the superpixels.  Our notion is built from correlation between the time series of 

luminescence profiles for the superpixels.  Precisely, we first normalize our time series by 

removing the mean time series via projection.  If 𝑇𝑖 is the time series associated with superpixel 

i, we let  

𝑇�𝑖 = 𝑇𝑖 − 𝑝𝑟𝑜𝑗𝑇𝑚𝑇𝑖 = 𝑇𝑖 −
𝑇𝑖 ⋅ 𝑇𝑚
|𝑇𝑚|2 𝑇𝑚, 



where 𝑇𝑚 is the mean time series.  We then construct the correlation matrix of the normalized 

time series - 𝐶𝑖𝑗 = 𝑐𝑜𝑟𝑟 (𝑇�𝑖,𝑇�𝑗).  We convert the correlation to half the distance on the sphere by 

letting 𝑑𝑖𝑗 = sin �cos−1 𝐶𝑖𝑗
2

�.  In other words, if we further ensure that the normalized time series 

are of unit length, then 𝑑𝑖𝑗 is half the chordal distance on the unit sphere.   

This distance matrix is a dissimilarity matrix, while an adjacency matrix for the graph 

needs to be a similarity matrix.  We nonlinearly rescale the distance matrix to make a similarity 

matrix suitable for use as an adjacency matrix: 

𝐴𝑖𝑗 = 𝑒−
𝑑𝑖𝑗
2

𝜎2 . 

The parameter σ is a scale parameter – it allows us to pick which distances (and hence 

correlations) we consider to be relevant and which are to be devalued (see below for parameter 

estimation).  

 

Spectral clustering and graph cut problems: 

 

To motivate our use of spectral clustering, we briefly review a connection to graph partitioning.  

One of the fundamental problems in graph theory is the cut problem.  In the cut problem, we 

wish to partition the graph into two (or more) pieces while doing the least total damage to the 

network.  To make this precise, if the nodes of the graph are divided between two sets, 𝐵 and 𝐵𝐶, 

the cut of the graph is defined to be 𝑐𝑢𝑡(𝐵,𝐵𝐶) = ∑ 𝐴𝑖𝑗𝑖∈𝐵,𝑗∈𝐵𝐶  where 𝐴𝑖𝑗  is the weight of the 

edge connecting node i and node j.  Thus, the cut problem is solved by finding the set B which 

minimizes 𝑐𝑢𝑡(𝐵,𝐵𝐶).  While this formulation is intuitive, it has some problems for specific 

types of graphs.  For example, if the graph has a node with a single edge, it is often the optimal 



solution to the cut problem to let that node be the set B.  Often, this is not the “correct” solution 

in the sense that it does not meet the criteria of the practitioner.  In particular, it is often desirable 

to have a partition which divides the graph into roughly equal pieces.  In this respect, the cut 

problem often fails.  To mitigate this, we can introduce the normalized cut problem (see (Shi & 

Malik, 2000).  In this problem, we minimize the normalized cut: 

𝑁𝐶𝑢𝑡(𝐵,𝐵𝐶) =
𝑐𝑢𝑡(𝐵,𝐵𝐶)
∑ 𝐴𝑖𝑗𝑖∈𝐵,𝑗

+
𝑐𝑢𝑡(𝐵,𝐵𝐶)
∑ 𝐴𝑖𝑗𝑖∈𝐵𝐶,𝑗

 

Minimizing this generally forces the two sets, 𝐵 and 𝐵𝐶  to be of roughly equal size.   Both these 

problems, as well as other variants, are NP-hard problems.  But, relaxations of these problems 

turn out to be simply linear algebra problems.  In fact, the solution to the relaxed normalized cut 

problem (for a single cut) is given by the Fiedler vector of the graph Laplacian we described 

above (the set B is defined by the nodes which are associated with positive entries in the Fiedler 

vector).  The solution to the relaxed problem for a partition into k subsets is given by spectral 

clustering.   

 


